

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Ethanol-κO)[2-(4-hydroxyphenyl)quinoline-4-carboxylato-κO]triphenyltin(IV)

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 31 March 2009; accepted 1 April 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.036; wR factor = 0.104; data-to-parameter ratio = 17.6.

The Sn atom in the title molecule, $[Sn(C_6H_5)_3(C_{16}H_{10}NO_3)-(C_2H_6O)]$, shows a *trans*-C₃SnO₂ trigonal bipyramidal coordination. Adjacent molecules are linked by O-H···O and O-H···N hydrogen bonds into a two-dimensional array parallel to (100). The ethanol ligand is disordered, with two sites of equal occupancy being resolved for the ethyl group.

Related literature

Triphenyltin carboxylates are coordinately saturated, and do not generally afford adducts; for some unusual examples of adducts with oxygen-donor ligands, see: Ng & Kumar Das (1997). For reviews of the structural chemistry of organotin carboxylates, see: Tiekink (1991, 1994).

Experimental

Crystal data

 $[Sn(C_6H_5)_3(C_{16}H_{10}NO_3)(C_2H_6O)]$ $M_r = 660.31$ Monoclinic, C2/c a = 38.9542 (5) Å b = 9.7259 (2) Å c = 17.8594 (3) Å $\beta = 116.632$ (1)°

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.777, T_{\rm max} = 0.917$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	
$wR(F^2) = 0.104$	
S = 1.26	
6937 reflections	
395 parameters	
19 restraints	

 $V = 6048.4 \text{ (2) } \text{\AA}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.89 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.20 \times 0.10 \text{ mm}$

23944 measured reflections 6937 independent reflections 5517 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 1.21 \text{ e } \text{ \AA}^{-3}$ $\Delta \rho_{min} = -1.30 \text{ e } \text{ \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O3 - H3 \cdots O2^{i} \\ O4 - H4 \cdots N1^{ii} \end{array}$	0.85(1) 0.84(1)	1.83 (2) 1.95 (1)	2.661 (3) 2.789 (4)	166 (6) 175 (4)
Summatry and as (i)	x 1 y = 1	3.(3) $y = y + 1$	" 1	

Symmetry codes: (i) -x + 1, y, $-z + \frac{3}{2}$; (ii) x, -y + 1, $z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publlCIF* (Westrip, 2009).

We thank the University of Malaya (FS3392008A) for funding this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2412).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ng, S. W. & Kumar Das, V. G. (1997). Trends Organomet. Chem. 2, 107–115.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.
- Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.

Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, m489 [doi:10.1107/S1600536809012239]

$(Ethanol-\kappa O)[2-(4-hydroxyphenyl)quinoline-4-carboxylato-\kappa O]triphenyltin(IV)$

Kong Mun Lo and Seik Weng Ng

S1. Experimental

Re-distilled benzaldehyde (12 ml) and pyruvic acid (11 g) were boiled in ethanol (100 ml) and to the solution was added 4-hydroxyaniline (11.5 ml). The mixture was heated for another 3 h. The solution was cooled and the solid product recrystallized from ethanol to give yellow 2-(4-hydroxyphenyl)quinoline-4-carboxylic acid.

Triphenyltin hydroxide (0.37 g, 1 mmol) and 2-(4-hydroxyphenyl)quinoline-4-carboxylic acid (0.27 g, 1 mol) were heated in ethanol (25 mol) until the reactants dissolved completely. The solution was filtered and the solvent allowed to evaporate slowly. Crystals were deposited after several days.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2-1.5U_{eq}(C)$. The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å.

The coordinated ethanol molecule is disordered over two positions in the carbon atoms; the occupancies could not be refined, and were arbitrarily fixed as 50:50. The O–C distances were restrained to 1.45 ± 0.01 Å and the C–C distances to 1.54 ± 0.01 Å; the O…C distance was restrained to 2.45 ± 0.01 Å. Additionally, the displacement parameters of the C35 atom were restrained to those of the C36 atom (and those of the C35' atom to those of the C36' atom). Restraining the temperature factors of the C35 and C35' pair of atoms to be equal led to larger peaks/deeper holes. The anisotropic displacement factors of the disordered atoms were restrained to be nearly isotropic.

The final difference Fourier map had a large peak in the vicinity of the Sn1 atom and a deep hole in the vicinity of the disordered atoms.

Figure 1

70% Probability thermal ellipsoid plot (Barbour, 2001) of Sn(C₆H₅)₃(C₂H₆O)(C₁₅H₁₀NO). Hydrogen atoms are drawn as spheres of arbitrary radii. The disorder in the ethanol molecule is not shown.

