

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-[(2Z)-3-Allyl-4-oxo-1,3-thiazolidin-2vlidene]-5-fluoro-3-phenyl-1H-indole-2carbohydrazide

Mehmet Akkurt,^a* Selvi Karaca,^a Gökçe Cihan,^b Gültaze Capan^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Istanbul, 34116 Beyazıt, Istanbul, Turkey, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 2 April 2009; accepted 3 April 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.040; wR factor = 0.111; data-to-parameter ratio = 14.7

In the title compound, C₂₁H₁₇FN₄O₂S, the planar indole fusedring [maximum deviation 0.009 (1) Å] makes dihedral angles of 54.75 (9) and 14.90 $(9)^{\circ}$, respectively, with the phenyl ring and the dihydrothiazolyl ring. The -CH2CH=CH2 substituent is disordered over two positions in a 0.51 (1):0.49 (1) ratio. An intramolecular N-H···S hydrogen bond generates an S(5) ring motif. The two independent molecules are linked into a dimer by two N-H...O hydrogen bonds, forming an $R_2^2(10)$ ring motif. The crystal structure features intermolecular C-H··· π and π - π stacking [centroid-centroid] distance = 3.679 (1) Å] interactions. $C-H \cdots O$ and $C-H \cdots F$ interactions are also present.

Related literature

For the bactericidal, fungicidal, antitubercular and anticancer properties of 4-thiazolidinone derivatives, see: Bonde & Gaikwad (2004); Güzel et al. (2006); Küçükgüzel et al. (2002); Kline et al. (2008); Ottanà et al. (2005); Ulusoy (2002); Zhou et al. (2008); Çapan et al. (1999).

27187 measured reflections

 $R_{\rm int} = 0.031$

4444 independent reflections

3438 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{21}H_{17}FN_4O_2S$	V = 3904.1 (2) Å ³
$M_r = 408.46$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 21.9754 (6) Å	$\mu = 0.20 \text{ mm}^{-1}$
b = 14.7215 (5) Å	T = 296 K
c = 16.2447 (4) Å	$0.48 \times 0.45 \times 0.41 \text{ mm}$
$\beta = 132.022 \ (2)^{\circ}$	

Data collection

Stoe IPDS2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.910, \ T_{\max} = 0.922$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$wR(F^2) = 0.111$	independent and constrained
S = 1.04	refinement
4444 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
302 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
4 restraints	

Table 1

H	lyd	lrogen-	bond	geometry	(A,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO1^{i}$	0.86	1.96	2.789 (2)	161
$N2-H2A\cdots S1$	0.86	2.52	2.925 (2)	110
$C17 - H17A \cdots O2^{ii}$	0.97	2.48	3.336 (3)	147
$C20B - H20B \cdot \cdot \cdot F1^{iii}$	0.93	2.37	3.284 (10)	168
$C14-H14\cdots Cg2^{iii}$	0.93	2.66	3.371 (2)	134

Symmetry codes: (i) $-x + 1, y, -z + \frac{3}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2$; (iii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$. Cg2 is the centroid of the N1/C1/C6-C8 ring.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2568).

References

- Bonde, C. G. & Gaikwad, N. J. (2004). Bioorg. Med. Chem. 12, 2151-2161. Çapan, G., Ulusoy, N., Ergenç, N. & Kiraz, M. (1999). Monatsh. Chem. 130, 1399-1407.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Güzel, Ö., Terzioğlu, N., Çapan, G. & Salman, A. (2006). Arkivoc, 12, 98-110. Kline, T., Felise, H. B., Barry, K. C., Jackson, S. R., Nguyen, H. V. & Miller, S. I. (2008). J. Med. Chem. 51, 7065-7074.
- Küçükgüzel, S. G., Oruc, E. E., Rollas, S., Sahin, F. & Özbek, A. (2002). Eur. J. Med Chem 37 197-206.
- Ottanà, R., Maccari, R., Barreca, M. L., Bruno, G., Rotondo, A., Rossi, A., Chiricosta, G., Di Paola, R., Sautebin, L., Cuzzocrea, S. & Vigorita, M. G. (2005). Bioorg. Med. Chem. 13, 4243-4252.

Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Stoe & Cie (2002). *X-AREA* and *X-RED32*. Stoe & Cie, Darmstadt, Germany. Ulusoy, N. (2002). *Arzneim. Forsch. Drug Res.* **52**, 565–571.

