

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-(4-Methoxyphenylsulfinyl)cyclohexan-1-one

### Julio Zukerman-Schpector,<sup>a</sup>\* Elisângela Vinhato,<sup>b</sup> Carlos R. Cerqueira Jr,<sup>b</sup> Alessandro Rodrigues<sup>b</sup> and Paulo R. Olivato<sup>b</sup>

<sup>a</sup>Universidade Federal de São Carlos, Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento de Química, São Carlos, SP, Brazil, and <sup>b</sup>Universidade de São Paulo, Conformational Analysis and Electronic Interactions Laboratory, Instituto de Química, São Paulo, SP, Brazil Correspondence e-mail: julio@power.ufscar.br

Received 8 April 2009; accepted 11 April 2009

Key indicators: single-crystal X-ray study; T = 290 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.040: wR factor = 0.113: data-to-parameter ratio = 18.5.

The cyclohexanone ring in the title compound,  $C_{13}H_{16}O_3S$ , is in a distorted chair conformation. The intramolecular  $S \cdots O_{carbonvl}$  distance is 2.814 (2) Å. Molecules are connected into a two-dimensional array via C-H···O contacts involving the carbonyl and sulfinyl O atoms.

#### **Related literature**

For related literature, see: Zukerman-Schpector, da Silva et al. (2006). For structure analysis, see: Cremer & Pople (1975); Iulek & Zukerman-Schpector (1997). For details of synthesis, see: Bradscher et al. (1954); Zukerman-Schpector, Maganhi et al. (2006); Drabowicz & Mikolajczyk (1978).



#### **Experimental**

#### Crystal data

 $C_{13}H_{16}O_3S$  $M_r = 252.33$ Monoclinic,  $P2_1/c$ a = 11.0510 (4) Å b = 10.0875 (2) Å c = 11.3672 (5) Å  $\beta = 93.886 \ (2)^{\circ}$ 

| V = 1264.27 (8) Å <sup>3</sup>               |
|----------------------------------------------|
| Z = 4                                        |
| Mo Kα radiation                              |
| $\mu = 0.25 \text{ mm}^{-1}$                 |
| T = 290  K                                   |
| $0.15 \times 0.10 \times 0.10 \ \mathrm{mm}$ |

#### Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: none 8283 measured reflections

2872 independent reflections 2508 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.024$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.040$ | 155 parameters                                           |
|---------------------------------|----------------------------------------------------------|
| $wR(F^2) = 0.113$               | H-atom parameters constrained                            |
| S = 1.06                        | $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$  |
| 2872 reflections                | $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdots A$ |
|-------------------------------------------------|--------------|-------------------------|------------------------|---------------------------|
| $C1 - H1 \cdots O2^i$                           | 0.98         | 2.47                    | 3.257 (2)              | 137                       |
| $C3-H3A\cdots O2^{i}$                           | 0.97         | 2.59                    | 3.323 (2)              | 133                       |
| $C11-H11\cdots O1^{ii}$                         | 0.93         | 2.59                    | 3.500 (2)              | 167                       |
| $C3-H3A\cdots O2^{n}$<br>$C11-H11\cdots O1^{n}$ | 0.97<br>0.93 | 2.59<br>2.59            | 3.323 (2)<br>3.500 (2) | 133<br>167                |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii)  $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$ .

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT and SADABS (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and MarvinSketch (ChemAxon, 2008).

We thank FAPESP (grant No. 2008/02531-5 to JZ-S), CNPq and CAPES for financial support. Professor R. A. Burrow of the Federal University of Santa Maria is gratefully acknowledged for helping with the collection of intensity data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2419).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bradscher, C. K., Brown, F. C. & Grantham, R. J. (1954). J. Am. Chem. Soc. 76, 114-115.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- ChemAxon (2008). MarvinSketch. http://www.chemaxon.com.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Drabowicz, J. & Mikolajczyk, M. (1978). Synthesis, 10, 758-759.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433-434.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zukerman-Schpector, J., da Silva, R. O., Olivato, P. R., Vinhato, E., Rodrigues, A. & Cerqueira, C. R. Jr (2006). Z. Kristallogr. New Cryst. Struct. 221, 311-312.
- Zukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. Jr (2006). Z. Kristallogr. New Cryst. Struct. 221, 165-166.