(Ethanol-κO)[2-(4-hydroxyphenyl)quinoline-4-carboxylato- κO]triphenyltin(IV)

Crystal data
$[Sn(C,H_{*}),(C,f)]$

 $[Sn(C_6H_5)_3(C_{16}H_{10}NO_3)(C_2H_6O)]$ $M_r = 660.31$ Monoclinic, C2/cHall symbol: -C 2yc a = 38.9542 (5) Åb = 9.7259 (2) Å c = 17.8594 (3) Å $\beta = 116.632 (1)^{\circ}$ $V = 6048.4 (2) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART APEX	23944 measured refle
diffractometer	6937 independent ret
Radiation source: fine-focus sealed tube	5517 reflections with
Graphite monochromator	$R_{\rm int} = 0.038$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.$
Absorption correction: multi-scan	$h = -50 \rightarrow 50$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 12$
$T_{\min} = 0.777, \ T_{\max} = 0.917$	$l = -22 \rightarrow 23$

F(000) = 2688 $D_{\rm x} = 1.450 {\rm ~Mg} {\rm ~m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 7502 reflections $\theta = 2.3 - 27.9^{\circ}$ $\mu = 0.89 \text{ mm}^{-1}$ T = 100 KIrregular block, yellow $0.30 \times 0.20 \times 0.10$ mm

ections flections $I I > 2\sigma(I)$.2°

Refinement

•	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
S = 1.26	H atoms treated by a mixture of independent
6937 reflections	and constrained refinement
395 parameters	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$
19 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 1.21 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.30 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	v	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Sn1	0.644792 (5)	0.66381 (2)	0.651964 (13)	0.01976 (8)	
01	0.64978 (6)	0.4794(2)	0.72684 (13)	0.0230 (5)	
02	0.58946 (6)	0.4207 (2)	0.64055 (13)	0.0259 (5)	
03	0.46240 (7)	0.2226 (3)	0.92855 (17)	0.0363 (6)	
H3	0.4486 (14)	0.294 (4)	0.913 (4)	0.09 (2)*	
04	0.63966 (7)	0.8677 (2)	0.57574 (15)	0.0275 (5)	
H4	0.6351 (11)	0.861 (4)	0.5250 (10)	0.040 (12)*	
N1	0.61942 (7)	0.1541 (3)	0.90533 (16)	0.0210 (5)	
C1	0.59940 (9)	0.7431 (3)	0.6739 (2)	0.0257(7)	
C2	0.56082 (9)	0.7165 (4)	0.6215 (2)	0.0314 (8)	
H2	0.5539	0.6600	0.5735	0.038*	
C3	0.53252 (10)	0.7721 (5)	0.6392 (3)	0.0429 (10)	
H3A	0.5062	0.7548	0.6028	0.051*	
C4	0.54256 (12)	0.8532 (4)	0.7101 (3)	0.0466 (11)	
H4A	0.5231	0.8899	0.7224	0.056*	
C5	0.58029 (11)	0.8807 (4)	0.7621 (2)	0.0414 (9)	
Н5	0.5869	0.9370	0.8101	0.050*	
C6	0.60898 (10)	0.8257 (4)	0.7446 (2)	0.0324 (8)	
H6	0.6352	0.8445	0.7809	0.039*	
C7	0.70093 (8)	0.7263 (3)	0.74125 (19)	0.0210 (6)	
C8	0.71841 (9)	0.6630 (3)	0.8197 (2)	0.0254 (7)	
H8	0.7049	0.5944	0.8337	0.030*	
C9	0.75550 (10)	0.6996 (4)	0.8775 (2)	0.0329 (8)	
H9	0.7670	0.6560	0.9308	0.040*	
C10	0.77560 (9)	0.7981 (4)	0.8582 (2)	0.0321 (8)	
H10	0.8009	0.8222	0.8977	0.038*	
C11	0.75878 (10)	0.8613 (4)	0.7815 (2)	0.0310 (8)	
H11	0.7726	0.9292	0.7679	0.037*	

