

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-4-pyridyl disulfide—isophthalic acid (1/1)

Dan-Jun Wang, Jun-Ming Zhao, Jie Zhang and Jian-Li Lin*

State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China

Correspondence e-mail: zhengyueqing@nbu.edu.cn

Received 1 April 2009; accepted 9 April 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.043; wR factor = 0.135; data-to-parameter ratio = 17.2.

In the title 1:1 cocrystal, $C_{10}H_8N_2S_2 \cdot C_8H_6O_4$, the asymmetric unit contains an isophthalic acid molecule and a 4,4'-dipyridyl disulfide molecule. The two carboxyl groups of isophthalic acid interact with neighbouring 4,4'-dipyridyl disulfide molecules through $O-H \cdots N$ hydrogen bonds, forming a onedimensional zigzag chain. Neighbouring chains are linked to each other *via* π - π stacking interactions between the pyridyl rings of adjacent 4,4'-dipyridyl disulfide molecules [centroidcentroid distance = 3.7346 (6) Å], resulting in a layered motif. The dihedral angle between pyridine rings of 84.13 (7)° and the C-S-S-C torsion angle of 91.95 (1)° confirm the *gauche* conformation of 4,4'-dipyridyl disulfide.

Related literature

For ligands with two 4-pyridyl donors, see: Biradha *et al.* (2006); Sun *et al.* (2006); He *et al.* (2008); Suen *et al.* (2005). For related structures, see: Ranjbar *et al.* (2007).

Experimental

Crystal data

$C_{10}H_8N_2S_2 \cdot C_8H_6O_4$	b = 10.024 (2) Å
$M_r = 386.43$	c = 29.797 (6) Å
Monoclinic, $P2_1/c$	$\beta = 93.71 \ (3)^{\circ}$
a = 5.9616 (12) Å	V = 1776.9 (6) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.33 \text{ mm}^{-1}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T = 0.920 $T = 0.964$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 235 parameters $wR(F^2) = 0.135$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.30 \text{ e Å}^{-3}$ 4039 reflections $\Delta \rho_{min} = -0.41 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} D2 - H2C \cdots N1^{i} \\ D4 - H4C \cdots N2^{ii} \end{array}$	0.99 0.81	1.64 1.85	2.629 (3) 2.651 (3)	175 176

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project for Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2150).

References

- Biradha, K., Sarkar, M. & Rajput, L. (2006). *Chem. Commun.* pp. 4169–4179. He, H. Y., Dai, F. N., Tong, X., Ke, Y. X. & Sun, D. F. (2008). *Cryst. Growth Des.* **8**, 4191–4193.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Ranjbar, Z. R., Morsali, A. & Zhu, L. G. (2007). J. Mol. Struct. 826, 32-35.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suen, M. C., Wang, Y. H., Hsu, Y. F., Yeh, C. W., Chen, J. D. & Wang, J. C. (2005). Polyhedron, 24, 2913–2920.
- Sun, C. Y., Li, L. C. & Jin, L. P. (2006). Polyhedron, 25, 3017-3024.

 $0.29 \times 0.20 \times 0.11 \ \mathrm{mm}$

16923 measured reflections 4039 independent reflections

2330 reflections with $I > 2\sigma(I)$

T = 295 K

 $R_{\rm int} = 0.048$

supporting information

Acta Cryst. (2009). E65, o1055 [doi:10.1107/S1600536809013397]

Di-4-pyridyl disulfide-isophthalic acid (1/1)