Zhou, H., Wu, S., Zhai, S., Liu, A., Sun, Y., Li, R., Zhang, Y., Ekins, S., Swaan, P. W., Fang, B., Zhang, B. & Yan, B. (2008). J. Med. Chem. **51**, 1242–1251.

supporting information

Acta Cryst. (2009). E65, o1009-o1010 [doi:10.1107/S1600536809012677]

N'-[(2*Z*)-3-Allyl-4-oxo-1,3-thiazolidin-2-ylidene]-5-fluoro-3-phenyl-1*H*-indole-2-carbohydrazide

Mehmet Akkurt, Selvi Karaca, Gökçe Cihan, Gültaze Çapan and Orhan Büyükgüngör

S1. Comment

Efforts to design, synthesize and screen new molecules that would mimic the actions of currently available chemotherapeutics have resulted in numerous promising candidates incorporating the 4-thiazolidinone system. Many 4-thiazolidinone derivatives have been shown to exhibit bactericidal (Bonde & Gaikwad, 2004; Kline *et al.*, 2008), fungicidal (Çapan *et al.*, 1999) antitubercular (Ulusoy, 2002; Küçükgüzel *et al.*, 2002; Güzel *et al.*, 2006) and anticancer (Zhou *et al.*, 2008) properties. Furthermore the structure of 4-thiazolidinones obtained from asymmetric thiourea derivatives has been frequently discussed due to the formation of regio-isomers involving 2- and 3-positions of the thiazolidinone ring depending upon the relative nucleophilic strengths of the thioamide N atoms (Ottanà *et al.*, 2005; Kline *et al.*, 2008). The nitrogen involved in ene-thiolization (R_1N_1 =CSH—N₂H R_2/R_1N_1 HCSH=N₂ R_2) determines the regiochemical outcome of the cyclization. In this context, the title compound (**2**) was prepared from a thiosemicarbazide precursor (**1**) which may be regarded as an asymmetric thiourea analogue in an attempt to obtain a new molecule with antimicrobial action and to establish its definite structure. Thus spectroscopic and X-ray diffraction studies were carried out on (**2**) to determine the position of the 5-fluoro-3-phenyl-2-indolylcarbonylamino residue and the geometry about the C=N double bond.

In the title compound, (2), (Fig. 1), 1*H*-indole ring is essentially planar, with a maximum deviation of -0.009 (1) Å for C8. The nine-membered indole ring makes dihedral angles of 54.75 (9) and 14.90 (9) $^{\circ}$, respectively, with the phenyl ring (C9–C14) and the 2,5-dihydro-1,3-thiazole ring (S1/N4/C16–C18). The dihedral angle between the (C9–C14) and (S1/N4/C16–C18) rings is 69.15 (9) $^{\circ}$.

In the molecule, intramolecular N—H···S hydrogen bonding interactions generate S(5) ring motifs. In the crystal, the two independent molecules are linked into a dimer by two N—H···O hydrogen bonds, forming a $R_2^2(10)$ ring motif (Fig. 2). The crystal structure, is further stabilized by intermolecular C—H··· π [*Cg*1 and *Cg*2 are centroids of the S1/N4/C16–C18 and N1/C1/C6–C8 rings, respectively (Table 1)] and π - π interactions [*Cg*1···*Cg2*(*x*, -*y*, 1/2 + *z*) = 3.6791 (10) Å].

S2. Experimental

A mixture of 4-allyl-1-[(5-fluoro-3-phenyl-1*H*-indol-2-yl)carbonyl]-3-*t*hiosemicarbazide (1) (0.0025 mol), ethyl bromoacetate (0.0025 mol) and fused sodium acetate (0.01 mol) in absolute ethanol (15 ml) was heated under reflux for 3 h. The solid thus obtained (**2**) was filtered, dried and purified by recrystallization from a mixture of ethanol: chloroform [Yield: 63.7%, m.p.: 535–538 K]. IR (KBr) v = 3309, 3247 (N—H), 1716 (C=O), 1654 (C=O), 1608 (C=N) cm⁻¹; ¹H-NMR (DMSO-d₆, 500 MHz) $\delta = 4.05$ (2*H*, s, S—CH₂), 4.24 (2*H*, s*, N—CH₂CH=CH₂), 5.12 (2*H*, s*, N—CH₂CH=CH₂), 5.81 (1*H*, s*, N—CH₂CH=CH₂), 7.11 (1*H*, dt, J = 9.1, 2.4 Hz, H6-indole), 7.15 (1*H*, d*, J = 9.3 Hz, H4-indole), 7.36 (1*H*, s*, 3-C₆H₅ (H4)-indole), 7.49–7.46 (5*H*, m, H7, 3-C₆H₅ (H2, H6, H3, H5)-indole), 9.78 (1*H*, s, CONH), 11.87 (1*H*, s, NH-indole) p.p.m. (* = broad). Analysis calculated for C₂₁H₁₇FN₄O₂S: C 61.75, H 4.20, N 13.72%. Found: C 61.84,

H4.87, N 13.69%.