C12	0.72155 (9)	0.8269 (3)	0.7230 (2)	0.0275 (7)	
H12	0.7102	0.8724	0.6704	0.033*	
C13	0.64468 (9)	0.5595 (3)	0.54688 (19)	0.0218 (6)	
C14	0.61920 (9)	0.4569 (4)	0.5032 (2)	0.0289 (7)	
H14	0.5990	0.4338	0.5170	0.035*	
C15	0.62271(11)	0 3867 (4)	0.4391(2)	0.0372 (8)	
H15	0.6048	0.3167	0.4090	0.045*	
C16	0.65208 (10)	0.4186(4)	0.4192(2)	0.0360 (8)	
H16	0.6547	0.3696	0.3761	0.043*	
C17	0.0347 0.67774(10)	0.5000	0.3701 0.4621(2)	0.045	
С17 H17	0.6078	0.5222 (4)	0.4021 (2)	0.0308 (0)	
C18	0.0978	0.5452	0.4480	0.037 0.0253(7)	
	0.07411 (9)	0.3921 (3)	0.5250 (2)	0.0233 (7)	
П18 С10	0.0918	0.0030	0.3330 0.70774(10)	0.030°	
C19 C20	0.01924 (8)	0.4091 (3)	0.70774 (19)	0.0207 (6)	
C20	0.62011 (8)	0.3120 (3)	0.77441 (19)	0.0208 (6)	
C21	0.65106 (8)	0.2215 (3)	0.81930 (19)	0.0201 (6)	
C22	0.68306 (9)	0.2038 (3)	0.8023 (2)	0.0245 (7)	
H22	0.6847	0.2558	0.7589	0.029*	
C23	0.71155 (9)	0.1129 (4)	0.8476 (2)	0.0297 (7)	
H23	0.7328	0.1021	0.8355	0.036*	
C24	0.70965 (10)	0.0351 (4)	0.9119 (2)	0.0329 (8)	
H24	0.7296	-0.0282	0.9429	0.039*	
C25	0.67905 (9)	0.0498 (4)	0.9305 (2)	0.0300 (7)	
H25	0.6781	-0.0028	0.9743	0.036*	
C26	0.64924 (8)	0.1431 (3)	0.8845 (2)	0.0222 (7)	
C27	0.59012 (8)	0.2362 (3)	0.85988 (19)	0.0203 (6)	
C28	0.58973 (8)	0.3161 (3)	0.79347 (19)	0.0218 (6)	
H28	0.5683	0.3731	0.7618	0.026*	
C29	0.55701 (8)	0.2372 (3)	0.87918 (19)	0.0206 (6)	
C30	0.54731 (9)	0.1182 (3)	0.9091 (2)	0.0242 (7)	
H30	0.5627	0.0382	0.9189	0.029*	
C31	0.51552 (9)	0.1148 (4)	0.9249 (2)	0.0273 (7)	
H31	0.5091	0.0327	0.9445	0.033*	
C32	0.49321 (9)	0.2316 (4)	0.9118 (2)	0.0262 (7)	
C33	0.50289 (9)	0.3521(3)	0.8844(2)	0.0254(7)	
H33	0.4881	0.4329	0.8772	0.030*	
C34	0 53440 (8)	0.3541(3)	0.8673(2)	0.0236(7)	
H34	0.5406	0.4363	0.8472	0.028*	
C35	0.5400	0.9877(7)	0.5981 (5)	0.028 0.0383(12)	0.50
H35A	0.6321	0.9950	0.6597	0.0363 (12)	0.50
H35R	0.5936	0.9756	0.5736	0.046*	0.50
C36	0.5950	1,1177 (6)	0.5750	0.040 0.0383(12)	0.50
U26A	0.0313(2)	1.1177(0)	0.5027 (5)	0.0585 (12)	0.50
П30А 1126D	0.0393	1.1214	0.5809	0.057*	0.50
	0.0230	1.1992	0.3632	0.05/*	0.50
П30C	0.0180	1.1133	0.5014	$0.03/^{*}$	0.50
C35'	0.0461(3)	1.0012 (8)	0.6165 (8)	0.084 (3)	0.50
H35C	0.6616	1.0586	0.5973	0.101*	0.50
H35D	0.6610	0.9883	0.6778	0.101*	0.50

