organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Chloro-2-[(E)-2-(4-methoxyphenyl)ethyliminomethyl]phenol

Marzieh Yaeghoobi, Noorsaadah Abdul Rahman and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.mv

Received 7 April 2009; accepted 8 April 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.040; *wR* factor = 0.099; data-to-parameter ratio = 16.3.

In the title Schiff base, C₁₆H₁₆ClNO₂, the 2-(4-methoxyphenyl)ethyl (CH₃OC₆H₄CH₂CH₂-; r.m.s. deviation = 0.10 Å) and 4-chloro-2-(iminomethyl)phenol (N=CHC₆H₃ClOH; r.m.s. deviation = 0.01 Å) portions are both essentially planar, the two parts being inclined at an angle of $61.8 (1)^{\circ}$. The hydroxy group forms a hydrogen bond to the imino N atom.

Related literature

The crystal structures of several Schiff bases derived by condensing aryl-2-ethylamines and substituted salicylaldehydes have been reported; see: Chatziefthimiou et al. (2006); Chohan et al. (2008); Coombs et al. (2005); Li et al. (2006); Räisänen et al. (2007).

Experimental

Crystal data

C16H16CINO2 $M_r = 289.75$ Triclinic, $P\overline{1}$ a = 5.7610 (2) Å b = 7.7115 (3) Å c = 15.7814 (5) Å $\alpha = 82.420 \ (2)^{\circ}$ $\beta = 89.320 (2)^{\circ}$

 $\gamma = 85.313 \ (2)^{\circ}$ V = 692.65 (4) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.28 \text{ mm}^{-1}$ T = 100 K0.25 \times 0.25 \times 0.03 mm

5284 measured reflections

 $R_{\rm int} = 0.025$

3036 independent reflections

2235 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX

diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.934, T_{\max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$wR(F^2) = 0.099$	independent and constrained
S = 1.03	refinement
3036 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
186 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O1-H1···N1	0.85 (1)	1.79 (2)	2.567 (2)	152 (3)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2612).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Chatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Chem. Phys. B, 110, 23701-23709.
- Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, 0725.
- Coombs, R. R., Ringer, M. K., Blacquiere, J. M., Smith, J. S., Neilson, J. S., Uh, Y.-S., Gilbert, J. B., Leger, L. J., Zhang, H.-W., Irving, A. M., Wheaton, S. L., Wheaton, S. L., Vogels, C. M., Westcott, S. A., Decken, A. & Baerlocher, F. J. (2005). Transition Met. Chem. 30, 411-418.
- Li, Y.-G., Zhu, H.-L., Huang, W.-Q. & Ai, L. (2006). Acta Cryst. E62, 0689-0690

Räisänen, M. T., Leskelä, M. & Repo, T. (2007). Acta Cryst. E63, o1816-o1817.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o1070 [doi:10.1107/S1600536809013348]

4-Chloro-2-[(E)-2-(4-methoxyphenyl)ethyliminomethyl]phenol

Marzieh Yaeghoobi, Noorsaadah Abdul Rahman and Seik Weng Ng

S1. Experimental

2-(4-Methoxyphenyl)ethylamine (0.30 g, 2 mmol) and 5-chlorosalicylaldehyde (0.31 g, 2 mmol) were heated in ethanol (20 ml) for 1 h. The solution was set aside for the growth of crystals.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2–1.5U(C).

The hydroxy H-atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84 ± 0.01 Å; its temperature factor was refined.

Figure 1

Thermal ellipsoid plot of $C_{16}H_{16}CINO_2$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

4-Chloro-2-[(E)-2-(4-methoxyphenyl)ethyliminomethyl]phenol

Crystal data	
$C_{16}H_{16}CINO_2$	Z = 2
$M_r = 289.75$	F(000) = 304
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.389 { m Mg m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 5.7610 (2) Å	Cell parameters from 1628 reflections
b = 7.7115 (3) Å	$\theta = 2.7 - 28.2^{\circ}$
c = 15.7814(5) Å	$\mu=0.28~\mathrm{mm^{-1}}$
$\alpha = 82.420 \ (2)^{\circ}$	T = 100 K
$\beta = 89.320 \ (2)^{\circ}$	Plate, yellow
$\gamma = 85.313 \ (2)^{\circ}$	$0.25 \times 0.25 \times 0.03 \text{ mm}$
$V = 692.65 (4) Å^3$	