Dan-Jun Wang, Jun-Ming Zhao, Jie Zhang and Jian-Li Lin

S1. Comment

The ligands having two 4-pyridyl donors, *e.g.*, 4,4'-bipyridine (Biradha *et al.*,2006), 1,2-bis(4-pyridyl)ethane (Sun *et al.*, 2006) and 1,3-bis(4-pyridyl)-propane (He *et al.*, 2008) have been intensively employed for the construction of coordination polymers. Compared with the above examples, di-4-pyridyl disulfide is seldom used for research. It shows a twisted strcture, with a C—S—S—C torsion angle of approximately 90°. More importantly, the ligand has axial chirality, which generates *M*- and *P*- enantiomers as shown in Fig. 3. It means that the use of this ligand possibly can produce the complex with a non-centrosymmetric space group (Suen *et al.*, 2005). As we know, some special properties, *e.g.*, triboluminescence, second harmonic generation and ferroelectricity are only found in these materials. For this consideration, we mixed this ligand and carboxylate ligand hoping to gain coordination polymer with special properties. However, a crystal suitable for X-ray diffraction was obtained during the synthesis unexpectedly. In this paper we report the crstal structure of the title cocrystal.

The asymmetric unit of the title cocrystal consisits of one isophthalic acid molecule and one *P*- form di-4-pyridyl disulfide molecule (Fig. 1). The two carboxylic groups of the isophthalic acid are hydrogen bonded with the corresponding di-4-pyridyl disulfide molecules (O2—H2C···N1ⁱ and O4—H4C···N2ⁱⁱ (Table 1)) generating a one-dimensional zigzag chain along the *c* axis. The neighbouring chains are further linked to each other *via* π — π packing interactions between the pyridyl rings of adjacent di-4-pyridyl disulfide molecules resulting in a two-dimensional layered structure (Fig. 2). The centroid-centroid distance is 3.7346 (6) Å, the C—S—S—C torsion angle is 91.95 (1)°, and the pyridyl ring planes form a dihedral angle of 84.13 (7)°. The crystal structures of closesly related cocrystals have been reported (Ranjbar *et al.*, 2007).

S2. Experimental

Dropwise addition of Na₂CO₃ (0.5 ml 1.0 *M*) to an aqueous solution of $Zn(NO_3)_2.6H_2O$ (0.0808 g, 0.25 mmol)in 4 ml H₂O produced white precipitate, which was then centrifuged and washed with distilled water six times. The collected precipitate was subsequently moved to a stirred suspension of isophthalic acid (0.0817 g, 0.5 mmol) in a mixed solvent composed of EtOH (10 ml) and H₂O (20 ml), and further stirred at 353 K for 1 h, followed by the addition of an ethanolic solution of 0.1120 g (0.5 mmol) di-4-pyridyl disulfide in 5 ml EtOH. The resulting mixture was further stirred at 343 K for 30 min and filtered off. Slow evaporation of the colorless filtrate at room temperature for one week gave colorless block crystals (yield: 0.05 g).

S3. Refinement

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$. H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with $U_{iso}(H)$ values set at 1.2 Ueq(O).

Figure 1

A view of the molecular structure of the title cocrystal, displacement ellipsoids are drawn at the 45% probability level.

Figure 2

The crystal packing diagram, showing the π -- π stacking and hydrogen bonds as dash lines.

M-form

P-form

Figure 3

The M- and P-enantiomers of di-4-pyridyl disulfide.

Di-4-pyridyl disulfide-isophthalic acid (1/1)

Crystal data

 $C_{10}H_8N_2S_2 \cdot C_8H_6O_4$ $M_r = 386.43$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.9616 (12) Å b = 10.024 (2) Å c = 29.797 (6) Å $\beta = 93.71$ (3)° V = 1776.9 (6) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.920, T_{\max} = 0.964$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.135$ S = 1.084039 reflections 235 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 800 $D_x = 1.445 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 16923 reflections $\theta = 3.4-27.4^{\circ}$ $\mu = 0.33 \text{ mm}^{-1}$ T = 295 KPlatelet, colorless $0.29 \times 0.20 \times 0.11 \text{ mm}$