C36′	0.6073 (3)	1.0809 (9)	0.5981 (8)	0.084 (3)	0.50	
H36D	0.5961	1.1184	0.5412	0.126*	0.50	
H36E	0.6128	1.1561	0.6384	0.126*	0.50	
H36F	0.5890	1.0170	0.6034	0.126*	0.50	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01769 (11)	0.02596 (12)	0.01585 (12)	0.00055 (8)	0.00772 (9)	-0.00158 (9)
01	0.0202 (10)	0.0300 (12)	0.0210 (11)	-0.0031 (9)	0.0112 (9)	0.0010 (9)
O2	0.0216 (11)	0.0377 (13)	0.0186 (12)	-0.0011 (10)	0.0090 (9)	0.0034 (10)
O3	0.0231 (12)	0.0563 (17)	0.0374 (15)	0.0086 (12)	0.0206 (11)	0.0141 (13)
O4	0.0355 (13)	0.0270 (12)	0.0168 (12)	0.0026 (10)	0.0088 (10)	-0.0001 (10)
N1	0.0198 (12)	0.0272 (14)	0.0177 (13)	0.0009 (10)	0.0098 (11)	0.0007 (11)
C1	0.0254 (16)	0.0329 (18)	0.0207 (17)	0.0053 (13)	0.0120 (13)	0.0011 (14)
C2	0.0283 (17)	0.0400 (19)	0.0254 (19)	0.0053 (15)	0.0116 (15)	-0.0015 (16)
C3	0.0260 (18)	0.063 (3)	0.039 (2)	0.0108 (18)	0.0136 (17)	0.002 (2)
C4	0.040 (2)	0.064 (3)	0.046 (3)	0.0192 (19)	0.029 (2)	0.001 (2)
C5	0.047 (2)	0.049 (2)	0.032 (2)	0.0128 (19)	0.0218 (18)	-0.0069 (18)
C6	0.0304 (17)	0.040 (2)	0.0262 (19)	0.0037 (15)	0.0122 (15)	-0.0052 (16)
C7	0.0182 (14)	0.0276 (16)	0.0181 (16)	-0.0013 (12)	0.0090 (12)	-0.0032 (13)
C8	0.0236 (15)	0.0324 (17)	0.0217 (17)	-0.0029 (13)	0.0115 (13)	0.0029 (14)
C9	0.0264 (17)	0.044 (2)	0.0235 (19)	-0.0006 (15)	0.0063 (14)	0.0029 (16)
C10	0.0207 (15)	0.0377 (19)	0.035 (2)	-0.0045 (14)	0.0094 (15)	-0.0077 (16)
C11	0.0264 (17)	0.0342 (19)	0.037 (2)	-0.0086 (14)	0.0182 (16)	-0.0053 (16)
C12	0.0286 (16)	0.0325 (18)	0.0212 (17)	-0.0011 (14)	0.0110 (14)	0.0020 (14)
C13	0.0220 (14)	0.0271 (16)	0.0169 (15)	0.0054 (12)	0.0092 (12)	0.0024 (13)
C14	0.0293 (17)	0.0385 (19)	0.0226 (18)	-0.0019 (14)	0.0151 (14)	-0.0039 (15)
C15	0.038 (2)	0.047 (2)	0.027 (2)	-0.0056 (17)	0.0145 (16)	-0.0123 (17)
C16	0.042 (2)	0.049 (2)	0.0227 (19)	0.0059 (17)	0.0189 (16)	-0.0024 (17)
C17	0.0330 (17)	0.040 (2)	0.0254 (18)	0.0068 (15)	0.0185 (15)	0.0036 (15)
C18	0.0246 (15)	0.0306 (18)	0.0215 (17)	0.0019 (13)	0.0109 (13)	0.0026 (14)
C19	0.0200 (14)	0.0265 (16)	0.0186 (16)	0.0007 (12)	0.0115 (13)	-0.0006 (13)
C20	0.0187 (14)	0.0267 (16)	0.0165 (15)	-0.0056 (12)	0.0074 (12)	-0.0031 (12)
C21	0.0192 (14)	0.0249 (15)	0.0163 (15)	-0.0022 (12)	0.0082 (12)	-0.0016 (13)
C22	0.0242 (15)	0.0318 (17)	0.0212 (17)	0.0004 (13)	0.0136 (13)	-0.0016 (14)
C23	0.0247 (16)	0.0375 (18)	0.033 (2)	0.0010 (15)	0.0178 (15)	0.0002 (16)
C24	0.0271 (17)	0.040 (2)	0.032 (2)	0.0123 (15)	0.0131 (15)	0.0077 (16)
C25	0.0257 (16)	0.0387 (19)	0.0271 (18)	0.0065 (14)	0.0133 (14)	0.0069 (15)
C26	0.0168 (14)	0.0279 (17)	0.0219 (17)	-0.0029 (12)	0.0086 (12)	-0.0022 (13)
C27	0.0172 (14)	0.0249 (16)	0.0187 (16)	-0.0022 (12)	0.0080 (12)	-0.0009 (13)
C28	0.0161 (13)	0.0300 (17)	0.0172 (15)	-0.0005 (12)	0.0054 (12)	0.0015 (13)
C29	0.0161 (13)	0.0304 (17)	0.0168 (15)	-0.0012 (12)	0.0085 (12)	0.0009 (13)
C30	0.0233 (15)	0.0269 (16)	0.0244 (17)	0.0030 (13)	0.0125 (14)	0.0022 (14)
C31	0.0236 (16)	0.0345 (17)	0.0248 (18)	-0.0011 (14)	0.0118 (14)	0.0056 (15)
C32	0.0194 (15)	0.0396 (19)	0.0207 (17)	0.0014 (14)	0.0100 (13)	0.0022 (15)
C33	0.0192 (14)	0.0347 (18)	0.0215 (17)	0.0061 (13)	0.0085 (13)	0.0035 (14)
C34	0.0201 (14)	0.0311 (17)	0.0189 (16)	0.0018 (13)	0.0081 (13)	0.0045 (13)

C35	0.035 (3)	0.040 (3)	0.036 (3)	-0.003 (2)	0.013 (2)	-0.002 (2)
C36	0.035 (3)	0.040 (3)	0.036 (3)	-0.003 (2)	0.013 (2)	-0.002 (2)
C35′	0.065 (5)	0.032 (3)	0.109 (6)	0.013 (3)	-0.001 (4)	-0.012 (4)
C36′	0.065 (5)	0.032 (3)	0.109 (6)	0.013 (3)	-0.001 (4)	-0.012 (4)

Geometric parameters (Å, °)