# supporting information

Acta Cryst. (2009). E65, o1075 [doi:10.1107/S1600536809013695]

# 2-(4-Methoxyphenylsulfinyl)cyclohexan-1-one

# Julio Zukerman-Schpector, Elisângela Vinhato, Carlos R. Cerqueira Jr, Alessandro Rodrigues and Paulo R. Olivato

## S1. Comment

The obtained product, which has stereogenic centres at S and C1, was a 3:1 mixture of the [C1(R)S(S)/C1(S)S(R)] and [C1(R)S(R)/C1(S)S(S)] diastereomeric sulfoxides, respectively, as determined from <sup>1</sup>H NMR spectroscopy. From hexane/ethanol fractional crystallization, the pure [C1(R)S(S)/C1(S)S(R)] diastereomer, (I), was obtained. The cyclohexanone ring is in a distorted chair conformation as shown by the ring-puckering parameters (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997) q<sub>2</sub> = 0.143 (2) Å, q<sub>3</sub> = 0.499 (2) Å, Q = 0.519 (2) Å,  $\varphi_2$  = -130.9 (8)°. The methyl moiety is slightly out of the phenyl plane as shown by the C13-O3-C10-C11 torsion angle of 4.9 (2)°. The molecules are linked *via* intermolecular C—H···O interactions involving the carbonyl- and sulfinyl-oxygen atoms into a 2-D array (Table 1).

## **S2. Experimental**

The starting 2-(4-methoxyphenylthio)cyclohexanone was prepared from the reaction of 2-chlorocyclohexanone and 4methoxythiophenol as previously reported (Bradscher *et al.* 1954). The sulfoxide 2-[(4-methoxybenzene)sulfinyl]cyclohexanone was prepared by oxidation of 2-(4-methoxyphenylthio)cyclohexanone (Zukerman-Schpector, Maganhi *et al.* 2006; Drabowicz & Mikolajczyk, 1978). A CH<sub>3</sub>OH (10 ml) solution of SeO<sub>2</sub> (1.23 g, 11.08 mmol) and hydrogen peroxide (30% H<sub>2</sub>O<sub>2</sub> in aqueous solution; 1.25 ml, 11.08 mmol) was added drop-wise, at 273 K, to a solution of 2-(4-methoxyphenylthio)cyclohexanone (2.62 g, 11.08 mmol) in CH<sub>3</sub>OH (5 ml). The reaction mixture was stirred at 273 K for 2 h and then at room temperature for 2 h. After completion of the reaction, a saturated aqueous NaCl solution (30 ml) was added, the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 *x* 20 ml) and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After solvent evaporation under reduced pressure, 1.39 g (5.5 mmol, yield 50%; m.p. 363–365 K) of the crude 2-[(4-methoxybenzene)sulfinyl]cyclohexanone (I) was obtained. Colourless crystals of (I) were obtained by vapour diffusion from n-hexane/acetone at 298 K.

## **S3. Refinement**

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å, and with  $U_{iso}$  set to 1.2—1.5 times  $U_{eq}$ (parent atom).



## Figure 1

The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).

#### 2-(4-Methoxyphenylsulfinyl)cyclohexan-1-one

Crystal data

C<sub>13</sub>H<sub>16</sub>O<sub>3</sub>S  $M_r = 252.33$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 11.0510 (4) Å b = 10.0875 (2) Å c = 11.3672 (5) Å  $\beta = 93.886$  (2)° V = 1264.27 (8) Å<sup>3</sup> Z = 4

## Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
8283 measured reflections
2872 independent reflections

#### Refinement

Refinement on  $F^2$ Secondary atom site location: difference Fourier Least-squares matrix: full map  $R[F^2 > 2\sigma(F^2)] = 0.040$ Hydrogen site location: inferred from  $wR(F^2) = 0.113$ neighbouring sites *S* = 1.06 H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.055P)^2 + 0.314P]$ 2872 reflections where  $P = (F_0^2 + 2F_c^2)/3$ 155 parameters 0 restraints  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant  $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

F(000) = 536  $D_x = 1.326 \text{ Mg m}^{-3}$ Melting point = 363–364 K Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5749 reflections  $\theta = 1.0-27.5^{\circ}$   $\mu = 0.25 \text{ mm}^{-1}$  T = 290 KIrregular, colourless  $0.15 \times 0.10 \times 0.10 \text{ mm}$ 

2508 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.024$   $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.7^{\circ}$   $h = -10 \rightarrow 14$   $k = -11 \rightarrow 13$  $l = -12 \rightarrow 14$ 