16923 measured reflections 4039 independent reflections 2330 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 27.4^{\circ}, \theta_{min} = 3.4^{\circ}$ $h = -7 \rightarrow 7$ $k = -12 \rightarrow 12$ $l = -38 \rightarrow 38$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 0.8478P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ Zх v C1 0.0472 (6) 0.1566 (4) 0.1783(3)0.32831 (8) C2 0.1371 (5) 0.0516(3)0.31039(10) 0.0570(7)H2A 0.2419 -0.01420.3187 0.068* C3 -0.0411(5)0.27995 (10) 0.0616 (8) 0.0247(3)H3A -0.05450.074* -0.06110.2682 N1 -0.1955(4)0.1147(2)0.26642(7)0.0541 (6) C4 -0.1742(5)0.2369 (3) 0.28378 (9) 0.0542(7)H4A 0.065* -0.28060.3011 0.2748 C5 -0.0019(5)0.2723(3)0.31427 (9) 0.0526(7) H5A 0.0079 0.3589 0.3254 0.063* **S**1 0.36292 (14) 0.23223 (8) 0.36981 (3) 0.0629(2)S2 0.59614 (12) 0.08517(9)0.37425(3)0.0664(3)C6 0.5151 (4) -0.0234(3)0.41697 (8) 0.0467 (6) C7 0.6649(4)-0.1247(3)0.42909(9)0.0543(7)H7A 0.7977 -0.13350.4146 0.065* C8 0.6162 (5) -0.2124(3)0.46265 (10) 0.0588(8)H8A 0.7195 -0.27910.4708 0.071* N2 0.4262(4)-0.2055(3)0.48407(7)0.0571 (6) C9 0.2814 (5) -0.1082(3)0.47191 (9) 0.0558(7) H9A 0.1483 -0.10310.4865 0.067* C10 0.3170 (4) -0.0152(3)0.43917 (9) 0.0520(7)H10A 0.2119 0.0513 0.4321 0.062* 01 0.6473 (5) 0.7527(3)0.28620 (9) 0.0996(9)O2 0.5074(3)0.5519(2)0.29642 (6) 0.0634 (6) 0.095* H₂C 0.3967 0.5742 0.2715 C11 0.6474(5)0.6489(3)0.30626 (9) 0.0528(7)C12 0.8127(4)0.6179(3) 0.34480(8)0.0452(6)C13 1.0212 (5) 0.6802(3)0.34736 (9) 0.0541(7)H13A 1.0553 0.3257 0.065* 0.7426 C14 1.1780 (5) 0.6495(3)0.38191 (10) 0.0603 (8) H14A 1.3179 0.6909 0.072* 0.3833 1.1292 (4) 0.41451 (9) 0.0574 (8) C15 0.5580(3) H15A 1.2368 0.5368 0.4374 0.069* 0.9196 (4) C16 0.4977(3)0.41308 (8) 0.0467 (6) C17 0.7617 (4) 0.5277 (3) 0.37792 (8) 0.0451 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

