
(E)-1-Methyl-4-[2-(1-naphthyl)vinyl]-
pyridinium 4-bromobenzenesulfonate1

Suchada Chantrapromma,a*§ Kullapa Chanawannoa and

Hoong-Kun Funb}

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science,

Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray

Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM,

Penang, Malaysia

Correspondence e-mail: suchada.c@psu.ac.th

Received 27 March 2009; accepted 22 April 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean �(C–C) = 0.006 Å;
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In the title compound, C18H16N+
�C6H4BrO3S�, the cation

exists in the E configuration and the whole molecule of the

cation is disordered with a refined site-occupancy ratio of

0.733 (1):0.267 (1). The naphthalene system is not planar, the

interplanar angle between the two aromatic rings being

5.0 (5)� for the major component and 5.7 (10)� for the minor

component. The cation is twisted with dihedral angles between

the pyridinium ring and the two aromatic rings of the

naphthalene system of 56.3 (5) and 51.4 (5)� (for the major

component) and 52.2 (11) and 53.4 (11)� (for the minor

component). The pyridinium ring and the benzene ring of the

anion are inclined to each other at interplanar angles of

85.0 (4) and 71.5 (9)� for the major and minor components,

respectively. In the crystal packing, the cations and anions are

alternately arranged with the cations stacked in an antiparallel

manner along the c axis and the anions linked together into

chains along the same direction. The cations are linked to the

anions into chains along [102] by weak C—H� � �O interactions.

The crystal structure is further stabilized by C—H� � ��
interactions and �–� contacts, with Cg� � �Cg distances of

3.502 (9) and 3.698 (6) Å. A short Br� � �O contact

[3.029 (4) Å] is also present.

Related literature

For bond-length data, see: Allen et al. (1987). For background

to NLO materials research, see: Cheng et al. (1991a; 1991b);

Dittrich et al. (2003); Ogawa et al. (2008); Weir et al. (2003);

Yang et al. (2007). For related structures, see, Chanawanno et

al. (2008) and Chantrapromma et al. (2006; 2007; 2008; 2009).

For the stability of the temperature controller used in the data

collection, see Cosier & Glazer, (1986).

Experimental

Crystal data

C18H16N+
�C6H4BrO3S�

Mr = 482.38
Orthorhombic, Pna21

a = 12.2195 (2) Å
b = 21.9907 (4) Å
c = 7.6256 (1) Å

V = 2049.12 (6) Å3

Z = 4
Mo K� radiation
� = 2.14 mm�1

T = 100 K
0.46 � 0.15 � 0.14 mm

Data collection

Bruker APEXII CCD area-detector
diffractometer

Absorption correction: multi-scan
(SADABS; Bruker, 2005)
Tmin = 0.437, Tmax = 0.753

15171 measured reflections
5563 independent reflections
3975 reflections with I > 2�(I)
Rint = 0.044

Refinement

R[F 2 > 2�(F 2)] = 0.047
wR(F 2) = 0.107
S = 1.03
5563 reflections
326 parameters
11 restraints

H-atom parameters constrained
��max = 1.11 e Å�3

��min = �0.49 e Å�3

Absolute structure: Flack (1983),
2373 Friedel pairs

Flack parameter: �0.003 (11)

Table 1
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

C2A—H2AA� � �O1i 0.95 2.53 3.392 (11) 151
C5A—H5AA� � �O2ii 0.95 2.47 3.362 (10) 157
C11A—H11A� � �O1i 0.95 2.34 3.282 (10) 175
C14A—H14A� � �O2iii 0.95 2.44 3.373 (7) 169
C16A—H16A� � �O3iv 0.95 2.49 3.361 (11) 153
C17A—H17A� � �O1i 0.95 2.35 3.227 (14) 153
C18A—H18A� � �O3iv 0.98 2.57 3.501 (8) 159
C19—H19A� � �O2 0.95 2.56 2.930 (5) 103
C20—H20A� � �O1iv 0.95 2.34 3.252 (5) 161
C22—H22A� � �O3v 0.95 2.51 3.274 (6) 137
C4A—H4AA� � �Cg2vi 0.95 2.84 3.659 (14) 145
C7A—H7AA� � �Cg4vii 0.95 2.88 3.657 (9) 140
C4B—H4BA� � �Cg2vi 0.95 2.90 3.59 (2) 130

Symmetry codes: (i) x� 1
2;�yþ 3

2; z� 1; (ii)�x þ 1
2; y� 1

2; z� 1
2; (iii)�xþ 3

2; y� 1
2; z� 1

2;
(iv) x; y; z� 1; (v) xþ 1

2;�yþ 3
2; z; (vi) �x;�yþ 1; zþ 1

2; (vii) �xþ 1;�yþ 1; z� 1
2.