S3. Refinement

The two H atoms of the C19 atom were found from a difference Fourier map and refined freely. The rest H atoms were positioned geometrically and refined a riding model, with N—H = 0.86, C—H = 0.93 and 0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$. The site-occupation factors of the disordered atoms refined to 0.487 (13) for C20A and C21A and 0.513 (13) for C20B and C21B.

Figure 1

View of the title molecule with the atom-numbering scheme and 30% probability displacement ellipsoids. Only the major occupancy component of the disorder part is depicted.

Figure 2

View of the two molecules linked into a dimer by two N—H···O hydrogen bonds [Symmetry code: (*a*) -1/2 + x, 1/2 - y, -1/2 + z].

N'-[(2Z)-3-Allyl-4-oxo-1,3-thiazolidin-2-ylidene]-5-fluoro- 3-phenyl-1H-indole-2-carbohydrazide

Crystal data	
$C_{21}H_{17}FN_4O_2S$	F(000) = 1696
$M_r = 408.46$	$D_{\rm x} = 1.390 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 28593 reflections
a = 21.9754 (6) Å	$\theta = 1.7 - 28.0^{\circ}$
b = 14.7215 (5) Å	$\mu=0.20~\mathrm{mm^{-1}}$
c = 16.2447 (4) Å	T = 296 K
$\beta = 132.022 \ (2)^{\circ}$	Prism, colourless
$V = 3904.1 (2) Å^3$	$0.48 \times 0.45 \times 0.41 \text{ mm}$
Z = 8	
Data collection	
STOE IPDS2	$T_{\min} = 0.910, \ T_{\max} = 0.922$
diffractometer	27187 measured reflections
Radiation source: sealed X-ray tube, 12 x 0.4	4444 independent reflections
mm long-fine focus	3438 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.031$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
ω scans	$h = -28 \longrightarrow 28$
Absorption correction: integration	$k = -19 \rightarrow 19$
(X-RED32; Stoe & Cie, 2002)	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Hvdrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent
$wR(F^2) = 0.111$	and constrained refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0574P)^2 + 0.7834P]$
4444 reflections	where $P = (F_o^2 + 2F_c^2)/3$
302 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
4 restraints	$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL,
Secondary atom site location: difference Fourier	$FC^* = KFC[1+0.001XFC^2\Lambda^3/SIN(2\Theta)]^{-1/4}$
map	Extinction coefficient: 0.0009 (3)

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.21369 (3)	0.12252 (4)	0.77932 (4)	0.0740 (2)	
F1	0.17462 (7)	0.15524 (8)	0.14694 (8)	0.0831 (4)	
01	0.44729 (7)	0.05930 (11)	0.79608 (9)	0.0802 (5)	
O2	0.31157 (12)	0.14689 (11)	1.08254 (13)	0.0975 (7)	
N1	0.38666 (7)	0.08425 (9)	0.58683 (10)	0.0539 (4)	
N2	0.33122 (8)	0.10877 (10)	0.75039 (10)	0.0607 (4)	
N3	0.36940 (9)	0.11650 (10)	0.86108 (11)	0.0640 (5)	
N4	0.35123 (10)	0.13330 (10)	0.98479 (12)	0.0683 (5)	
C1	0.26040 (8)	0.11360 (10)	0.42564 (12)	0.0500 (4)	
C2	0.20191 (9)	0.13246 (11)	0.31160 (13)	0.0572 (5)	
C3	0.22958 (11)	0.13647 (12)	0.25772 (13)	0.0616 (5)	
C4	0.31034 (11)	0.12236 (12)	0.30720 (14)	0.0650 (6)	
C5	0.36848 (10)	0.10389 (12)	0.41841 (14)	0.0616 (5)	
C6	0.34253 (9)	0.09967 (10)	0.47696 (12)	0.0516 (4)	
C7	0.33549 (8)	0.08846 (10)	0.60763 (12)	0.0502 (4)	
C8	0.25619 (8)	0.10495 (10)	0.50956 (12)	0.0482 (4)	
C9	0.17981 (8)	0.10843 (10)	0.48911 (12)	0.0504 (4)	
C10	0.15738 (10)	0.03640 (12)	0.51928 (14)	0.0632 (5)	
C11	0.08451 (11)	0.03946 (15)	0.49644 (16)	0.0776 (7)	
C12	0.03309 (11)	0.11353 (16)	0.44348 (17)	0.0802 (7)	
C13	0.05436 (10)	0.18427 (15)	0.41220 (17)	0.0762 (7)	
C14	0.12698 (10)	0.18184 (12)	0.43468 (15)	0.0627 (5)	
C15	0.37596 (8)	0.08369 (11)	0.72532 (12)	0.0535 (5)	