Н17А	0.6214	0.4868	0 3767	0.05/*
C18	0.8684(5)	0.3991 (3)	0.44862 (9)	0.0566 (7)
03	1.0115 (4)	0.3410 (3)	0.47123 (9)	0.0996 (9)
O4	0.6531 (3)	0.3815 (2)	0.45246 (7)	0.0695 (6)
H4C	0.6275	0.3313	0.4726	0.104*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0550 (16)	0.0416 (15)	0.0445 (14)	-0.0047 (12)	0.0007 (12)	0.0048 (12)
C2	0.0646 (18)	0.0438 (17)	0.0606 (17)	0.0055 (14)	-0.0107 (14)	-0.0019 (13)
C3	0.078 (2)	0.0459 (17)	0.0589 (17)	-0.0006 (16)	-0.0134 (16)	-0.0092 (14)
N1	0.0640 (15)	0.0536 (15)	0.0433 (12)	-0.0002 (12)	-0.0078 (11)	0.0003 (11)
C4	0.0624 (17)	0.0485 (17)	0.0509 (15)	0.0066 (14)	-0.0027 (14)	0.0038 (13)
C5	0.0681 (18)	0.0391 (15)	0.0502 (15)	0.0009 (14)	-0.0005 (14)	-0.0019 (12)
S1	0.0717 (5)	0.0503 (5)	0.0638 (5)	-0.0141 (4)	-0.0174 (4)	0.0058 (4)
S2	0.0482 (4)	0.0838 (6)	0.0672 (5)	-0.0068 (4)	0.0036 (3)	0.0218 (4)
C6	0.0386 (13)	0.0557 (17)	0.0447 (13)	-0.0022 (12)	-0.0055 (11)	-0.0001 (12)
C7	0.0433 (15)	0.0660 (19)	0.0527 (16)	0.0059 (14)	-0.0033 (12)	-0.0024 (14)
C8	0.0587 (17)	0.0601 (19)	0.0552 (16)	0.0083 (15)	-0.0144 (14)	0.0001 (15)
N2	0.0612 (15)	0.0606 (16)	0.0477 (13)	-0.0051 (13)	-0.0106 (11)	0.0067 (11)
C9	0.0489 (15)	0.067 (2)	0.0510 (15)	-0.0048 (15)	0.0008 (13)	0.0040 (14)
C10	0.0434 (14)	0.0571 (18)	0.0551 (15)	0.0022 (13)	-0.0007 (12)	0.0064 (14)
01	0.118 (2)	0.0680 (17)	0.1053 (19)	-0.0274 (15)	-0.0499 (16)	0.0421 (15)
O2	0.0698 (13)	0.0577 (13)	0.0589 (12)	-0.0097 (11)	-0.0244 (10)	0.0090 (10)
C11	0.0612 (17)	0.0465 (17)	0.0495 (15)	-0.0013 (14)	-0.0059 (13)	0.0043 (13)
C12	0.0509 (15)	0.0405 (15)	0.0435 (13)	0.0004 (12)	-0.0026 (12)	-0.0027 (11)
C13	0.0570 (17)	0.0544 (18)	0.0507 (15)	-0.0046 (14)	0.0011 (13)	0.0000 (13)
C14	0.0458 (15)	0.071 (2)	0.0634 (18)	-0.0101 (15)	-0.0001 (14)	-0.0047 (16)
C15	0.0455 (15)	0.072 (2)	0.0526 (16)	0.0031 (15)	-0.0103 (13)	-0.0050 (15)
C16	0.0452 (14)	0.0530 (17)	0.0408 (13)	0.0033 (12)	-0.0054 (11)	-0.0026 (12)
C17	0.0446 (14)	0.0447 (15)	0.0449 (13)	0.0002 (12)	-0.0044 (11)	-0.0011 (12)
C18	0.0541 (16)	0.069 (2)	0.0454 (15)	0.0018 (15)	-0.0095 (13)	0.0063 (14)
03	0.0644 (14)	0.135 (2)	0.0961 (18)	0.0153 (16)	-0.0159 (13)	0.0616 (18)
O4	0.0580 (12)	0.0864 (16)	0.0624 (12)	-0.0072 (11)	-0.0107 (10)	0.0307 (11)

Geometric parameters (Å, °)

C1—C5	1.380 (4)	С9—Н9А	0.9300
C1—C2	1.380 (4)	C10—H10A	0.9300
C1—S1	1.771 (3)	O1—C11	1.200 (3)
C2—C3	1.378 (4)	O2—C11	1.302 (3)
C2—H2A	0.9300	O2—H2C	0.9857
C3—N1	1.333 (4)	C11—C12	1.497 (4)
С3—НЗА	0.9300	C12—C17	1.387 (4)
N1—C4	1.333 (4)	C12—C13	1.388 (4)
C4—C5	1.373 (4)	C13—C14	1.379 (4)
C4—H4A	0.9300	C13—H13A	0.9300