Cg2 and Cg4 are the centroids of the C1A–C6A and C19–C24 rings, respectively.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT

(Bruker, 2005); data reduction: SAINT; program(s) used to solve

organic compounds
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structure: SHELXTL (Sheldrick, 2008); program(s) used to refine

structure: SHELXTL; molecular graphics: SHELXTL; software used

to prepare material for publication: SHELXTL and PLATON (Spek,

2009).
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(E)-1-Methyl-4-[2-(1-naphthyl)vinyl]pyridinium 4-bromobenzenesulfonate

Suchada Chantrapromma, Kullapa Chanawanno and Hoong-Kun Fun

S1. Comment 

Nonlinear optics has been recognized for several decades as a promising field with important applications in the domain 

of opto-electronics and photonics. Hence, a variety of materials have been investigated for their nonlinear optical (NLO) 

properties. In order to obtain second-order NLO single crystals, the main requirements should be the choice of molecules 

with large hyperpolarizability (β) and the alignment of these molecules with optimal orientation into a 

noncentrosymmetric space group in the crystal. Organic crystals with extensive conjugated π systems with large 

hyperpolarizability which exhibit NLO properties have been reported (Dittrich et al., 2003; Ogawa et al., 2008; Weir et 

al., 2004; Yang et al., 2007). Styryl pyridinium derivatives are considered to be good conjugated π-systems (Cheng et al., 

1991a, 1991b). We have previously synthesized and reported the crystal structures of several pyridinium salts 

(Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009) in order to study their NLO properties. The 

title compound (I) was synthesized by introducing a naphthalenyl group into the cation in order to increase the extent of 

π-conjugation in the system. The title compound crystallizes in the orthorhombic non-centrosymmetric space group 

Pna21 therefore it should exhibit second-order nonlinear optical properties.

Fig. 1 shows the asymmetric unit of (I) which consists of a C18H16N+ cation and a C6H4BrO3S- anion. The whole 

molecule of the cation is disordered over two sites; the major component A and the minor component B (Fig. 1 ), with the 

refined site-occupancy ratio of 0.733 (1)/0.267 (1). The cation exists in the E configuration with respect to the C11═C12 

double bond. The naphthalenyl moiety is not planar as indicated by the interplanar angle between the two aromatic C1–

C6 and C1/C6–C10 rings being 5.0 (5)° (for the major component A) and 5.7 (10)° (for the minor component B). The 

cation is twisted with the dihedral angle between the pyridinium and the two aromatic C1–C6 and C1/C6–C10 rings 

being 56.3 (5)° and 51.4 (5)°, respectively (for the major component A); 52.2 (11)° and 53.4 (11)°, respectively (for the 

minor component B) and the torsion angles C19–C10–C11–C12 = -26.5 (14)° and C11–C12–C13–C17 = -9.3 (15)° for 

the major component A; whereas the corresponding values are -6(2)° and 4(3)° for the minor component B. The cation 

and anion are inclined to each other with interplanar angles of 85.0 (4)° and 71.5 (9)° respectively between the benzene 

ring and the pyridinium units of the major and minor disorder components. The bond lengths in (I) are in normal ranges 

(Allen et al., 1987) and comparable to those in related structures (Chanawanno et al., 2008; Chantrapromma et al., 2006, 

2007, 2008, 2009).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). 

The cations and anions are alternately arranged with the cations (both the major A and minor B components) stacked in 

an antiparallel manner along the c axis and the anions linked together into chains along the same direction. The cations 

are linked to the anions into chains along the [1 0 2] direction by weak C—H···O interactions (Table 1). The crystal 

structure is further stabilized by C—H···π interactions (Table 1). π–π interaction with the distances Cg1···Cg2 = 3.698 (6) 

Å and Cg1···Cg3 = 3.502 (9) Å are also observed (symmetry code for both Cg···Cg interactions: 1-x, 1-y,-1/2+z); Cg1, Cg2, 

Cg3 and Cg4 are the centroids of the N1A/C13A–C17A, C1A–C6A, C1B–C6B and C19–C24 rings, respectively. A short 
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Br1···O3 [3.029 (4) Å] contact is also present.

S2. Experimental 

(E)-1-methyl-4-(2-(naphthalen-1-yl)vinyl)pyridinium iodide (compound A) was prepared by mixing solutions of 1,4-di-

methylpyridinium iodide (2 g, 8.5 mmol), 1-naphthaldehyde (1.16 ml, 8.5 mmol) and piperidine 0.84 ml, 8.5 mmol) in 

methanol (40 ml). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The solid which formed was 

filtered and washed with chloroform. After purification, the yellow solid of compound A (0.22 g, 0.58 mmol) was mixed 

with silver 4-bromobenzenesulfonate (Chantrapromma et al., 2006) (0.20 g, 0.58 mmol) in methanol (100 ml) and stirred 

for 0.5 h. The precipitate of silver iodide was filtered and the filtrate was evaporated to give the title compound as a 

yellow solid. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were 

recrystallized from methanol by slow evaporation at room temperature over a few weeks, Mp. 495-496 K.

S3. Refinement 

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.95 Å for aromatic 

and CH and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms 

and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual 

electron density peak is located at 0.90 Å from C11A and the deepest hole is located at 0.32 Å from C11A. The cation is 

disordered over two sites with occupancies 0.733 (1) and 0.267 (1) respectively. All atoms of the minor component B 

were refined isotropically. Initially rigid, similarity restraints were applied to the minor component B. After a steady state 

was reached, these restraints were removed before the final refinement.

