Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(3-Oxo-1,3-dihydroisobenzofuran-1yl)phthalazin-1(2H)-one

You-Lei Zhang, Yu-Jun Wu, Guo Peng and Hong Deng*

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: dh@scnu.edu.cn

Received 18 December 2008; accepted 31 March 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.110; data-to-parameter ratio = 12.1.

The reaction of 2-carboxybenzaldehyde and hydrazine hydrate unexpectedly yielded the title compound, C₁₆H₁₀N₂O₃, which comprises one phthalide ring, one phthalazine system and a chiral centre. The phthalide unit is almost perpendicular to the phthalazine system, forming a dihedral angle of 87.1 $(3)^{\circ}$. The packing is governed by weak C-H···O hydrogen-bonding interactions, forming layers parallel to the *ab* plane.

Related literature

For general background to non-covalent interactions, see: Bernstein et al. (1995); Roesky & Andruh (2003). For related compounds, see: Nelson et al. (1982); Li et al. (2002); Özbey et al. (1998).

Experimental

Crystal data

$C_{16}H_{10}N_2O_3$	$\gamma = 88.6550 \ (10)^{\circ}$
$M_r = 278.26$	V = 638.17 (3) Å ³
Triclinic, P1	Z = 2
a = 7.2356 (2) Å	Mo $K\alpha$ radiation
b = 8.0369 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 11.1686 (4) Å	T = 296 K
$\alpha = 80.047 \ (2)^{\circ}$	$0.20 \times 0.18 \times 0.15 \text{ mm}$
$\beta = 86.093 \ (2)^{\circ}$	

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: none 6746 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	190 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
2295 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

2295 independent reflections

 $R_{\rm int} = 0.030$

1626 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C16-H16\cdots O3^{i}$ $C4-H4\cdots O1^{ii}$	0.93	2.41	3.2935 (19)	158
	0.93	2.54	3.215 (2)	130

Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge South China Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2283).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Li, J., Zhang, F. X. & Shi, Q. Z. (2002). Chin. J. Inorg. Chem. 6, 643-645.

Nelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407-415.

Özbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23-30.

Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o974 [doi:10.1107/S1600536809011970]

2-(3-Oxo-1,3-dihydroisobenzofuran-1-yl)phthalazin-1(2H)-one

You-Lei Zhang, Yu-Jun Wu, Guo Peng and Hong Deng

S1. Comment

Hydrogen bonding as an important type of non-covalent interaction plays a great role in supramolecular chemistry and material sciences (Bernstein *et al.*, 1995). Hydrogen bonding between solvent molecules and heterocycle compounds containing O or N donors has been confirmed to be a useful and powerful organizing force to form supramolecules (Roesky & Andruh, 2003). It has been reported (Nelson *et al.*, 1982) that the reaction of 2,6-diacetylpyridine and 1,2-phenylenediamine can form benzimidazole groups *via* oxidative dehydrogenation. Recently, in the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-phenylenediamine in the presence of anhydrous ethanol solution a benzimidazole derivate have also been isolated (Li *et al.*, 2002). In this paper, we chose 2-carboxybenzaldehyde and hydrazinehydrate as reagents and unexpectedly isolated the heterocyclic title compound.

The molecular structure of the title compound is shown in Fig. 1. The phthalazine system is almost planar with the N1 -C9-C10-C11 and C14-C15-C16-N2 torsion angles of -175.9 (2) and 178.0 (2)°, respectively. The phthalide ring system is also almost planar, the O2-C8-C6-C5 torsion angle being -176.7 (2)°. The C8-N1 bond length (1.449 (2) Å) indicates single bond character, and the corresponding bond angles demonstrate the *sp*³ character of the C8 atom (chiral centre). The C16-N2 bond length (1.287 (2) Å) in the phthalazine ring has double bond character and is shorter than that found in the azomethine group of a related compound (Özbey *et al.*, 1998). The phthalide ring system is almost perpendicular to the phthalazine ring system, the dihedral angle they form being 87.1 (3)°. In the crystal structure, the molecules are linked *via* weak C-H···O hydrogen bonding interactions forming layers parallel to the *ab* plane (Table 1, Fig. 2).