C16	0.32070 (11)	0.12386 (11)	0.87750 (13)	0.0594 (5)	
C17	0.20908 (14)	0.13479 (16)	0.88526 (19)	0.0822 (8)	
C18	0.29483 (14)	0.13926 (13)	0.99488 (17)	0.0741 (7)	
C19	0.43942 (16)	0.13472 (19)	1.08020 (18)	0.0892 (9)	
C20B	0.4660 (5)	0.2330 (6)	1.0835 (8)	0.146 (3)	0.513 (13)
C21B	0.5130 (6)	0.2848 (8)	1.1365 (7)	0.166 (4)	0.513 (13)
C21A	0.4594 (7)	0.2904 (7)	1.0986 (7)	0.105 (3)	0.487 (13)
C20A	0.4920 (5)	0.2117 (6)	1.1294 (7)	0.106 (3)	0.487 (13)
H2	0.14700	0.14170	0.27480	0.059 (4)*	
H1	0.43840	0.07360	0.63550	0.061 (5)*	
Н5	0.42300	0.09450	0.45360	0.069 (5)*	
H10	0.19150	-0.01390	0.55490	0.072 (5)*	
H11	0.06990	-0.00890	0.51700	0.098 (7)*	
H12	-0.01560	0.11540	0.42910	0.097 (7)*	
H13	0.01970	0.23410	0.37570	0.103 (7)*	
H14	0.14080	0.23020	0.41300	0.069 (5)*	
H17A	0.17970	0.18980	0.87300	0.112 (8)*	
H17B	0.18060	0.08350	0.88360	0.099 (7)*	
H19A	0.4441 (17)	0.1087 (19)	1.132 (2)	0.113 (9)*	
H19B	0.4668 (18)	0.086 (2)	1.066 (2)	0.132 (10)*	
H20B	0.42670	0.25770	1.01300	0.1750*	0.513 (13)
H21C	0.55760	0.27220	1.21060	0.1990*	0.513 (13)
H21D	0.50830	0.34150	1.10740	0.1990*	0.513 (13)
H2A	0.27970	0.11990	0.69870	0.086 (6)*	
H4	0.32490	0.12540	0.26510	0.076 (6)*	
H20A	0.54860	0.20480	1.18250	0.1270*	0.487 (13)
H21A	0.40270	0.29620	1.04540	0.1260*	0.487 (13)
H21B	0.49230	0.34190	1.12940	0.1260*	0.487 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0723 (3)	0.0928 (4)	0.0657 (3)	0.0010(2)	0.0498 (2)	-0.0014 (2)
F1	0.0882 (7)	0.1037 (8)	0.0487 (5)	0.0056 (6)	0.0422 (5)	0.0057 (5)
01	0.0452 (6)	0.1385 (12)	0.0528 (6)	0.0108 (6)	0.0311 (5)	0.0155 (7)
O2	0.1405 (14)	0.1047 (11)	0.0858 (10)	0.0000 (10)	0.0916 (11)	-0.0059 (8)
N1	0.0420 (6)	0.0715 (8)	0.0493 (6)	0.0044 (5)	0.0310 (5)	0.0049 (6)
N2	0.0526 (7)	0.0862 (9)	0.0456 (6)	0.0083 (6)	0.0338 (6)	0.0055 (6)
N3	0.0659 (8)	0.0787 (9)	0.0473 (7)	0.0029 (7)	0.0379 (6)	0.0020 (6)
N4	0.0846 (10)	0.0724 (9)	0.0552 (8)	0.0019 (7)	0.0498 (8)	-0.0001 (6)
C1	0.0472 (7)	0.0554 (8)	0.0474 (7)	-0.0009 (6)	0.0317 (6)	-0.0003 (6)
C2	0.0520 (8)	0.0645 (9)	0.0481 (8)	0.0010 (6)	0.0306 (7)	-0.0003 (6)
C3	0.0692 (10)	0.0656 (10)	0.0458 (8)	-0.0002 (7)	0.0368 (8)	-0.0001 (7)
C4	0.0769 (10)	0.0737 (11)	0.0626 (10)	-0.0028 (8)	0.0542 (9)	-0.0028 (8)
C5	0.0610 (9)	0.0743 (10)	0.0642 (9)	0.0008 (7)	0.0480 (8)	0.0004 (8)
C6	0.0497 (7)	0.0585 (8)	0.0511 (7)	0.0010 (6)	0.0356 (6)	0.0005 (6)
C7	0.0460 (7)	0.0589 (8)	0.0510(7)	0.0003 (6)	0.0347 (6)	0.0030 (6)
C8	0.0438 (6)	0.0548 (8)	0.0475 (7)	-0.0017 (5)	0.0312 (6)	0.0004 (6)