Figure 1

The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering 

scheme. Open bonds show the minor component. 
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Figure 2

The crystal packing of the major component of the title compound viewed down the a axis. Weak C—H···O interactions 

are shown as dashed lines. 

(E)-1-Methyl-4-[2-(1-naphthyl)vinyl]pyridinium 4-bromobenzenesulfonate 

Crystal data 

C18H16N+·C6H4BrO3S−

Mr = 482.38
Orthorhombic, Pna21

Hall symbol: P 2c -2n
a = 12.2195 (2) Å
b = 21.9907 (4) Å
c = 7.6256 (1) Å
V = 2049.12 (6) Å3

Z = 4
F(000) = 984
Dx = 1.564 Mg m−3

Melting point = 495–496 K
Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 5563 reflections
θ = 2.5–30.0°
µ = 2.14 mm−1
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T = 100 K
Needle, yellow

0.46 × 0.15 × 0.14 mm

Data collection 

Bruker APEXII CCD area-detector 
diffractometer

Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan 

(SADABS; Bruker, 2005)
Tmin = 0.437, Tmax = 0.753

15171 measured reflections
5563 independent reflections
3975 reflections with I > 2σ(I)
Rint = 0.044
θmax = 30.0°, θmin = 2.5°
h = −12→17
k = −30→25
l = −10→10

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.047
wR(F2) = 0.107
S = 1.03
5563 reflections
326 parameters
11 restraints
Primary atom site location: structure-invariant 

direct methods
Secondary atom site location: difference Fourier 

map

Hydrogen site location: inferred from 
neighbouring sites

H-atom parameters constrained
w = 1/[σ2(Fo

2) + (0.0268P)2 + 1.3478P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max = 0.002
Δρmax = 1.11 e Å−3

Δρmin = −0.49 e Å−3

Absolute structure: Flack (1983), 2373 Friedel 
pairs

Absolute structure parameter: −0.003 (11)

Special details 

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat 
(Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; 
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, 
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is 
used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based 
on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq Occ. (<1)

Br1 1.09367 (3) 0.735910 (17) 0.33953 (7) 0.03638 (11)
S1 0.77513 (7) 0.83524 (5) 0.94982 (13) 0.0282 (2)
O1 0.8448 (2) 0.85394 (18) 1.0921 (4) 0.0511 (9)
O2 0.7122 (2) 0.88360 (13) 0.8744 (4) 0.0441 (8)
O3 0.7095 (3) 0.78212 (14) 0.9922 (5) 0.0518 (9)
N1A 0.7710 (6) 0.6185 (4) 0.1666 (13) 0.0408 (19) 0.708 (6)
C1A 0.2235 (8) 0.4733 (4) 0.2313 (16) 0.0658 (14) 0.708 (6)
C2A 0.2047 (9) 0.5344 (4) 0.3012 (16) 0.061 (3) 0.708 (6)
H2AA 0.2583 0.5650 0.2827 0.073* 0.708 (6)
C3A 0.1123 (9) 0.5484 (5) 0.3922 (16) 0.0658 (14) 0.708 (6)
H3AA 0.1022 0.5883 0.4370 0.079* 0.708 (6)