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.934, T_{max} = 0.992$ <i>Refinement</i>	5284 measured reflections 3036 independent reflections 2235 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -7 \rightarrow 7$ $k = -10 \rightarrow 9$ $l = -20 \rightarrow 20$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.099$ S = 1.03 3036 reflections 186 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.033P)^2 + 0.4582P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.72711 (10)	0.19401 (7)	0.02737 (3)	0.02303 (15)	
01	0.4122 (3)	0.0304 (2)	0.38188 (9)	0.0209 (3)	
H1	0.509 (4)	0.068 (4)	0.4137 (15)	0.042 (8)*	
O2	0.9991 (2)	0.43513 (19)	0.88357 (8)	0.0184 (3)	
N1	0.7683 (3)	0.1729 (2)	0.42911 (10)	0.0157 (4)	
C1	0.4895 (3)	0.0673 (3)	0.30093 (12)	0.0147 (4)	
C2	0.3616 (3)	0.0202 (3)	0.23431 (13)	0.0168 (4)	
H2	0.2243	-0.0389	0.2465	0.020*	
C3	0.4334 (4)	0.0592 (3)	0.15057 (13)	0.0177 (4)	
H3	0.3449	0.0282	0.1053	0.021*	
C4	0.6357 (4)	0.1440 (3)	0.13294 (12)	0.0161 (4)	
C5	0.7667 (3)	0.1895 (3)	0.19782 (12)	0.0150 (4)	
H5	0.9056	0.2460	0.1847	0.018*	
C6	0.6960 (3)	0.1530 (2)	0.28272 (12)	0.0130 (4)	
C7	0.8351 (3)	0.2023 (3)	0.35138 (12)	0.0139 (4)	
H7	0.9757	0.2564	0.3381	0.017*	
C8	0.9076 (3)	0.2214 (3)	0.49754 (12)	0.0157 (4)	
H8A	1.0524	0.2691	0.4737	0.019*	
H8B	0.9509	0.1165	0.5393	0.019*	
C9	0.7660 (3)	0.3591 (3)	0.54177 (12)	0.0159 (4)	
H9A	0.7698	0.4739	0.5056	0.019*	
H9B	0.6019	0.3293	0.5451	0.019*	
C10	0.8459 (3)	0.3790 (3)	0.63111 (12)	0.0142 (4)	
C11	0.6936 (3)	0.4703 (3)	0.68291 (13)	0.0158 (4)	