С9	0.0421 (7)	0.0614 (8)	0.0469 (7)	-0.0042 (6)	0.0295 (6)	-0.0026 (6)
C10	0.0545 (8)	0.0744 (11)	0.0623 (9)	-0.0029 (7)	0.0397 (8)	0.0082 (8)
C11	0.0587 (9)	0.1023 (14)	0.0775 (11)	-0.0106 (9)	0.0479 (9)	0.0122 (10)
C12	0.0487 (8)	0.1175 (16)	0.0786 (12)	-0.0027 (9)	0.0443 (9)	0.0071 (11)
C13	0.0537 (9)	0.0897 (13)	0.0840 (13)	0.0115 (8)	0.0456 (9)	0.0106 (10)
C14	0.0527 (8)	0.0656 (10)	0.0720 (10)	0.0006 (7)	0.0427 (8)	0.0041 (8)
C15	0.0456 (7)	0.0660 (9)	0.0496 (8)	-0.0036 (6)	0.0322 (7)	0.0023 (7)
C16	0.0733 (10)	0.0588 (9)	0.0541 (8)	0.0036 (7)	0.0459 (8)	0.0019 (7)
C17	0.0978 (14)	0.0875 (14)	0.0915 (14)	0.0088 (11)	0.0758 (13)	0.0004 (11)
C18	0.1055 (14)	0.0660 (11)	0.0765 (12)	0.0041 (9)	0.0715 (12)	0.0002 (8)
C19	0.0908 (15)	0.1127 (19)	0.0540 (11)	-0.0049 (13)	0.0443 (11)	-0.0017 (11)
C20B	0.095 (5)	0.109 (6)	0.070 (5)	-0.011 (4)	-0.012 (4)	0.013 (4)
C21B	0.093 (6)	0.140 (7)	0.150 (7)	-0.032 (5)	0.034 (5)	0.020 (5)
C21A	0.106 (6)	0.115 (6)	0.075 (4)	0.005 (4)	0.053 (4)	0.009 (4)
C20A	0.074 (4)	0.138 (6)	0.054 (4)	0.004 (4)	0.021 (3)	0.003 (4)

Geometric parameters (Å, °)

S1—C16	1.747 (2)	C10—C11	1.382 (4)
S1—C17	1.800 (3)	C11—C12	1.380 (3)
F1—C3	1.3652 (19)	C12—C13	1.371 (4)
O1—C15	1.223 (2)	C13—C14	1.379 (4)
O2—C18	1.214 (3)	C17—C18	1.495 (4)
N1—C6	1.3639 (19)	C19—C20B	1.548 (10)
N1—C7	1.375 (3)	C19—C20A	1.422 (10)
N2—N3	1.3894 (19)	C20A—C21A	1.275 (14)
N2—C15	1.344 (3)	C20B—C21B	1.095 (15)
N3—C16	1.269 (4)	C2—H2	0.9300
N4—C16	1.393 (2)	C4—H4	0.9300
N4—C18	1.358 (4)	С5—Н5	0.9300
N4—C19	1.462 (4)	C10—H10	0.9300
N1—H1	0.8600	C11—H11	0.9300
N2—H2A	0.8600	C12—H12	0.9300
C1—C6	1.407 (3)	С13—Н13	0.9300
C1—C8	1.433 (3)	C14—H14	0.9300
C1—C2	1.405 (2)	C17—H17A	0.9700
C2—C3	1.361 (3)	C17—H17B	0.9700
C3—C4	1.389 (4)	С19—Н19А	0.87 (3)
C4—C5	1.371 (2)	C19—H19B	1.06 (4)
C5—C6	1.400 (3)	C20A—H20A	0.9300
C7—C8	1.385 (2)	C20B—H20B	0.9300
C7—C15	1.475 (2)	C21A—H21A	0.9300
C8—C9	1.478 (3)	C21A—H21B	0.9300
C9—C10	1.390 (3)	C21B—H21C	0.9300
C9—C14	1.387 (3)	C21B—H21D	0.9300
\$1N2	2 925 (2)	C21B····S1 ^{ix}	3 605 (13)
\$1C11	3.634 (2)	C1…H14	3.0300