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | У             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|---------------|--------------|-----------------------------|--|
| S    | 0.56721 (4)  | 0.34807 (4)   | 0.33452 (3)  | 0.04990 (15)                |  |
| 01   | 0.79251 (14) | 0.37910 (14)  | 0.46227 (15) | 0.0817 (4)                  |  |
| O2   | 0.62133 (13) | 0.32131 (15)  | 0.22034 (11) | 0.0697 (4)                  |  |
| O3   | 0.05306 (12) | 0.18455 (16)  | 0.27603 (13) | 0.0739 (4)                  |  |
| C1   | 0.63097 (13) | 0.22233 (13)  | 0.43728 (12) | 0.0417 (3)                  |  |
| H1   | 0.5837       | 0.2239        | 0.5072       | 0.050*                      |  |
| C2   | 0.75982 (15) | 0.26614 (16)  | 0.47557 (14) | 0.0527 (4)                  |  |
| C3   | 0.84104 (17) | 0.16348 (19)  | 0.5352 (2)   | 0.0672 (5)                  |  |
| H3A  | 0.8218       | 0.1560        | 0.6169       | 0.081*                      |  |
| H3B  | 0.9245       | 0.1930        | 0.5343       | 0.081*                      |  |
| C4   | 0.82992 (16) | 0.02795 (18)  | 0.47825 (18) | 0.0634 (5)                  |  |
| H4A  | 0.8630       | 0.0307        | 0.4014       | 0.076*                      |  |
| H4B  | 0.8762       | -0.0360       | 0.5265       | 0.076*                      |  |
| C5   | 0.69875 (16) | -0.01463 (16) | 0.46473 (17) | 0.0592 (4)                  |  |
| H5A  | 0.6662       | -0.0191       | 0.5418       | 0.071*                      |  |
| H5B  | 0.6933       | -0.1024       | 0.4299       | 0.071*                      |  |
| C6   | 0.62411 (16) | 0.08211 (15)  | 0.38717 (15) | 0.0546 (4)                  |  |
| H6A  | 0.5402       | 0.0532        | 0.3805       | 0.066*                      |  |
| H6B  | 0.6537       | 0.0823        | 0.3087       | 0.066*                      |  |
| C7   | 0.41425 (14) | 0.29147 (14)  | 0.31844 (12) | 0.0458 (3)                  |  |
| C8   | 0.32744 (16) | 0.35031 (15)  | 0.38466 (14) | 0.0536 (4)                  |  |
| H8   | 0.3502       | 0.4151        | 0.4400       | 0.064*                      |  |
| C9   | 0.20829 (17) | 0.31257 (19)  | 0.36820 (16) | 0.0599 (4)                  |  |
| H9   | 0.1504       | 0.3521        | 0.4124       | 0.072*                      |  |
| C10  | 0.17349 (15) | 0.21533 (17)  | 0.28560 (14) | 0.0547 (4)                  |  |
| C11  | 0.25949 (16) | 0.15680 (16)  | 0.21873 (14) | 0.0521 (4)                  |  |
| H11  | 0.2368       | 0.0918        | 0.1636       | 0.063*                      |  |
| C12  | 0.37932 (15) | 0.19623 (15)  | 0.23499 (13) | 0.0490 (3)                  |  |
| H12  | 0.4371       | 0.1585        | 0.1895       | 0.059*                      |  |
| C13  | 0.0152 (2)   | 0.0786 (3)    | 0.1988 (2)   | 0.0827 (6)                  |  |
| H13A | 0.0360       | 0.0989        | 0.1202       | 0.124*                      |  |
| H13B | -0.0711      | 0.0674        | 0.1995       | 0.124*                      |  |
| H13C | 0.0550       | -0.0018       | 0.2249       | 0.124*                      |  |
|      |              |               |              |                             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# supporting information