Sn1—C1	2.120 (3)	C16—H16	0.9500
Sn1—C13	2.131 (3)	C17—C18	1.382 (4)
Sn1—C7	2.138 (3)	C17—H17	0.9500
Sn1—O1	2.193 (2)	C18—H18	0.9500
Sn1—O4	2.363 (2)	C19—C20	1.509 (4)
O1—C19	1.279 (3)	C20—C28	1.371 (4)
O2—C19	1.245 (4)	C20—C21	1.416 (4)
O3—C32	1.363 (4)	C21—C26	1.419 (4)
O3—H3	0.846 (10)	C21—C22	1.420 (4)
O4—C35′	1.454 (7)	C22—C23	1.365 (5)
O4—C35	1.502 (6)	C22—H22	0.9500
O4—H4	0.844 (10)	C23—C24	1.405 (5)
N1—C27	1.330 (4)	C23—H23	0.9500
N1—C26	1.374 (4)	C24—C25	1.380 (4)
C1—C2	1.393 (5)	C24—H24	0.9500
C1—C6	1.399 (5)	C25—C26	1.411 (4)
C2—C3	1.386 (5)	C25—H25	0.9500
C2—H2	0.9500	C27—C28	1.412 (4)
C3—C4	1.391 (6)	C27—C29	1.477 (4)
С3—НЗА	0.9500	C28—H28	0.9500
C4—C5	1.368 (6)	C29—C34	1.395 (4)
C4—H4A	0.9500	C29—C30	1.396 (4)
C5—C6	1.396 (5)	C30—C31	1.387 (4)
С5—Н5	0.9500	C30—H30	0.9500
С6—Н6	0.9500	C31—C32	1.385 (5)
C7—C12	1.393 (4)	C31—H31	0.9500
C7—C8	1.396 (4)	C32—C33	1.386 (5)
C8—C9	1.394 (5)	C33—C34	1.391 (4)
C8—H8	0.9500	C33—H33	0.9500
C9—C10	1.376 (5)	C34—H34	0.9500
С9—Н9	0.9500	C35—C36	1.537 (7)
C10—C11	1.371 (5)	C35—H35A	0.9900
C10—H10	0.9500	C35—H35B	0.9900
C11—C12	1.396 (5)	C36—H36A	0.9800
C11—H11	0.9500	C36—H36B	0.9800
C12—H12	0.9500	C36—H36C	0.9800
C13—C14	1.377 (5)	C35′—C36′	1.595 (13)
C13—C18	1.397 (4)	C35′—H35C	0.9900
C14—C15	1.391 (5)	C35'—H35D	0.9900
C14—H14	0.9500	C36'—H36D	0.9800
C15—C16	1.377 (5)	C36′—H36E	0.9800

C15—H15	0.9500	C36′—H36F	0.9800
C16—C17	1.384 (5)		
C1—Sn1—C13	131.51 (12)	C17—C18—C13	120.7 (3)
C1—Sn1—C7	114.71 (12)	C17—C18—H18	119.7
C13—Sn1—C7	112.95 (11)	C13—C18—H18	119.7
C1—Sn1—O1	92.20 (10)	O2-C19-O1	124.2 (3)
C13—Sn1—O1	96.45 (10)	O2—C19—C20	119.9 (3)
C7—Sn1—O1	89.79 (10)	O1—C19—C20	115.8 (3)
C1—Sn1—O4	86.49 (11)	C28—C20—C21	119.2 (3)
C13—Sn1—O4	85.76 (10)	C28—C20—C19	117.5 (3)
C7—Sn1—O4	89.14 (10)	C21—C20—C19	123.3 (3)
01— $Sn1$ — 04	177.78 (8)	C_{20} C_{21} C_{26}	117.1 (3)
C19 - O1 - Sn1	117.18 (19)	C_{20} C_{21} C_{22}	124.1(3)
C32—O3—H3	111 (4)	$C_{26} - C_{21} - C_{22}$	118 8 (3)
$C_{35'} - O_{4} - S_{n1}$	120.6 (6)	C_{23} C_{22} C_{21} C_{21}	120.7(3)
$C_{35} - O_{4} - S_{n1}$	1153(3)	C_{23} C_{22} C_{22} H_{22}	119.7
C35'	121 (3)	C_{21} C_{22} H_{22}	119.7
C_{35} O_{4} H_{4}	116 (3)	C^{22} C^{23} C^{24}	120.4(3)
$S_{n1} = 04 = H4$	110 (3)	$C_{22} = C_{23} = C_{24}$	110.9
C_{27} N1_C ₂₆	119(3) 1187(3)	$C_{22} = C_{23} = H_{23}$	119.8
$C_2 C_1 C_6$	118.9(3)	$C_{24} = C_{23} = 1123$	119.6
$C_2 = C_1 = C_0$	110.9(3) 123.1(2)	$C_{25} = C_{24} = C_{25}$	120.0 (3)
$C_2 = C_1 = S_{111}$	123.1(2) 117.0(2)	$C_{23} = C_{24} = H_{24}$	119.7
C_{0}	117.9(2) 120.2(3)	C_{23} C_{24} C_{25} C_{26}	119.7
$C_3 = C_2 = C_1$	120.2 (5)	$C_{24} = C_{25} = C_{20}$	120.0 (3)
$C_3 - C_2 - H_2$	119.9	C_{24} C_{25} H_{25}	120.0
C1 - C2 - H2	119.9	$C_{20} - C_{23} - H_{23}$	120.0
$C_2 = C_3 = C_4$	120.1 (4)	NI-C26-C21	117.8(3)
$C_2 = C_3 = H_3 A$	120.0	N1 - C20 - C21	122.7(3)
C4-C3-H3A	120.0	$C_{25} - C_{20} - C_{21}$	119.5 (3)
C_{5}	120.5 (3)	NI - C27 - C28	121.7(3)
$C_3 = C_4 = H_4 A$	119.7	N1 - C27 - C29	117.5(3)
C3-C4-H4A	119.7	$C_{28} = C_{27} = C_{29}$	120.7(3)
C4 - C5 - C6	119.8 (4)	$C_{20} = C_{28} = C_{27}$	120.5 (3)
C4—C5—H5	120.1	C20—C28—H28	119.8
C6—C5—H5	120.1	C27—C28—H28	119.8
C5—C6—C1	120.4 (3)	C34—C29—C30	118.2 (3)
С5—С6—Н6	119.8	C34—C29—C27	121.9 (3)
C1—C6—H6	119.8	C30—C29—C27	119.9 (3)
C12—C7—C8	118.1 (3)	C31—C30—C29	121.1 (3)
C12—C7—Sn1	122.0 (2)	С31—С30—Н30	119.4
C8—C7—Sn1	119.9 (2)	С29—С30—Н30	119.4
C9—C8—C7	120.6 (3)	C32—C31—C30	119.7 (3)
С9—С8—Н8	119.7	C32—C31—H31	120.1
С7—С8—Н8	119.7	C30—C31—H31	120.1
C10—C9—C8	120.6 (3)	O3—C32—C31	117.3 (3)
С10—С9—Н9	119.7	O3—C32—C33	122.5 (3)
С8—С9—Н9	119.7	C31—C32—C33	120.2 (3)