S1····C21B ⁱ	3 605 (13)	C1···H14 ⁱⁱⁱ	3 0400
S1H2A	2 5200	C2H14	3 0900
$F1\cdots C10^{ii}$	3369(2)	C6···H14 ⁱⁱⁱ	2 9500
$F1 \cdots C20B^{iii}$	3.369(2) 3.284(10)	$C7 \cdots H14^{iii}$	2.7800
F1C16 ⁱⁱⁱ	3 286 (2)	C7H10	3.0600
$F1 \cdots C21 A^{iii}$	3.200(2)	C8H2A	2 7600
F1H11 ⁱⁱ	2 8100		2.7000
$F_1 \dots F_1 \dots \dots F_1 \dots F_1 \dots \dots F_1 $	2.3100	C0H2	2.9000
	2.7300	C9H2A	2 5 4 0 0
	2.3700	C10H2A	2.5400
	2.4000 2.7205 (18)	C14····H2	2.0000
	2.7203(10)		2.9700
	2.0/8(3)		3.0700
02 - 017	2.789(2)	C17 H216	2.7000
	3.336 (3)		2.8900
	1.9600	C18···H21A	3.0000
Ol…H1	2.4900	C21B···H17A ^{ix}	3.0800
01…H19B ^{v1}	2.74 (3)	H1···O1 ^{IV}	1.9600
O2···H4 ^{vii}	2.8000	H1···O1	2.4900
O2…H19A	2.51 (4)	H1…C15 ^{IV}	3.0700
O2…H17A ^v	2.4800	H2…C14	2.9700
N1…O1	2.7205 (18)	Н2…С9	3.0900
N1…O1 ^{iv}	2.789 (2)	H2···H12 ^x	2.5800
N2…C10	3.259 (2)	H2A…C9	2.5400
N2…S1	2.925 (2)	H2A…C10	2.6000
N2…C9	3.1904 (19)	H2A···C8	2.7600
N3…O1	2.678 (3)	H2A…S1	2.5200
N3…C20B	3.199 (10)	H4…O2 ^{xi}	2.8000
N3…C5 ^{viii}	3.379 (2)	H4…H20A ^{iv}	2.5800
N4…C6 ^{viii}	3.433 (2)	H10…F1 ^{viii}	2.7300
N1…H14 ⁱⁱⁱ	2.8000	H10…C7	3.0600
N3…H19B	2.52 (2)	H11····F1 ^{viii}	2.8100
N3…H20B	2.8000	H11····H12 ^{xii}	2.4600
N4…H21A	2.5500	H12…H11 ^{xii}	2.4600
C1···C14 ⁱⁱⁱ	3.581 (2)	H12…H2 ^x	2.5800
C2…C14	3.413 (3)	H14…N1 ⁱⁱⁱ	2.8000
C5…N3 ⁱⁱ	3.379 (2)	H14…C1	3.0300
C5…C16 ⁱⁱ	3.443 (2)	H14…C2	3.0900
C6…C14 ⁱⁱⁱ	3.401 (2)	H14…C7 ⁱⁱⁱ	2.7800
C6…N4 ⁱⁱ	3.433 (2)	H14····C8 ⁱⁱⁱ	2.9600
C6…C16 ⁱⁱ	3.554 (2)	H14····C1 ⁱⁱⁱ	3.0400
C9N2	3 1904 (19)	H14····C6 ⁱⁱⁱ	2,9500
C10N2	3 259 (2)	$H17A \cdots O2^{\nu}$	2.9500
$C10 \cdots F1^{viii}$	3.269(2)	$H17A \cdots C21B^{i}$	3 0800
C11	3.509(2)	$H17A \cdots H21C^{i}$	2 2300
C14···C2	3.037(2)	H19AO2	2.2300 2 51 (4)
C14C6 ⁱⁱⁱ	3 401 (2)	$H19RO1^{vi}$	2.31(7) 2.71(2)
$C14\cdots C1^{iii}$	3.581(2)	H19BN3	2.77(3) 2.52(2)
	3.301(2)		2.32 (2) 2.5000
	5.554 (2)	1120/1114	2.3000