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|-----|-------------|-------------|-------------|---------------|---------------|--------------|
| S   | 0.0664 (3)  | 0.0368 (2)  | 0.0455 (2)  | -0.00370 (15) | -0.00423 (17) | 0.00762 (14) |
| 01  | 0.0843 (9)  | 0.0525 (7)  | 0.1038 (11) | -0.0195 (7)   | -0.0274 (8)   | 0.0100 (7)   |
| O2  | 0.0803 (9)  | 0.0861 (9)  | 0.0433 (6)  | -0.0128 (7)   | 0.0071 (6)    | 0.0172 (6)   |
| O3  | 0.0567 (7)  | 0.0870 (10) | 0.0771 (9)  | 0.0022 (7)    | -0.0026 (6)   | 0.0003 (7)   |
| C1  | 0.0524 (8)  | 0.0375 (7)  | 0.0347 (6)  | 0.0003 (6)    | -0.0003 (5)   | 0.0025 (5)   |
| C2  | 0.0593 (9)  | 0.0462 (8)  | 0.0517 (8)  | -0.0041 (7)   | -0.0037 (7)   | -0.0007 (7)  |
| C3  | 0.0525 (9)  | 0.0611 (11) | 0.0856 (13) | -0.0019 (8)   | -0.0126 (9)   | 0.0083 (9)   |
| C4  | 0.0613 (10) | 0.0573 (10) | 0.0726 (11) | 0.0142 (8)    | 0.0112 (8)    | 0.0089 (9)   |
| C5  | 0.0703 (11) | 0.0389 (8)  | 0.0668 (10) | 0.0034 (7)    | -0.0073 (8)   | 0.0049 (7)   |
| C6  | 0.0688 (10) | 0.0370 (7)  | 0.0560 (9)  | 0.0013 (7)    | -0.0107 (7)   | 0.0000(7)    |
| C7  | 0.0617 (9)  | 0.0356 (7)  | 0.0389 (7)  | 0.0043 (6)    | -0.0052 (6)   | 0.0052 (5)   |
| C8  | 0.0712 (11) | 0.0419 (8)  | 0.0465 (8)  | 0.0104 (7)    | -0.0038 (7)   | -0.0032 (6)  |
| C9  | 0.0674 (10) | 0.0588 (10) | 0.0535 (9)  | 0.0166 (8)    | 0.0038 (8)    | -0.0002 (8)  |
| C10 | 0.0581 (9)  | 0.0538 (9)  | 0.0511 (8)  | 0.0065 (7)    | -0.0050 (7)   | 0.0094 (7)   |
| C11 | 0.0645 (10) | 0.0448 (8)  | 0.0455 (8)  | 0.0035 (7)    | -0.0073 (7)   | -0.0008 (6)  |
| C12 | 0.0622 (9)  | 0.0426 (8)  | 0.0415 (7)  | 0.0066 (6)    | -0.0013 (6)   | -0.0006 (6)  |
| C13 | 0.0746 (13) | 0.0998 (17) | 0.0715 (13) | -0.0175 (12)  | -0.0124 (10)  | 0.0023 (12)  |
|     |             |             |             |               |               |              |

Atomic displacement parameters  $(Å^2)$ 

## Geometric parameters (Å, °)

| S—O2       | 1.4900 (13) | C5—H5A     | 0.9700      |
|------------|-------------|------------|-------------|
| S—C7       | 1.7819 (16) | С5—Н5В     | 0.9700      |
| S—C1       | 1.8325 (14) | С6—Н6А     | 0.9700      |
| O1—C2      | 1.208 (2)   | С6—Н6В     | 0.9700      |
| O3—C10     | 1.364 (2)   | C7—C12     | 1.386 (2)   |
| O3—C13     | 1.428 (3)   | С7—С8      | 1.392 (2)   |
| C1—C6      | 1.525 (2)   | C8—C9      | 1.371 (3)   |
| C1—C2      | 1.526 (2)   | С8—Н8      | 0.9300      |
| C1—H1      | 0.9800      | C9—C10     | 1.394 (2)   |
| C2—C3      | 1.501 (2)   | С9—Н9      | 0.9300      |
| C3—C4      | 1.514 (3)   | C10-C11    | 1.388 (2)   |
| С3—НЗА     | 0.9700      | C11—C12    | 1.383 (2)   |
| С3—Н3В     | 0.9700      | C11—H11    | 0.9300      |
| C4—C5      | 1.510 (3)   | C12—H12    | 0.9300      |
| C4—H4A     | 0.9700      | C13—H13A   | 0.9600      |
| C4—H4B     | 0.9700      | C13—H13B   | 0.9600      |
| C5—C6      | 1.520 (2)   | C13—H13C   | 0.9600      |
| O2—S—C7    | 106.65 (7)  | C5—C6—C1   | 111.56 (13) |
| O2—S—C1    | 105.67 (7)  | С5—С6—Н6А  | 109.3       |
| C7—S—C1    | 99.48 (6)   | C1—C6—H6A  | 109.3       |
| C10—O3—C13 | 117.62 (16) | С5—С6—Н6В  | 109.3       |
| C6—C1—C2   | 113.39 (13) | C1—C6—H6B  | 109.3       |
| C6—C1—S    | 113.37 (10) | H6A—C6—H6B | 108.0       |
| C2—C1—S    | 107.00 (10) | C12—C7—C8  | 119.70 (15) |
|            |             |            |             |