supporting information

sup-5Acta Cryst. (2009). E65, o1144–o1145    

C4A 0.0335 (10) 0.5048 (4) 0.4194 (18) 0.0658 (14) 0.708 (6)
H4AA −0.0282 0.5156 0.4885 0.079* 0.708 (6)
C5A 0.0378 (8) 0.4470 (5) 0.3538 (16) 0.054 (3) 0.708 (6)
H5AA −0.0208 0.4190 0.3685 0.065* 0.708 (6)
C6A 0.1369 (10) 0.4309 (5) 0.2605 (17) 0.047 (3) 0.708 (6)
C7A 0.1552 (9) 0.3698 (4) 0.1942 (13) 0.057 (3) 0.708 (6)
H7AA 0.0989 0.3401 0.2024 0.069* 0.708 (6)
C8A 0.2557 (7) 0.3547 (3) 0.1185 (10) 0.0410 (18) 0.708 (6)
H8AA 0.2682 0.3142 0.0800 0.049* 0.708 (6)
C9A 0.3383 (7) 0.3982 (3) 0.0984 (10) 0.0401 (18) 0.708 (6)
H9AA 0.4057 0.3868 0.0459 0.048* 0.708 (6)
C10A 0.3236 (5) 0.4569 (3) 0.1531 (12) 0.055 (2) 0.708 (6)
C11A 0.4093 (6) 0.5027 (4) 0.1523 (13) 0.0658 (14) 0.708 (6)
H11A 0.3894 0.5443 0.1429 0.079* 0.708 (6)
C12A 0.5166 (7) 0.4881 (3) 0.1644 (12) 0.0658 (14) 0.708 (6)
H12A 0.5361 0.4470 0.1858 0.079* 0.708 (6)
C13A 0.6044 (5) 0.5338 (3) 0.1455 (9) 0.0354 (15) 0.708 (6)
C14A 0.7055 (6) 0.5194 (3) 0.2165 (8) 0.0304 (14) 0.708 (6)
H14A 0.7179 0.4795 0.2597 0.036* 0.708 (6)
C15A 0.7866 (6) 0.5609 (4) 0.2254 (11) 0.0426 (19) 0.708 (6)
H15A 0.8555 0.5497 0.2734 0.051* 0.708 (6)
C16A 0.6701 (8) 0.6347 (5) 0.0899 (16) 0.032 (2) 0.708 (6)
H16A 0.6591 0.6737 0.0394 0.038* 0.708 (6)
C17A 0.5912 (11) 0.5933 (6) 0.091 (2) 0.034 (2) 0.708 (6)
H17A 0.5207 0.6053 0.0517 0.041* 0.708 (6)
C18A 0.8611 (5) 0.6636 (3) 0.1790 (13) 0.049 (2) 0.708 (6)
H18A 0.8357 0.7030 0.1345 0.074* 0.708 (6)
H18B 0.9235 0.6497 0.1089 0.074* 0.708 (6)
H18C 0.8835 0.6679 0.3017 0.074* 0.708 (6)
N1B 0.7857 (17) 0.6237 (10) 0.118 (3) 0.028 (5)* 0.292 (6)
C1B 0.2380 (11) 0.4829 (7) 0.2936 (15) 0.028 (4)* 0.292 (6)
C2B 0.2071 (16) 0.5389 (8) 0.3799 (19) 0.027 (4)* 0.292 (6)
H2BA 0.2576 0.5711 0.3981 0.032* 0.292 (6)
C3B 0.0975 (14) 0.5426 (9) 0.435 (2) 0.029 (4)* 0.292 (6)
H3BA 0.0726 0.5797 0.4849 0.035* 0.292 (6)
C4B 0.0193 (17) 0.4919 (8) 0.420 (3) 0.032 (4)* 0.292 (6)
H4BA −0.0524 0.4921 0.4682 0.038* 0.292 (6)
C5B 0.0648 (15) 0.4427 (10) 0.324 (3) 0.020 (4)* 0.292 (6)
H5BA 0.0163 0.4100 0.2996 0.024* 0.292 (6)
C6B 0.1667 (19) 0.4362 (14) 0.264 (4) 0.028 (6)* 0.292 (6)
C7B 0.1927 (16) 0.3832 (10) 0.183 (3) 0.037 (5)* 0.292 (6)
H7BA 0.1410 0.3514 0.1690 0.044* 0.292 (6)
C8B 0.3015 (16) 0.3782 (11) 0.119 (2) 0.025 (4)* 0.292 (6)
H8BA 0.3218 0.3447 0.0472 0.030* 0.292 (6)
C9B 0.3804 (14) 0.4237 (8) 0.164 (2) 0.038 (4)* 0.292 (6)
H9BA 0.4533 0.4190 0.1223 0.045* 0.292 (6)
C10B 0.3572 (12) 0.4713 (7) 0.258 (2) 0.034 (4)* 0.292 (6)
C11B 0.4442 (9) 0.5144 (5) 0.345 (2) 0.027 (3)* 0.292 (6)
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H11B 0.4222 0.5506 0.4033 0.032* 0.292 (6)
C12B 0.5668 (9) 0.4966 (6) 0.334 (3) 0.035 (3)* 0.292 (6)
H12B 0.5946 0.4622 0.3948 0.042* 0.292 (6)
C13B 0.6410 (16) 0.5363 (7) 0.221 (2) 0.027 (3)* 0.292 (6)
C14B 0.7498 (16) 0.5288 (9) 0.241 (2) 0.025 (4)* 0.292 (6)
H14B 0.7751 0.4910 0.2865 0.030* 0.292 (6)
C15B 0.8236 (15) 0.5706 (8) 0.202 (2) 0.028 (4)* 0.292 (6)
H15B 0.8988 0.5652 0.2299 0.034* 0.292 (6)
C16B 0.692 (2) 0.6327 (14) 0.111 (4) 0.025 (7)* 0.292 (6)
H16B 0.6727 0.6739 0.0892 0.030* 0.292 (6)
C17B 0.601 (4) 0.594 (2) 0.131 (5) 0.041 (11)* 0.292 (6)
H17B 0.5281 0.6017 0.0944 0.049* 0.292 (6)
C18B 0.8654 (16) 0.6754 (9) 0.083 (3) 0.040 (4)* 0.292 (6)
H18D 0.8352 0.7023 −0.0077 0.061* 0.292 (6)
H18E 0.9353 0.6587 0.0418 0.061* 0.292 (6)
H18F 0.8772 0.6985 0.1908 0.061* 0.292 (6)
C19 0.8411 (3) 0.82014 (19) 0.6071 (6) 0.0318 (9)
H19A 0.7774 0.8426 0.5776 0.038*
C20 0.9073 (3) 0.79817 (19) 0.4741 (6) 0.0336 (9)
H20A 0.8892 0.8048 0.3545 0.040*
C21 1.0008 (3) 0.76615 (19) 0.5203 (6) 0.0336 (9)
C22 1.0283 (3) 0.7563 (2) 0.6960 (6) 0.0342 (9)
H22A 1.0928 0.7344 0.7254 0.041*
C23 0.9611 (3) 0.77848 (16) 0.8261 (7) 0.0322 (8)
H23A 0.9794 0.7723 0.9458 0.039*
C24 0.8656 (3) 0.81016 (17) 0.7818 (5) 0.0265 (8)