C16…F1 ⁱⁱⁱ	3.286 (2)	H20B…C16	2.7000
C16····C5 ^{viii}	3.443 (2)	H20B…N3	2.8000
C17…O2 ^v	3.336 (3)	H20B…F1 ⁱⁱⁱ	2.3700
C18…C21A	3.565 (14)	H21A…F1 ⁱⁱⁱ	2.4600
C20B…N3	3.199 (10)	H21A…N4	2.5500
C20B…F1 ⁱⁱⁱ	3.284 (10)	H21A…C18	3.0000
C21A…C18	3.565 (14)	H21C···H17A ^{ix}	2.2300
C21A…F1 ⁱⁱⁱ	3.082 (9)	H21C····C17 ^{ix}	2.8900
C16—S1—C17	91.66 (12)	O2—C18—C17	123.5 (3)
C6—N1—C7	109.39 (16)	N4—C18—C17	112.2 (2)
N3—N2—C15	118.97 (16)	N4—C19—C20A	127.5 (4)
N2—N3—C16	114.55 (17)	N4—C19—C20B	104.6 (4)
C16—N4—C18	116.3 (2)	C19—C20A—C21A	118.2 (10)
C16—N4—C19	120.9 (2)	C19—C20B—C21B	144.5 (10)
C18—N4—C19	122.7 (2)	C1—C2—H2	122.00
C7—N1—H1	125.00	С3—С2—Н2	122.00
C6—N1—H1	125.00	C3—C4—H4	120.00
N3—N2—H2A	120.00	C5—C4—H4	120.00
C15—N2—H2A	121.00	C4—C5—H5	121.00
C2—C1—C6	119.25 (19)	С6—С5—Н5	121.00
C2—C1—C8	133.4 (2)	С9—С10—Н10	120.00
C6—C1—C8	107.31 (14)	C11—C10—H10	120.00
C1—C2—C3	116.7 (2)	C10—C11—H11	120.00
F1—C3—C2	118.3 (2)	C12—C11—H11	120.00
C2—C3—C4	124.70 (16)	C11—C12—H12	120.00
F1—C3—C4	117.0 (2)	C13—C12—H12	120.00
C3—C4—C5	119.7 (2)	C12—C13—H13	120.00
C4—C5—C6	117.4 (2)	C14—C13—H13	120.00
C1—C6—C5	122.36 (15)	C9—C14—H14	119.00
N1-C6-C1	107.82 (18)	C13—C14—H14	120.00
N1—C6—C5	129.8 (2)	S1—C17—H17A	110.00
C8—C7—C15	134.6 (2)	S1—C17—H17B	110.00
N1—C7—C15	115.70 (16)	C18—C17—H17A	110.00
N1—C7—C8	109.36 (15)	C18—C17—H17B	110.00
C1—C8—C9	124.76 (14)	H17A—C17—H17B	108.00
С7—С8—С9	129.06 (16)	N4—C19—H19A	104 (2)
C1—C8—C7	106.10 (18)	N4—C19—H19B	107.7 (16)
C8—C9—C10	120.79 (16)	C20B—C19—H19A	125.7 (19)
C8—C9—C14	120.69 (17)	C20B—C19—H19B	113 (2)
C10—C9—C14	118.5 (2)	H19A—C19—H19B	101 (3)
C9—C10—C11	120.10 (18)	С20А—С19—Н19А	106.5 (19)
C10—C11—C12	120.8 (2)	C20A—C19—H19B	107 (2)
C11—C12—C13	119.4 (3)	C21A—C20A—H20A	121.00
C12-C13-C14	120.2 (2)	C19—C20A—H20A	121.00
C9—C14—C13	121.0 (2)	C21B—C20B—H20B	108.00
N2—C15—C7	116.83 (16)	C19—C20B—H20B	108.00
O1—C15—N2	122.24 (15)	C20A—C21A—H21A	120.00