S2. Experimental

2-Carboxybenzaldehyde (0.30 g, 2 mmol) and hydrazinehydrate (0.050 g, 1 mmol) were added to methanol (20 ml), and the mixture was refluxed for 3 h at 80°C. The resulting yellow precipitate was filtered and recrystallized from a MeOH/DMSO (5:1 v/v) solution. Colourless lamellar crystals were obtained on slow evaporation of the solvents at room temperature.

S3. Refinement

All H atoms were placed in calculated positions and were refined using a riding model, with (C—H = 0.93-0.96 Å, O—H = 0.82 Å), and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C, O)$ for methyl and hydroxy H atoms.

Figure 1

The molecular structure showing the atom-numbering scheme. Displacement ellipsoids drawn at the 30% probability level.

Figure 2

View of a supramolecular network of the title structure. Intemolecular hydrogen bonds are shown as dashed lines.

2-(3-Oxo-1,3-dihydroisobenzofuran-1-yl)phthalazin-1(2H)-one

Crystal data

 $\begin{array}{l} {\rm C}_{16}{\rm H}_{10}{\rm N}_{2}{\rm O}_{3} \\ M_{r} = 278.26 \\ {\rm Triclinic, $P1$} \\ {\rm Hall symbol: -P 1} \\ a = 7.2356 (2) \mbox{ Å} \\ b = 8.0369 (2) \mbox{ Å} \\ c = 11.1686 (4) \mbox{ Å} \\ a = 80.047 (2)^{\circ} \\ \beta = 86.093 (2)^{\circ} \\ \gamma = 88.655 (1)^{\circ} \\ V = 638.17 (3) \mbox{ Å}^{3} \end{array}$

Data collection

Bruker APEXII area-detector	1626 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.030$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Graphite monochromator	$h = -8 \rightarrow 8$
ω scans	$k = -9 \rightarrow 9$
6746 measured reflections	$l = -13 \rightarrow 13$
2295 independent reflections	

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0516P)^2 + 0.0851P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 288

 $\theta = 2.6 - 25.2^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Block, colourless

 $0.20 \times 0.18 \times 0.15 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.448 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2295 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2297 (2)	1.0612 (2)	0.05051 (17)	0.0452 (4)	
C2	0.2968 (2)	1.0522 (3)	-0.06731 (17)	0.0527 (5)	
H2	0.3332	1.1489	-0.1215	0.063*	
C3	0.3079 (2)	0.8959 (3)	-0.10149 (17)	0.0546 (5)	