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

Br1 0.03289 (17) 0.0388 (2) 0.0375 (2) −0.00330 (17) 0.0114 (2) −0.0081 (3)
S1 0.0279 (4) 0.0316 (5) 0.0250 (4) −0.0001 (4) 0.0058 (4) 0.0027 (4)
O1 0.0363 (16) 0.085 (3) 0.0320 (17) 0.0042 (17) 0.0021 (15) −0.0159 (18)
O2 0.0474 (16) 0.0455 (18) 0.039 (2) 0.0191 (14) 0.0116 (15) 0.0103 (14)
O3 0.059 (2) 0.0385 (18) 0.058 (2) −0.0128 (15) 0.0293 (18) −0.0001 (16)
N1A 0.025 (3) 0.037 (4) 0.060 (6) −0.002 (3) 0.007 (4) 0.006 (4)
C1A 0.068 (3) 0.033 (2) 0.096 (4) 0.0093 (18) −0.032 (2) −0.003 (2)
C2A 0.074 (6) 0.034 (4) 0.074 (7) 0.005 (3) −0.048 (5) −0.003 (4)
C3A 0.068 (3) 0.033 (2) 0.096 (4) 0.0093 (18) −0.032 (2) −0.003 (2)
C4A 0.068 (3) 0.033 (2) 0.096 (4) 0.0093 (18) −0.032 (2) −0.003 (2)
C5A 0.054 (6) 0.062 (6) 0.046 (6) 0.019 (5) 0.007 (5) 0.001 (5)
C6A 0.051 (7) 0.033 (5) 0.057 (6) −0.002 (5) −0.004 (6) 0.013 (3)
C7A 0.074 (6) 0.034 (5) 0.064 (6) −0.018 (5) −0.011 (5) 0.007 (4)
C8A 0.057 (4) 0.019 (3) 0.047 (4) −0.014 (3) 0.001 (4) −0.006 (3)
C9A 0.049 (4) 0.025 (4) 0.046 (4) −0.014 (3) −0.018 (4) 0.006 (3)
C10A 0.043 (4) 0.015 (3) 0.105 (7) 0.002 (3) −0.046 (4) 0.001 (4)
C11A 0.068 (3) 0.033 (2) 0.096 (4) 0.0093 (18) −0.032 (2) −0.003 (2)
C12A 0.068 (3) 0.033 (2) 0.096 (4) 0.0093 (18) −0.032 (2) −0.003 (2)
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C13A 0.026 (3) 0.040 (4) 0.040 (4) 0.010 (3) −0.015 (3) −0.016 (3)
C14A 0.029 (3) 0.028 (4) 0.034 (3) −0.005 (3) −0.006 (3) −0.002 (3)
C15A 0.020 (3) 0.046 (5) 0.063 (5) 0.002 (3) −0.001 (3) 0.015 (4)
C16A 0.018 (4) 0.038 (5) 0.040 (5) 0.008 (4) −0.003 (4) 0.014 (3)
C17A 0.028 (4) 0.039 (5) 0.035 (6) −0.001 (3) 0.006 (5) −0.011 (5)
C18A 0.028 (3) 0.043 (4) 0.076 (6) −0.007 (3) 0.007 (4) 0.002 (4)
C19 0.032 (2) 0.033 (2) 0.030 (2) 0.0022 (17) 0.0073 (18) 0.0056 (18)
C20 0.038 (2) 0.035 (2) 0.028 (2) 0.0010 (18) 0.0026 (19) −0.0005 (17)
C21 0.0284 (18) 0.034 (2) 0.038 (2) −0.0001 (18) 0.0107 (17) −0.0008 (19)
C22 0.0301 (19) 0.038 (2) 0.034 (2) 0.0012 (18) 0.0032 (18) 0.0035 (18)
C23 0.0283 (15) 0.036 (2) 0.032 (2) −0.0015 (14) 0.004 (2) 0.005 (2)
C24 0.0283 (16) 0.024 (2) 0.0275 (19) −0.0038 (16) 0.0047 (15) 0.0039 (15)

Geometric parameters (Å, º) 