H11	0.5482	0.5219	0.6603	0.019*	
C12	0.7501 (4)	0.4870 (3)	0.76572 (13)	0.0163 (4)	
H12	0.6443	0.5498	0.7995	0.020*	
C13	0.9625 (4)	0.4120 (3)	0.80025 (12)	0.0159 (4)	
C14	1.1189 (4)	0.3236 (3)	0.75010 (12)	0.0152 (4)	
H14	1.2652	0.2739	0.7726	0.018*	
C15	1.0580 (3)	0.3086 (3)	0.66572 (13)	0.0156 (4)	
H15	1.1654	0.2486	0.6314	0.019*	
C16	1.2113 (4)	0.3563 (3)	0.92316 (13)	0.0212 (5)	
H16A	1.2147	0.3805	0.9825	0.032*	
H16B	1.3442	0.4054	0.8920	0.032*	
H16C	1.2202	0.2292	0.9220	0.032*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0271 (3)	0.0286 (3)	0.0145 (2)	-0.0072 (2)	0.0018 (2)	-0.0036 (2)
01	0.0214 (8)	0.0262 (9)	0.0161 (7)	-0.0088 (7)	0.0029 (6)	-0.0026 (6)
O2	0.0195 (8)	0.0215 (8)	0.0141 (7)	-0.0005 (6)	-0.0014 (6)	-0.0023 (6)
N1	0.0174 (9)	0.0134 (9)	0.0164 (8)	-0.0008 (7)	-0.0022 (7)	-0.0024 (7)
C1	0.0144 (10)	0.0119 (10)	0.0172 (10)	0.0019 (8)	0.0020 (8)	-0.0011 (8)
C2	0.0130 (10)	0.0151 (10)	0.0226 (11)	-0.0015 (8)	-0.0012 (8)	-0.0033 (8)
C3	0.0171 (10)	0.0153 (10)	0.0211 (10)	-0.0005 (8)	-0.0045 (8)	-0.0046 (8)
C4	0.0181 (11)	0.0159 (10)	0.0139 (9)	0.0008 (8)	0.0014 (8)	-0.0016 (8)
C5	0.0144 (10)	0.0118 (10)	0.0185 (10)	-0.0008 (8)	-0.0001 (8)	-0.0011 (8)
C6	0.0121 (10)	0.0108 (10)	0.0157 (9)	0.0014 (8)	-0.0030 (8)	-0.0014 (8)
C7	0.0116 (10)	0.0109 (10)	0.0190 (10)	-0.0001 (8)	-0.0017 (8)	-0.0011 (8)
C8	0.0167 (10)	0.0141 (10)	0.0162 (10)	-0.0007 (8)	-0.0019 (8)	-0.0020 (8)
C9	0.0158 (10)	0.0136 (10)	0.0182 (10)	-0.0010 (8)	-0.0019 (8)	-0.0022 (8)
C10	0.0149 (10)	0.0112 (10)	0.0167 (10)	-0.0041 (8)	0.0014 (8)	-0.0010 (8)
C11	0.0119 (10)	0.0133 (10)	0.0217 (10)	-0.0006 (8)	-0.0001 (8)	-0.0014 (8)
C12	0.0148 (10)	0.0141 (10)	0.0199 (10)	0.0001 (8)	0.0033 (8)	-0.0030 (8)
C13	0.0203 (11)	0.0137 (10)	0.0138 (9)	-0.0050 (8)	0.0018 (8)	-0.0008(8)
C14	0.0128 (10)	0.0147 (10)	0.0179 (10)	-0.0006 (8)	-0.0005 (8)	-0.0013 (8)
C15	0.0140 (10)	0.0143 (10)	0.0184 (10)	-0.0003 (8)	0.0023 (8)	-0.0027 (8)
C16	0.0228 (11)	0.0236 (12)	0.0172 (10)	-0.0034 (9)	-0.0027 (9)	-0.0022 (9)

Geometric parameters (Å, °)

Cl1—C4	1.745 (2)	C8—H8A	0.9900
01—C1	1.350 (2)	C8—H8B	0.9900
O1—H1	0.849 (10)	C9—C10	1.519 (3)
O2—C13	1.371 (2)	С9—Н9А	0.9900
O2—C16	1.432 (3)	С9—Н9В	0.9900
N1—C7	1.278 (2)	C10—C15	1.384 (3)
N1—C8	1.458 (2)	C10—C11	1.403 (3)
C1—C2	1.394 (3)	C11—C12	1.375 (3)
C1—C6	1.415 (3)	C11—H11	0.9500