| С6—С1—Н1                  | 107.6        | C12—C7—S       | 120.69 (12)  |
|---------------------------|--------------|----------------|--------------|
| C2C1H1                    | 107.6        | C8—C7—S        | 119.45 (12)  |
| S-C1-H1                   | 107.6        | C9—C8—C7       | 119.90 (15)  |
| O1—C2—C3                  | 122.17 (16)  | С9—С8—Н8       | 120.0        |
| O1—C2—C1                  | 121.24 (15)  | C7—C8—H8       | 120.0        |
| C3—C2—C1                  | 116.53 (14)  | C8—C9—C10      | 120.38 (16)  |
| C2—C3—C4                  | 113.65 (16)  | С8—С9—Н9       | 119.8        |
| С2—С3—НЗА                 | 108.8        | С10—С9—Н9      | 119.8        |
| C4—C3—H3A                 | 108.8        | O3—C10—C11     | 124.06 (16)  |
| С2—С3—Н3В                 | 108.8        | O3—C10—C9      | 115.92 (16)  |
| C4—C3—H3B                 | 108.8        | C11—C10—C9     | 120.02 (16)  |
| НЗА—СЗ—НЗВ                | 107.7        | C12-C11-C10    | 119.29 (15)  |
| C5—C4—C3                  | 110.49 (15)  | C12—C11—H11    | 120.4        |
| C5—C4—H4A                 | 109.6        | C10-C11-H11    | 120.4        |
| C3—C4—H4A                 | 109.6        | C11—C12—C7     | 120.69 (15)  |
| C5—C4—H4B                 | 109.6        | C11—C12—H12    | 119.7        |
| C3—C4—H4B                 | 109.6        | C7—C12—H12     | 119.7        |
| Н4А—С4—Н4В                | 108.1        | O3—C13—H13A    | 109.5        |
| C4—C5—C6                  | 110.84 (14)  | O3—C13—H13B    | 109.5        |
| С4—С5—Н5А                 | 109.5        | H13A—C13—H13B  | 109.5        |
| С6—С5—Н5А                 | 109.5        | O3—C13—H13C    | 109.5        |
| С4—С5—Н5В                 | 109.5        | H13A—C13—H13C  | 109.5        |
| С6—С5—Н5В                 | 109.5        | H13B-C13-H13C  | 109.5        |
| H5A—C5—H5B                | 108.1        |                |              |
| O2—S—C1—C6                | -48.31 (13)  | C1—S—C7—C12    | -86.59 (13)  |
| C7—S—C1—C6                | 62.09 (13)   | O2—S—C7—C8     | -152.43 (12) |
| O2—S—C1—C2                | 77.46 (11)   | C1—S—C7—C8     | 97.95 (13)   |
| C7—S—C1—C2                | -172.14 (10) | C12—C7—C8—C9   | 0.9 (2)      |
| C6-C1-C2-01               | 143.42 (18)  | S—C7—C8—C9     | 176.38 (12)  |
| S-C1-C2-01                | 17.7 (2)     | C7—C8—C9—C10   | 0.1 (2)      |
| C6-C1-C2-C3               | -39.3 (2)    | C13—O3—C10—C11 | 4.9 (2)      |
| S-C1-C2-C3                | -165.05 (14) | C13—O3—C10—C9  | -175.42 (17) |
| O1—C2—C3—C4               | -140.82 (19) | C8—C9—C10—O3   | 179.84 (15)  |
| C1—C2—C3—C4               | 41.9 (2)     | C8—C9—C10—C11  | -0.5 (2)     |
| C2—C3—C4—C5               | -51.8 (2)    | O3-C10-C11-C12 | 179.51 (15)  |
| C3—C4—C5—C6               | 60.5 (2)     | C9—C10—C11—C12 | -0.1 (2)     |
| C4—C5—C6—C1               | -58.4 (2)    | C10-C11-C12-C7 | 1.1 (2)      |
| C2-C1-C6-C5               | 46.78 (19)   | C8—C7—C12—C11  | -1.5 (2)     |
| S-C1-C6-C5                | 169.06 (12)  | S-C7-C12-C11   | -176.95 (11) |
| O2—S—C7—C12               | 23.03 (14)   |                |              |
|                           |              |                |              |
| Hydrogen-bond geometry (Å | , <i>o</i> ) |                |              |

| D—H···A                 | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-------------------------|-------------|-------|-----------|-------------------------|
| C1—H1···O2 <sup>i</sup> | 0.98        | 2.47  | 3.257 (2) | 137                     |

|                                   |      |      | supportin | supporting information |  |  |
|-----------------------------------|------|------|-----------|------------------------|--|--|
| C3—H3 <i>A</i> ···O2 <sup>i</sup> | 0.97 | 2.59 | 3.323 (2) | 133                    |  |  |
| С11—Н11…О1іі                      | 0.93 | 2.59 | 3.500 (2) | 167                    |  |  |

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+1, y-1/2, -z+1/2.