Br1—C21 1.905 (4) C1B—C6B 1.37 (3)
S1—O2 1.433 (3) C1B—C2B 1.45 (2)
S1—O1 1.439 (3) C1B—C10B 1.50 (2)
S1—O3 1.453 (3) C2B—C3B 1.41 (3)
S1—C24 1.780 (4) C2B—H2BA 0.9500
N1A—C15A 1.357 (12) C3B—C4B 1.47 (2)
N1A—C16A 1.410 (13) C3B—H3BA 0.9500
N1A—C18A 1.485 (10) C4B—C5B 1.42 (3)
C1A—C10A 1.407 (13) C4B—H4BA 0.9500
C1A—C6A 1.428 (14) C5B—C6B 1.33 (3)
C1A—C2A 1.465 (12) C5B—H5BA 0.9500
C2A—C3A 1.361 (15) C6B—C7B 1.36 (4)
C2A—H2AA 0.9500 C7B—C8B 1.42 (3)
C3A—C4A 1.374 (15) C7B—H7BA 0.9500
C3A—H3AA 0.9500 C8B—C9B 1.43 (3)
C4A—C5A 1.368 (14) C8B—H8BA 0.9500
C4A—H4AA 0.9500 C9B—C10B 1.30 (2)
C5A—C6A 1.448 (15) C9B—H9BA 0.9500
C5A—H5AA 0.9500 C10B—C11B 1.57 (2)
C6A—C7A 1.453 (16) C11B—C12B 1.552 (15)
C7A—C8A 1.398 (13) C11B—H11B 0.9500
C7A—H7AA 0.9500 C12B—C13B 1.52 (2)
C8A—C9A 1.398 (9) C12B—H12B 0.9500
C8A—H8AA 0.9500 C13B—C14B 1.35 (2)
C9A—C10A 1.369 (10) C13B—C17B 1.52 (5)
C9A—H9AA 0.9500 C14B—C15B 1.32 (2)
C10A—C11A 1.454 (10) C14B—H14B 0.9500
C11A—C12A 1.353 (10) C15B—H15B 0.9500
C11A—H11A 0.9500 C16B—C17B 1.41 (5)
C12A—C13A 1.477 (10) C16B—H16B 0.9500
C12A—H12A 0.9500 C17B—H17B 0.9500
C13A—C17A 1.382 (17) C18B—H18D 0.9800
C13A—C14A 1.385 (9) C18B—H18E 0.9800
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C14A—C15A 1.350 (10) C18B—H18F 0.9800
C14A—H14A 0.9500 C19—C24 1.383 (6)
C15A—H15A 0.9500 C19—C20 1.383 (6)
C16A—C17A 1.327 (18) C19—H19A 0.9500
C16A—H16A 0.9500 C20—C21 1.388 (6)
C17A—H17A 0.9500 C20—H20A 0.9500
C18A—H18A 0.9800 C21—C22 1.398 (6)
C18A—H18B 0.9800 C22—C23 1.378 (6)
C18A—H18C 0.9800 C22—H22A 0.9500
N1B—C16B 1.17 (3) C23—C24 1.399 (5)
N1B—C15B 1.41 (3) C23—H23A 0.9500
N1B—C18B 1.52 (3)