H3	0.3514	0.8863	-0.1803	0.065*
C4	0.2552 (3)	0.7527 (3)	-0.02004 (18)	0.0558 (5)
H4	0.2650	0.6480	-0.0448	0.067*
C5	0.1881 (2)	0.7618 (2)	0.09758 (17)	0.0504 (5)
Н5	0.1527	0.6652	0.1521	0.061*
C6	0.1756 (2)	0.9188 (2)	0.13127 (15)	0.0433 (4)
C7	0.2067 (3)	1.2059 (3)	0.1138 (2)	0.0609 (5)
C8	0.1105 (2)	0.9693 (2)	0.24995 (17)	0.0522 (5)
H8	-0.0224	0.9473	0.2655	0.063*
C9	0.1102 (2)	0.7947 (2)	0.45282 (17)	0.0502 (5)
C10	0.2253 (2)	0.7052 (2)	0.54673 (16)	0.0457 (4)
C11	0.1443 (3)	0.6004 (2)	0.64863 (18)	0.0569 (5)
H11	0.0167	0.5861	0.6574	0.068*
C12	0.2554 (3)	0.5188 (3)	0.73568 (19)	0.0630 (5)
H12	0.2024	0.4483	0.8036	0.076*
C13	0.4459 (3)	0.5403 (3)	0.72353 (19)	0.0635 (6)
H13	0.5191	0.4850	0.7838	0.076*
C14	0.5268 (3)	0.6416 (3)	0.62413 (19)	0.0588 (5)
H14	0.6546	0.6552	0.6167	0.071*
C15	0.4170 (2)	0.7251 (2)	0.53311 (16)	0.0463 (4)
C16	0.4925 (2)	0.8287 (3)	0.42442 (17)	0.0550 (5)
H16	0.6202	0.8429	0.4162	0.066*
N1	0.20803 (18)	0.8852 (2)	0.35304 (13)	0.0496 (4)
N2	0.39749 (19)	0.9039 (2)	0.33708 (14)	0.0548 (4)
01	0.2366 (2)	1.35289 (19)	0.07887 (16)	0.0893 (5)
O2	0.14034 (19)	1.14869 (17)	0.23133 (13)	0.0666 (4)
O3	-0.05902 (16)	0.7908 (2)	0.45814 (13)	0.0764 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0396 (9)	0.0427 (11)	0.0528 (11)	0.0040 (7)	-0.0141 (8)	-0.0033 (8)
C2	0.0451 (10)	0.0558 (13)	0.0519 (12)	-0.0009 (8)	-0.0109 (8)	0.0087 (9)
C3	0.0503 (11)	0.0639 (14)	0.0491 (11)	0.0075 (9)	-0.0068 (9)	-0.0081 (10)
C4	0.0593 (12)	0.0505 (12)	0.0596 (13)	0.0046 (9)	-0.0110 (9)	-0.0128 (10)
C5	0.0481 (10)	0.0456 (12)	0.0549 (12)	-0.0036 (8)	-0.0090 (8)	0.0020 (9)
C6	0.0337 (8)	0.0470 (11)	0.0483 (11)	0.0026 (7)	-0.0097 (7)	-0.0034 (8)
C7	0.0630 (13)	0.0509 (14)	0.0694 (15)	0.0109 (10)	-0.0240 (11)	-0.0056 (11)
C8	0.0421 (10)	0.0608 (13)	0.0534 (11)	0.0081 (8)	-0.0099 (8)	-0.0074 (9)
C9	0.0356 (9)	0.0667 (13)	0.0490 (11)	0.0013 (8)	-0.0035 (8)	-0.0116 (9)
C10	0.0389 (9)	0.0547 (11)	0.0452 (10)	0.0042 (8)	-0.0039 (8)	-0.0131 (9)
C11	0.0470 (10)	0.0650 (13)	0.0577 (12)	-0.0014 (9)	-0.0024 (9)	-0.0079 (10)
C12	0.0674 (13)	0.0620 (14)	0.0570 (13)	0.0014 (10)	-0.0053 (10)	-0.0029 (10)
C13	0.0685 (13)	0.0649 (14)	0.0577 (13)	0.0123 (10)	-0.0199 (10)	-0.0078 (11)
C14	0.0436 (10)	0.0724 (14)	0.0624 (13)	0.0080 (9)	-0.0150 (9)	-0.0134 (11)
C15	0.0385 (9)	0.0541 (11)	0.0490 (11)	0.0045 (8)	-0.0075 (8)	-0.0157 (9)
C16	0.0314 (9)	0.0761 (14)	0.0574 (12)	-0.0005 (8)	-0.0052 (8)	-0.0105 (10)
N1	0.0320 (7)	0.0707 (11)	0.0447 (9)	0.0051 (7)	-0.0048 (6)	-0.0061 (7)

supporting information

N2	0.0331 (8)	0.0770 (12)	0.0527 (10)	0.0007 (7)	-0.0038 (7)	-0.0068 (8)
01	0.1198 (14)	0.0428 (10)	0.1065 (13)	0.0052 (8)	-0.0350 (10)	-0.0064 (9)
O2	0.0757 (9)	0.0616 (10)	0.0661 (10)	0.0228 (7)	-0.0169 (7)	-0.0194 (7)
03	0.0307 (7)	0.1177 (13)	0.0730 (10)	-0.0009(7)	-0.0059 (6)	0.0066 (9)