C2—C3	1.382 (3)	C12—C13	1.395 (3)
С2—Н2	0 9500	С12—Н12	0 9500
C_{2} C_{4}	1 300 (3)	C_{12} C_{14}	1 388 (3)
	1.390 (3)		1.388 (3)
С3—Н3	0.9500	C14—C15	1.403 (3)
C4—C5	1.378 (3)	C14—H14	0.9500
C5—C6	1.395 (3)	C15—H15	0.9500
С5—Н5	0.9500	С16—Н16А	0 9800
	1.462(2)	C16 U16D	0.9800
	1.403 (3)		0.9800
С7—Н7	0.9500	C16—H16C	0.9800
C8—C9	1.523 (3)		
C1	106.3 (19)	С10—С9—С8	115.68 (17)
C13—O2—C16	117.54 (16)	С10—С9—Н9А	108.4
C7—N1—C8	120.28 (17)	С8—С9—Н9А	108.4
01 - C1 - C2	118 87 (17)	C10_C9_H9B	108.4
$O_1 = O_1 = O_2$	121.27(17)	C° C° U° U°	100.4
	121.37 (17)		108.4
C2-C1-C6	119.77 (17)	Н9А—С9—Н9В	107.4
C3—C2—C1	120.33 (18)	C15—C10—C11	117.62 (18)
С3—С2—Н2	119.8	C15—C10—C9	124.08 (18)
C1—C2—H2	119.8	C11—C10—C9	118.28 (18)
C2-C3-C4	119 71 (18)	C12—C11—C10	121 49 (19)
$C_2 C_3 H_3$	120.1	C_{12} C_{11} H_{11}	110.3
C2-C3-H3	120.1		119.5
С4—С3—Н3	120.1	C10—C11—H11	119.3
C5—C4—C3	120.97 (18)	C11—C12—C13	120.15 (18)
C5—C4—Cl1	119.05 (15)	C11—C12—H12	119.9
C3—C4—C11	119.98 (15)	C13—C12—H12	119.9
C4—C5—C6	120.20 (18)	O2—C13—C14	125.16(19)
C4C5H5	110.0	02 - C13 - C12	115 10 (17)
C6 C5 H5	110.0	C_{14} C_{12} C_{12}	110.72(19)
	119.9		119.75 (18)
C5-C6-C1	119.01 (17)	C13 - C14 - C15	119.15 (19)
C5—C6—C7	120.01 (17)	C13—C14—H14	120.4
C1—C6—C7	120.98 (17)	C15—C14—H14	120.4
N1—C7—C6	120.31 (17)	C10-C15-C14	121.83 (18)
N1—C7—H7	119.8	C10—C15—H15	119.1
С6—С7—Н7	119.8	C14-C15-H15	119.1
$C_0 C_1 H_1$	102.00 (16)	$O_2 C_{16} H_{16A}$	100.5
$NI = C_0 = C_9$	100.99 (10)	02 - C10 - H10A	109.5
NI—C8—H8A	109.9	O2—C16—H16B	109.5
С9—С8—Н8А	109.9	H16A—C16—H16B	109.5
N1—C8—H8B	109.9	O2—C16—H16C	109.5
C9—C8—H8B	109.9	H16A—C16—H16C	109.5
H8A—C8—H8B	108.3	H16B—C16—H16C	109.5
01 - 01 - 02 - 03	178 70 (19)	C7—N1—C8—C9	117.2(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10(2)	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	150 86 (16)
	1.0 (3)		139.00 (10)
C1—C2—C3—C4	0.7(3)	C8—C9—C10—C15	13.5 (3)
C2—C3—C4—C5	0.2 (3)	C8—C9—C10—C11	-164.78 (17)
C2—C3—C4—Cl1	-179.87 (16)	C15-C10-C11-C12	-1.2 (3)
C3—C4—C5—C6	-0.9 (3)	C9—C10—C11—C12	177.17 (18)

Cl1—C4—C5—C6	179.22 (16)	C10-C11-C12-C13	-0.2 (3)
C4—C5—C6—C1	0.6 (3)	C16—O2—C13—C14	-2.5 (3)
C4—C5—C6—C7	-179.72 (19)	C16—O2—C13—C12	178.17 (17)
O1—C1—C6—C5	-179.34 (18)	C11—C12—C13—O2	-179.27 (18)
C2-C1-C6-C5	0.3 (3)	C11—C12—C13—C14	1.4 (3)
O1—C1—C6—C7	1.0 (3)	O2—C13—C14—C15	179.56 (18)
C2—C1—C6—C7	-179.37 (18)	C12—C13—C14—C15	-1.2 (3)
C8—N1—C7—C6	179.71 (17)	C11—C10—C15—C14	1.5 (3)
C5-C6-C7-N1	178.33 (19)	C9-C10-C15-C14	-176.86 (18)
C1—C6—C7—N1	-2.0 (3)	C13—C14—C15—C10	-0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.85 (1)	1.79 (2)	2.567 (2)	152 (3)