O1—C15—C7	120.92 (19)	H21A—C21A—H21B	120.00
S1-C16-N4	111.7 (2)	C20A—C21A—H21B	120.00
N3—C16—N4	120.3 (2)	C20B—C21B—H21D	120.00
S1—C16—N3	128.04 (13)	H21C—C21B—H21D	120.00
S1—C17—C18	108.1 (2)	C20B—C21B—H21C	120.00
O2—C18—N4	124.3 (3)		
C17—S1—C16—N4	-0.12 (14)	C2-C1-C6-C5	0.0 (2)
C17—S1—C16—N3	179.05 (17)	C1-C2-C3-F1	-179.58 (14)
C16—S1—C17—C18	-0.04 (16)	C1—C2—C3—C4	0.7 (3)
C6—N1—C7—C8	1.30 (17)	C2—C3—C4—C5	-0.8 (3)
C7—N1—C6—C5	178.52 (16)	F1—C3—C4—C5	179.53 (16)
C7—N1—C6—C1	-0.40 (17)	C3—C4—C5—C6	0.4 (3)
C6—N1—C7—C15	-173.18 (13)	C4C5C6N1	-178.79 (16)
N3—N2—C15—O1	6.9 (3)	C4—C5—C6—C1	0.0 (2)
C15—N2—N3—C16	-167.60 (16)	C8—C7—C15—N2	-7.9 (3)
N3—N2—C15—C7	-171.95 (14)	N1—C7—C8—C9	175.12 (14)
N2—N3—C16—N4	-179.16 (14)	C15—C7—C8—C9	-11.9 (3)
N2—N3—C16—S1	1.7 (2)	C8—C7—C15—O1	173.20 (18)
C16—N4—C18—O2	179.34 (18)	C15—C7—C8—C1	171.37 (17)
C19—N4—C18—O2	0.5 (3)	N1-C7-C8-C1	-1.63 (17)
C18—N4—C16—S1	0.27 (19)	N1-C7-C15-N2	164.77 (15)
C18—N4—C19—C20B	-100.8 (5)	N1-C7-C15-O1	-14.1 (2)
C19—N4—C16—S1	179.10 (16)	C1—C8—C9—C10	122.17 (17)
C18—N4—C16—N3	-178.97 (16)	C1—C8—C9—C14	-54.8 (2)
C19—N4—C16—N3	-0.1 (3)	C7—C8—C9—C10	-54.0 (2)
C16—N4—C19—C20B	80.4 (5)	C7—C8—C9—C14	129.01 (18)
C16—N4—C18—C17	-0.3 (2)	C8—C9—C10—C11	-177.95 (16)
C19—N4—C18—C17	-179.11 (19)	C10-C9-C14-C13	0.9 (3)
C6—C1—C2—C3	-0.3 (2)	C14—C9—C10—C11	-0.9 (3)
C8—C1—C2—C3	179.17 (17)	C8—C9—C14—C13	177.94 (16)
C2-C1-C6-N1	179.01 (14)	C9—C10—C11—C12	0.1 (3)
C2—C1—C8—C9	4.9 (3)	C10-C11-C12-C13	0.8 (3)
C2—C1—C8—C7	-178.18 (17)	C11—C12—C13—C14	-0.8 (3)
C6—C1—C8—C7	1.37 (17)	C12—C13—C14—C9	-0.1 (3)
C6—C1—C8—C9	-175.56 (14)	S1—C17—C18—N4	0.2 (2)
C8—C1—C6—N1	-0.62 (17)	S1—C17—C18—O2	-179.46 (17)
C8—C1—C6—C5	-179.63 (15)	N4-C19-C20B-C21B	158 (2)

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) x, -y, z-1/2; (iii) -x+1/2, -y+1/2, -z+1; (iv) -x+1, y, -z+3/2; (v) -x+1/2, -y+1/2, -z+2; (vi) -x+1, -y, -z+2; (vii) x, y, z+1; (viii) x, -y, z+1/2; (ix) x+1/2, -y+1/2, z+1/2; (x) -x, y, -z+1/2; (xi) x, y, z-1; (xii) -x, -y, -z+1.

пуиюgen-oonu geomeny (л,)	Hydrogen-	bond	geometry	v (Å,	9)
----------------------------	-----------	------	----------	-------	----

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···O1 ^{iv}	0.86	1.96	2.789 (2)	161
N2—H2A…S1	0.86	2.52	2.925 (2)	110
C17—H17 <i>A</i> ···O2 ^v	0.97	2.48	3.336 (3)	147
C19—H19A····O2	0.87 (3)	2.51 (4)	2.841 (5)	103 (3)

		supporting information	
0.93	2.37	3.284 (10) 3.371 (2)	168 134
	0.93 0.93	0.93 2.37 0.93 2.66	0.93 2.37 3.284 (10) 0.93 2.66 3.371 (2)

Symmetry codes: (iii) -x+1/2, -y+1/2, -z+1; (iv) -x+1, y, -z+3/2; (v) -x+1/2, -y+1/2, -z+2.