Geometric parameters (Å, °)

C1—C6	1.376 (2)	C9—O3	1.223 (2)	
C1—C2	1.384 (3)	C9—N1	1.382 (2)	
C1—C7	1.463 (3)	C9—C10	1.464 (2)	
C2—C3	1.374 (3)	C10—C15	1.395 (2)	
C2—H2	0.9300	C10—C11	1.396 (3)	
C3—C4	1.381 (3)	C11—C12	1.372 (3)	
С3—Н3	0.9300	C11—H11	0.9300	
C4—C5	1.382 (3)	C12—C13	1.388 (3)	
C4—H4	0.9300	C12—H12	0.9300	
C5—C6	1.377 (3)	C13—C14	1.364 (3)	
С5—Н5	0.9300	C13—H13	0.9300	
C6—C8	1.495 (2)	C14—C15	1.401 (2)	
C7—O1	1.198 (2)	C14—H14	0.9300	
C7—O2	1.371 (3)	C15—C16	1.431 (3)	
C8—O2	1.440 (2)	C16—N2	1.287 (2)	
C8—N1	1.449 (2)	C16—H16	0.9300	
C8—H8	0.9800	N1—N2	1.3786 (18)	
C6—C1—C2	121.43 (18)	O3—C9—C10	124.45 (17)	
C6—C1—C7	108.00 (17)	N1—C9—C10	114.62 (15)	
C2—C1—C7	130.55 (18)	C15-C10-C11	120.32 (16)	
C3—C2—C1	117.82 (18)	C15—C10—C9	119.31 (16)	
C3—C2—H2	121.1	C11—C10—C9	120.37 (16)	
C1—C2—H2	121.1	C12-C11-C10	119.18 (18)	
C2—C3—C4	120.73 (19)	C12—C11—H11	120.4	
С2—С3—Н3	119.6	C10-C11-H11	120.4	
С4—С3—Н3	119.6	C11—C12—C13	120.7 (2)	
C3—C4—C5	121.39 (19)	C11—C12—H12	119.6	
C3—C4—H4	119.3	C13—C12—H12	119.6	
C5—C4—H4	119.3	C14—C13—C12	120.66 (19)	
C6—C5—C4	117.77 (17)	C14—C13—H13	119.7	
С6—С5—Н5	121.1	C12—C13—H13	119.7	
C4—C5—H5	121.1	C13—C14—C15	119.88 (18)	
C1—C6—C5	120.86 (17)	C13—C14—H14	120.1	
C1—C6—C8	108.75 (16)	C15—C14—H14	120.1	
C5—C6—C8	130.38 (17)	C10-C15-C14	119.22 (18)	
O1—C7—O2	120.9 (2)	C10-C15-C16	117.71 (16)	
O1—C7—C1	130.7 (2)	C14—C15—C16	123.06 (17)	
O2—C7—C1	108.36 (18)	N2-C16-C15	125.13 (16)	
O2—C8—N1	110.25 (14)	N2-C16-H16	117.4	
O2—C8—C6	104.41 (14)	C15—C16—H16	117.4	

supporting information

N1-C8-C6	114.15 (14)	N2—N1—C9	126.76 (14)
O2—C8—H8	109.3	N2—N1—C8	113.34 (14)
N1—C8—H8	109.3	C9—N1—C8	119.88 (14)
С6—С8—Н8	109.3	C16—N2—N1	116.35 (15)
O3—C9—N1	120.92 (17)	C7—O2—C8	110.40 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C16—H16…O3 ⁱ	0.93	2.41	3.2935 (19)	158
C4—H4…O1 ⁱⁱ	0.93	2.54	3.215 (2)	130

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*-1, *z*.