O2—S1—O1 114.1 (2) C2B—C3B—C4B 123.4 (18)
O2—S1—O3 112.96 (19) C2B—C3B—H3BA 118.3
O1—S1—O3 112.9 (2) C4B—C3B—H3BA 118.3
O2—S1—C24 105.91 (18) C5B—C4B—C3B 111.3 (17)
O1—S1—C24 105.27 (17) C5B—C4B—H4BA 124.3
O3—S1—C24 104.71 (18) C3B—C4B—H4BA 124.3
C15A—N1A—C16A 119.7 (8) C6B—C5B—C4B 129 (2)
C15A—N1A—C18A 119.9 (7) C6B—C5B—H5BA 115.7
C16A—N1A—C18A 120.4 (8) C4B—C5B—H5BA 115.7
C10A—C1A—C6A 122.9 (9) C5B—C6B—C7B 118 (2)
C10A—C1A—C2A 121.7 (9) C5B—C6B—C1B 117 (3)
C6A—C1A—C2A 115.2 (10) C7B—C6B—C1B 125 (2)
C3A—C2A—C1A 121.5 (10) C6B—C7B—C8B 116 (2)
C3A—C2A—H2AA 119.2 C6B—C7B—H7BA 121.8
C1A—C2A—H2AA 119.2 C8B—C7B—H7BA 121.8
C2A—C3A—C4A 120.1 (10) C7B—C8B—C9B 119.6 (18)
C2A—C3A—H3AA 119.9 C7B—C8B—H8BA 120.2
C4A—C3A—H3AA 119.9 C9B—C8B—H8BA 120.2
C5A—C4A—C3A 124.5 (12) C10B—C9B—C8B 123.2 (17)
C5A—C4A—H4AA 117.8 C10B—C9B—H9BA 118.4
C3A—C4A—H4AA 117.8 C8B—C9B—H9BA 118.4
C4A—C5A—C6A 116.0 (11) C9B—C10B—C1B 116.6 (16)
C4A—C5A—H5AA 122.0 C9B—C10B—C11B 124.9 (15)
C6A—C5A—H5AA 122.0 C1B—C10B—C11B 118.5 (12)
C1A—C6A—C5A 122.5 (10) C12B—C11B—C10B 118.5 (11)
C1A—C6A—C7A 115.8 (10) C12B—C11B—H11B 120.7
C5A—C6A—C7A 121.7 (10) C10B—C11B—H11B 120.7
C8A—C7A—C6A 119.9 (9) C13B—C12B—C11B 117.4 (13)
C8A—C7A—H7AA 120.0 C13B—C12B—H12B 121.3
C6A—C7A—H7AA 120.0 C11B—C12B—H12B 121.3
C7A—C8A—C9A 121.1 (7) C14B—C13B—C17B 118 (2)
C7A—C8A—H8AA 119.4 C14B—C13B—C12B 116.9 (16)
C9A—C8A—H8AA 119.4 C17B—C13B—C12B 123 (2)
C10A—C9A—C8A 121.1 (8) C15B—C14B—C13B 124.2 (18)
C10A—C9A—H9AA 119.4 C15B—C14B—H14B 117.9
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C8A—C9A—H9AA 119.4 C13B—C14B—H14B 117.9
C9A—C10A—C1A 119.0 (7) C14B—C15B—N1B 117.0 (17)
C9A—C10A—C11A 123.9 (8) C14B—C15B—H15B 121.5
C1A—C10A—C11A 116.8 (7) N1B—C15B—H15B 121.5
C12A—C11A—C10A 122.2 (7) N1B—C16B—C17B 132 (3)
C12A—C11A—H11A 118.9 N1B—C16B—H16B 114.1
C10A—C11A—H11A 118.9 C17B—C16B—H16B 114.1
C11A—C12A—C13A 122.4 (7) C16B—C17B—C13B 108 (3)
C11A—C12A—H12A 118.8 C16B—C17B—H17B 126.2
C13A—C12A—H12A 118.8 C13B—C17B—H17B 126.2
C17A—C13A—C14A 116.0 (8) N1B—C18B—H18D 109.5
C17A—C13A—C12A 126.0 (8) N1B—C18B—H18E 109.5
C14A—C13A—C12A 117.0 (6) H18D—C18B—H18E 109.5
C15A—C14A—C13A 121.3 (6) N1B—C18B—H18F 109.5
C15A—C14A—H14A 119.3 H18D—C18B—H18F 109.5
C13A—C14A—H14A 119.3 H18E—C18B—H18F 109.5
C14A—C15A—N1A 120.7 (6) C24—C19—C20 121.6 (4)
C14A—C15A—H15A 119.6 C24—C19—H19A 119.2
N1A—C15A—H15A 119.6 C20—C19—H19A 119.2
C17A—C16A—N1A 117.4 (11) C19—C20—C21 118.2 (4)
C17A—C16A—H16A 121.3 C19—C20—H20A 120.9
N1A—C16A—H16A 121.3 C21—C20—H20A 120.9
C16A—C17A—C13A 124.5 (13) C20—C21—C22 121.3 (4)
C16A—C17A—H17A 117.7 C20—C21—Br1 119.0 (3)
C13A—C17A—H17A 117.7 C22—C21—Br1 119.7 (3)
C16B—N1B—C15B 119 (2) C23—C22—C21 119.4 (4)
C16B—N1B—C18B 120 (2) C23—C22—H22A 120.3
C15B—N1B—C18B 119.2 (18) C21—C22—H22A 120.3
C6B—C1B—C2B 123.2 (18) C22—C23—C24 120.0 (5)
C6B—C1B—C10B 117.5 (17) C22—C23—H23A 120.0
C2B—C1B—C10B 118.7 (14) C24—C23—H23A 120.0
C3B—C2B—C1B 115.8 (17) C19—C24—C23 119.4 (4)
C3B—C2B—H2BA 122.1 C19—C24—S1 120.7 (3)
C1B—C2B—H2BA 122.1 C23—C24—S1 119.9 (3)