C11—C10—C9	119.5 (3)	C32—C33—C34	119.8 (3)
C11—C10—H10	120.3	С32—С33—Н33	120.1
С9—С10—Н10	120.3	С34—С33—Н33	120.1
C10-C11-C12	120.7 (3)	C33—C34—C29	120.9 (3)
C10—C11—H11	119.6	С33—С34—Н34	119.5
C12—C11—H11	119.6	С29—С34—Н34	119.5
C7—C12—C11	120.5 (3)	O4—C35—C36	107.4 (5)
C7—C12—H12	119.7	O4—C35—H35A	110.2
C11—C12—H12	119.7	С36—С35—Н35А	110.2
C14—C13—C18	118.8 (3)	O4—C35—H35B	110.2
C14—C13—Sn1	124.1 (2)	C36—C35—H35B	110.2
C18 - C13 - Sn1	1170(2)	H35A—C35—H35B	108.5
C_{13} C_{14} C_{15}	120.7(3)	$04-C_{35'}-C_{36'}$	113 3 (8)
C13 - C14 - H14	119.7	$04 - C_{35}' - H_{35}C$	108.9
C15 - C14 - H14	119.7	$C_{36'}$ $C_{35'}$ H_{35C}	108.9
$C_{15} = C_{14} = 114$	120.1 (3)	$04 C_{35}' H_{35}D$	108.9
$C_{10} = C_{15} = C_{14}$	120.1 (5)	$C_{1}^{2} = C_{2}^{2} = C_{2$	108.9
$C_{10} - C_{15} - H_{15}$	119.9	$C_{50} = C_{55} = H_{55D}$	108.9
C14—C13—H13	119.9	$\begin{array}{c} \text{H} \\ $	107.7
	119.9 (3)	$C_{35} = C_{36} = H_{36}D$	109.5
C15—C16—H16	120.1	$C_{35} - C_{36} - H_{36E}$	109.5
C1/-C16-H16	120.1	H36D - C36 - H36E	109.5
	119.9 (3)	C35'-C36'-H36F	109.5
С18—С17—Н17	120.0	H36D—C36'—H36F	109.5
C16—C17—H17	120.0	H36E—C36′—H36F	109.5
C_{1} S_{m1} O_{1} C_{10}	52 6 (2)	C14 C15 C16 C17	-1.1.(6)
$C_1 = S_{11} = O_1 = C_{19}$	33.0(2)	C14 - C13 - C10 - C17	-1.1(0)
$C_{13} = S_{11} = O_{1} = C_{19}$	-78.0(2)	C15 - C10 - C17 - C18	0.9(3)
$C_{}S_{}S_{}C_{-$	168.4(2)	C16 - C17 - C18 - C13	-0.2(5)
C1 - Sn1 - 04 - C35'	61.0 (6)		-0.3(5)
C13 = Sn1 = 04 = C35'	-166.9 (6)	Snl—C13—C18—C17	175.4 (2)
C/—Sn1—O4—C35'	-53.8 (6)	Sn1—O1—C19—O2	15.7 (4)
C1—Sn1—O4—C35	23.0 (4)	Sn1—O1—C19—C20	-161.42 (19)
C13—Sn1—O4—C35	155.1 (4)	O2—C19—C20—C28	-46.6 (4)
C7—Sn1—O4—C35	-91.8 (4)	O1—C19—C20—C28	130.7 (3)
C13—Sn1—C1—C2	9.9 (4)	O2—C19—C20—C21	135.5 (3)
C7—Sn1—C1—C2	178.5 (3)	O1—C19—C20—C21	-47.2 (4)
O1— $Sn1$ — $C1$ — $C2$	00.7(2)		
O4—Sn1—C1—C2	-90.7 (3)	C28—C20—C21—C26	-2.3 (4)
C12 C 1 C1 C(-90.7 (3) 91.1 (3)	C28—C20—C21—C26 C19—C20—C21—C26	-2.3 (4) 175.5 (3)
C13— $Sn1$ — $C1$ — $C6$	-90.7 (3) 91.1 (3) -170.3 (2)	C28—C20—C21—C26 C19—C20—C21—C26 C28—C20—C21—C22	-2.3 (4) 175.5 (3) 176.8 (3)
C13—Sn1—C1—C6 C7—Sn1—C1—C6	-90.7 (3) 91.1 (3) -170.3 (2) -1.7 (3)	C28—C20—C21—C26 C19—C20—C21—C26 C28—C20—C21—C22 C19—C20—C21—C22	-2.3 (4) 175.5 (3) 176.8 (3) -5.3 (5)
C13—Sn1—C1—C6 C7—Sn1—C1—C6 O1—Sn1—C1—C6	-90.7 (3) 91.1 (3) -170.3 (2) -1.7 (3) 89.1 (3)	C28—C20—C21—C26 C19—C20—C21—C26 C28—C20—C21—C22 C19—C20—C21—C22 C20—C21—C22 C20—C21—C22—C23	-2.3 (4) 175.5 (3) 176.8 (3) -5.3 (5) -179.0 (3)