С5—Н5А	0.9300	C14—C15	1.381 (4)
S1—S2	2.0248 (13)	C14—H14A	0.9300
S2—C6	1.766 (3)	C15—C16	1.386 (4)
C6—C7	1.385 (4)	C15—H15A	0.9300
C6—C10	1.393 (3)	C16—C17	1.395 (3)
C7—C8	1.376 (4)	C16—C18	1.495 (4)
С7—Н7А	0.9300	C17—H17A	0.9300
C8—N2	1.338 (4)	C18—O3	1.203 (3)
C8—H8A	0.9300	C18—O4	1.308 (3)
N2—C9	1.337 (4)	O4—H4C	0.8043
C9—C10	1.376 (4)		
C5 C1 C2	118 2 (2)	C10 C0 H0A	118.0
$C_{5} = C_{1} = C_{2}$	110.2(3) 115.7(2)	C_{10} C_{10} C_{6}	118.1 (3)
$C_2 = C_1 = S_1$	115.7(2) 126.0(2)	$C_{9} = C_{10} = C_{0}$	120.0
$C_2 = C_1 = S_1$	120.0(2)	C6 C10 H10A	120.9
$C_3 = C_2 = C_1$	110.3 (3)	C_{11} C_{12} H_{10}	120.9
C_{3} C_{2} H_{2A}	120.8	C11 = 02 = H2C	112.9 123.7(3)
$C_1 = C_2 = M_2 A$	120.8 123.7(3)	01 - 01 - 02	123.7(3) 122.7(3)
N1 = C3 = C2	123.7 (3)	01 - 01 - 012	122.7(3) 113.5(2)
N1 - C3 - H3A	118.2	$C_{17} C_{12} C_{13}$	113.3(2) 110.4(2)
$C_2 = C_3 = \Pi_3 A$	117.2 (2)	C17 - C12 - C13	119.4(2) 121.2(2)
C_{3} C_{4} C_{5}	117.3(2) 122.8(2)	$C_{12} = C_{12} = C_{11}$	121.2(2)
N1 = C4 = C3	122.8 (3)	$C_{13} - C_{12} - C_{11}$	119.3(2)
N1 - C4 - H4A	118.6	C14 - C13 - C12	120.1 (5)
C_{3}	110.0	C12 $C13$ $H13A$	119.9
$C_4 = C_5 = C_1$	119.5 (5)	C_{12} C_{13} C_{14} C_{15}	119.9
$C_1 = C_5 = H_5 \Lambda$	120.2	$C_{13} = C_{14} = C_{13}$	120.0 (3)
C1 = C3 = HSA	120.2 105.44(10)	C15 C14 H14A	119.7
$C_1 = 51 = 52$	105.44(10) 106.08(10)	C14 $C15$ $C16$	119.7
$C_0 = 32 = 31$	100.08(10) 118.1(2)	$C_{14} = C_{15} = C_{10}$	119.9 (3)
$C_{7} = C_{6} = C_{10}$	116.1(3) 116.0(2)	C16 C15 H15A	120.0
$C_{10} C_{6} S_{2}$	110.0(2) 125.0(2)	$C_{10} = C_{10} = M_{10} = M_{10}$	120.0
$C_{10} = C_{0} = S_{2}$	123.9(2)	C15 - C16 - C17	119.3(3)
$C_{0} = C_{1} = C_{0}$	119.7 (3)	C17 - C16 - C18	119.4(2)
C_{0}	120.2	C12 - C17 - C16	121.0(2)
$C_0 - C_1 - H/A$	120.2	C12 - C17 - C10	120.4 (2)
$N_2 = C_3 = C_1$	122.0 (3)	C12-C17-H17A	119.8
$IN2 - U\delta - H\delta A$	110./	C_{10} C_{1} H_{1}/A	119.8
$C = -C = -H\delta A$	118./	03 - 018 - 04	123.4 (3)
$U_{2} = U_{2} = U_{2}$	11/.4 (2)	03-018-016	123.2(3)
N2 - C9 - U10	124.0 (3)	U4-U18-U16	113.4 (2)
N2-C9-H9A	118.0	C18—O4—H4C	112.6

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
$O2-H2C\cdots N1^{i}$	0.99	1.64	2.629 (3)	175

			supportin	supporting information		
O4—H4C···N2 ⁱⁱ	0.81	1.85	2.651 (3)	176		
Symmetry codes: (i) $-x$, $y+1/2$, $-z+1/2$; (ii) $-x+1, -y, -z+1$.					