C10A—C1A—C2A—C3A −173.3 (10) C10B—C1B—C6B—C5B 168.5 (19)
C6A—C1A—C2A—C3A 2.1 (15) C2B—C1B—C6B—C7B 179.5 (19)
C1A—C2A—C3A—C4A −0.4 (16) C10B—C1B—C6B—C7B −10 (3)
C2A—C3A—C4A—C5A −3.1 (17) C5B—C6B—C7B—C8B 179 (2)
C3A—C4A—C5A—C6A 4.5 (17) C1B—C6B—C7B—C8B −2 (4)
C10A—C1A—C6A—C5A 174.8 (10) C6B—C7B—C8B—C9B 9 (3)
C2A—C1A—C6A—C5A −0.5 (16) C7B—C8B—C9B—C10B −2 (3)
C10A—C1A—C6A—C7A −3.7 (16) C8B—C9B—C10B—C1B −11 (2)
C2A—C1A—C6A—C7A −179.0 (9) C8B—C9B—C10B—C11B 165.7 (15)
C4A—C5A—C6A—C1A −2.6 (17) C6B—C1B—C10B—C9B 16 (2)
C4A—C5A—C6A—C7A 175.9 (10) C2B—C1B—C10B—C9B −172.8 (12)
C1A—C6A—C7A—C8A 4.2 (14) C6B—C1B—C10B—C11B −160.3 (17)
C5A—C6A—C7A—C8A −174.4 (10) C2B—C1B—C10B—C11B 10.7 (16)
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C6A—C7A—C8A—C9A −2.7 (13) C9B—C10B—C11B—C12B −6 (2)
C7A—C8A—C9A—C10A 0.3 (11) C1B—C10B—C11B—C12B 170.2 (13)
C8A—C9A—C10A—C1A 0.2 (12) C10B—C11B—C12B—C13B 111.9 (15)
C8A—C9A—C10A—C11A 173.6 (8) C11B—C12B—C13B—C14B 166.2 (15)
C6A—C1A—C10A—C9A 1.6 (14) C11B—C12B—C13B—C17B 4 (3)
C2A—C1A—C10A—C9A 176.6 (9) C17B—C13B—C14B—C15B 7 (3)
C6A—C1A—C10A—C11A −172.3 (9) C12B—C13B—C14B—C15B −156.7 (17)
C2A—C1A—C10A—C11A 2.8 (13) C13B—C14B—C15B—N1B −7 (3)
C9A—C10A—C11A—C12A −26.5 (14) C16B—N1B—C15B—C14B 12 (3)
C1A—C10A—C11A—C12A 147.0 (10) C18B—N1B—C15B—C14B 175.3 (17)
C10A—C11A—C12A—C13A 173.6 (8) C15B—N1B—C16B—C17B −20 (5)
C11A—C12A—C13A—C17A −9.3 (15) C18B—N1B—C16B—C17B 177 (3)
C11A—C12A—C13A—C14A 158.9 (8) N1B—C16B—C17B—C13B 18 (5)
C17A—C13A—C14A—C15A −2.2 (10) C14B—C13B—C17B—C16B −9 (3)
C12A—C13A—C14A—C15A −171.6 (7) C12B—C13B—C17B—C16B 153 (2)
C13A—C14A—C15A—N1A 0.8 (11) C24—C19—C20—C21 −0.9 (6)
C16A—N1A—C15A—C14A −2.1 (14) C19—C20—C21—C22 −0.1 (6)
C18A—N1A—C15A—C14A 179.5 (7) C19—C20—C21—Br1 −179.6 (3)
C15A—N1A—C16A—C17A 5.0 (16) C20—C21—C22—C23 0.3 (7)
C18A—N1A—C16A—C17A −176.6 (10) Br1—C21—C22—C23 179.7 (3)
N1A—C16A—C17A—C13A −7.0 (19) C21—C22—C23—C24 0.6 (6)
C14A—C13A—C17A—C16A 5.6 (17) C20—C19—C24—C23 1.7 (6)
C12A—C13A—C17A—C16A 173.9 (11) C20—C19—C24—S1 −176.4 (3)
C6B—C1B—C2B—C3B 0.6 (16) C22—C23—C24—C19 −1.6 (6)
C10B—C1B—C2B—C3B −169.9 (11) C22—C23—C24—S1 176.6 (3)
C1B—C2B—C3B—C4B 4.4 (14) O2—S1—C24—C19 −23.2 (4)
C2B—C3B—C4B—C5B −7 (2) O1—S1—C24—C19 −144.4 (3)
C3B—C4B—C5B—C6B 6 (3) O3—S1—C24—C19 96.4 (4)
C4B—C5B—C6B—C7B 177 (2) O2—S1—C24—C23 158.7 (3)
C4B—C5B—C6B—C1B −2 (4) O1—S1—C24—C23 37.5 (4)
C2B—C1B—C6B—C5B −2 (3) O3—S1—C24—C23 −81.7 (3)

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

C2A—H2AA···O1i 0.95 2.53 3.392 (11) 151
C5A—H5AA···O2ii 0.95 2.47 3.362 (10) 157
C11A—H11A···O1i 0.95 2.34 3.282 (10) 175
C14A—H14A···O2iii 0.95 2.44 3.373 (7) 169
C16A—H16A···O3iv 0.95 2.49 3.361 (11) 153
C17A—H17A···O1i 0.95 2.35 3.227 (14) 153
C18A—H18A···O3iv 0.98 2.57 3.501 (8) 159
C19—H19A···O2 0.95 2.56 2.930 (5) 103
C20—H20A···O1iv 0.95 2.34 3.252 (5) 161
C22—H22A···O3v 0.95 2.51 3.274 (6) 137
C4A—H4AA···Cg2vi 0.95 2.84 3.659 (14) 145
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C7A—H7AA···Cg4vii 0.95 2.88 3.657 (9) 140
C4B—H4BA···Cg2vi 0.95 2.90 3.59 (2) 130

Symmetry codes: (i) x−1/2, −y+3/2, z−1; (ii) −x+1/2, y−1/2, z−1/2; (iii) −x+3/2, y−1/2, z−1/2; (iv) x, y, z−1; (v) x+1/2, −y+3/2, z; (vi) −x, −y+1, z+1/2; (vii) 
−x+1, −y+1, z−1/2.