C13—Sn1—C1—C6 C7—Sn1—C1—C6 O1—Sn1—C1—C6 O4—Sn1—C1—C6	-90.7 (3) 91.1 (3) -170.3 (2) -1.7 (3) 89.1 (3) -89.1 (3)	C28—C20—C21—C26 C19—C20—C21—C26 C28—C20—C21—C22 C19—C20—C21—C22 C20—C21—C22—C23 C26—C21—C22—C23	-2.3 (4) 175.5 (3) 176.8 (3) -5.3 (5) -179.0 (3) 0.1 (5)
C13—Sn1—C1—C6 C7—Sn1—C1—C6 O1—Sn1—C1—C6 O4—Sn1—C1—C6 C6—C1—C2—C3	$\begin{array}{c} -90.7(3) \\ 91.1(3) \\ -170.3(2) \\ -1.7(3) \\ 89.1(3) \\ -89.1(3) \\ 0.5(5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -2.3 (4) \\ 175.5 (3) \\ 176.8 (3) \\ -5.3 (5) \\ -179.0 (3) \\ 0.1 (5) \\ 0.0 (5) \end{array}$
C13—Sn1—C1—C6 C7—Sn1—C1—C6 O1—Sn1—C1—C6 O4—Sn1—C1—C6 C6—C1—C2—C3 Sn1—C1—C2—C3	$\begin{array}{c} -90.7(3) \\ 91.1(3) \\ -170.3(2) \\ -1.7(3) \\ 89.1(3) \\ -89.1(3) \\ 0.5(5) \\ -179.7(3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -2.3 (4) \\ 175.5 (3) \\ 176.8 (3) \\ -5.3 (5) \\ -179.0 (3) \\ 0.1 (5) \\ 0.0 (5) \\ -0.3 (6) \end{array}$
C13 - Sn1 - C1 - C6 $C7 - Sn1 - C1 - C6$ $O1 - Sn1 - C1 - C6$ $O4 - Sn1 - C1 - C6$ $C6 - C1 - C2 - C3$ $Sn1 - C1 - C2 - C3$ $C1 - C2 - C3 - C4$	$\begin{array}{c} -90.7(3) \\ 91.1(3) \\ -170.3(2) \\ -1.7(3) \\ 89.1(3) \\ -89.1(3) \\ 0.5(5) \\ -179.7(3) \\ -0.9(6) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -2.3 (4) \\ 175.5 (3) \\ 176.8 (3) \\ -5.3 (5) \\ -179.0 (3) \\ 0.1 (5) \\ 0.0 (5) \\ -0.3 (6) \\ 0.3 (5) \end{array}$
C13 - Sn1 - C1 - C6 $C7 - Sn1 - C1 - C6$ $O1 - Sn1 - C1 - C6$ $O4 - Sn1 - C1 - C6$ $C6 - C1 - C2 - C3$ $Sn1 - C1 - C2 - C3$ $C1 - C2 - C3 - C4$ $C2 - C3 - C4 - C5$	$\begin{array}{c} -90.7(3) \\ 91.1(3) \\ -170.3(2) \\ -1.7(3) \\ 89.1(3) \\ -89.1(3) \\ 0.5(5) \\ -179.7(3) \\ -0.9(6) \\ 1.0(7) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -2.3 (4) \\ 175.5 (3) \\ 176.8 (3) \\ -5.3 (5) \\ -179.0 (3) \\ 0.1 (5) \\ 0.0 (5) \\ -0.3 (6) \\ 0.3 (5) \\ -176.6 (3) \end{array}$
C13 - Sn1 - C1 - C6 $C7 - Sn1 - C1 - C6$ $O1 - Sn1 - C1 - C6$ $O4 - Sn1 - C1 - C6$ $C6 - C1 - C2 - C3$ $Sn1 - C1 - C2 - C3$ $C1 - C2 - C3 - C4$ $C2 - C3 - C4 - C5$ $C3 - C4 - C5 - C6$	$\begin{array}{r} -90.7(3) \\ 91.1(3) \\ -170.3(2) \\ -1.7(3) \\ 89.1(3) \\ -89.1(3) \\ 0.5(5) \\ -179.7(3) \\ -0.9(6) \\ 1.0(7) \\ -0.7(7) \end{array}$	C28—C20—C21—C26 C19—C20—C21—C26 C28—C20—C21—C22 C19—C20—C21—C22 C20—C21—C22—C23 C26—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C27—N1—C26—C21	$\begin{array}{c} -2.3 (4) \\ 175.5 (3) \\ 176.8 (3) \\ -5.3 (5) \\ -179.0 (3) \\ 0.1 (5) \\ 0.0 (5) \\ -0.3 (6) \\ 0.3 (5) \\ -176.6 (3) \\ 3.5 (4) \end{array}$

-0.1 (5)	C24—C25—C26—C21	-0.2 (5)
-180.0 (3)	C20-C21-C26-N1	-1.0 (4)
-103.7 (3)	C22-C21-C26-N1	179.8 (3)
67.1 (3)	C20—C21—C26—C25	179.1 (3)
164.0 (3)	C22—C21—C26—C25	-0.1 (5)
-17.9 (3)	C26—N1—C27—C28	-2.7 (4)
78.2 (3)	C26—N1—C27—C29	175.0 (3)
-111.0 (3)	C21—C20—C28—C27	3.2 (5)
-14.1 (2)	C19—C20—C28—C27	-174.8 (3)
163.9 (3)	N1-C27-C28-C20	-0.7 (5)
-0.3 (5)	C29—C27—C28—C20	-178.3 (3)
177.9 (3)	N1-C27-C29-C34	149.5 (3)
-0.3 (5)	C28—C27—C29—C34	-32.8 (4)
0.4 (5)	N1-C27-C29-C30	-31.4 (4)
0.2 (5)	C28—C27—C29—C30	146.3 (3)
0.9 (5)	C34—C29—C30—C31	1.5 (5)
-177.3 (2)	C27—C29—C30—C31	-177.6 (3)
-0.8 (5)	C29—C30—C31—C32	-0.9 (5)
-43.2 (3)	C30—C31—C32—O3	-179.8 (3)
148.0 (3)	C30—C31—C32—C33	-0.9 (5)
55.5 (3)	O3—C32—C33—C34	-179.1 (3)
-124.7 (3)	C31—C32—C33—C34	2.1 (5)
141.4 (2)	C32—C33—C34—C29	-1.4 (5)
-27.4 (3)	C30—C29—C34—C33	-0.3 (5)
-119.9 (2)	C27—C29—C34—C33	178.8 (3)
59.9 (2)	C35'—O4—C35—C36	55.8 (11)
0.1 (5)	Sn1—O4—C35—C36	163.7 (4)
-175.3 (3)	C35—O4—C35'—C36'	-10.5 (8)
0.6 (6)	Sn1—O4—C35'—C36'	-101.1 (9)
	$\begin{array}{c} -0.1 (5) \\ -180.0 (3) \\ -103.7 (3) \\ 67.1 (3) \\ 164.0 (3) \\ -17.9 (3) \\ 78.2 (3) \\ -111.0 (3) \\ -14.1 (2) \\ 163.9 (3) \\ -0.3 (5) \\ 177.9 (3) \\ -0.3 (5) \\ 0.4 (5) \\ 0.2 (5) \\ 0.9 (5) \\ -177.3 (2) \\ -0.8 (5) \\ -43.2 (3) \\ 148.0 (3) \\ 55.5 (3) \\ -124.7 (3) \\ 141.4 (2) \\ -27.4 (3) \\ -119.9 (2) \\ 59.9 (2) \\ 0.1 (5) \\ -175.3 (3) \\ 0.6 (6) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
03—H3…O2 ⁱ	0.85 (1)	1.83 (2)	2.661 (3)	166 (6)
O4—H4···N1 ⁱⁱ	0.84 (1)	1.95 (1)	2.789 (4)	175 (4)

Symmetry codes: (i) -x+1, y, -z+3/2; (ii) x, -y+1, z-1/2.