Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,3-Bis(1-benzyl-1H-benzimidazol-2-yl)-2-oxapropane

Huilu Wu,* Ruirui Yun, Kaitong Wang, Xingcai Huang and Qingyu Sun

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China Correspondence e-mail: wuhuilu@163.com

Received 28 March 2009; accepted 4 April 2009

Key indicators: single-crystal X-ray study: T = 153 K: mean σ (C–C) = 0.002 Å: R factor = 0.038; wR factor = 0.126; data-to-parameter ratio = 16.6.

In the title compound, $C_{30}H_{26}N_4O$, the dihedral angle between the two benzimidazole rings is $69.35 (9)^\circ$. The dihedral angles between the benzimidazole ring system and the phenyl ring are 76.79 (12) and 86.10 $(11)^{\circ}$ in the two benzylbenzimidazole moieties.

Related literature

For the biological activity of the benzimidazole core, see: Horton et al. (2003). For the antiprotozoal activity of 2- and 5substituted benzimidazoles, see: Navarrete-Vázquez et al. (2001).

Experimental

Crystal data $C_{30}H_{26}N_4O$

 $M_r = 458.55$

Triclinic, P1	
a = 8.5477 (3) Å	
<i>b</i> = 11.8976 (5) Å	
c = 12.3961 (5) Å	
$\alpha = 101.300 \ (1)^{\circ}$	
$\beta = 92.394 \ (1)^{\circ}$	
$\gamma = 107.765 \ (1)^{\circ}$	

Data collection

```
Rigaku R-AXIS Spider
                                           11531 measured reflections
                                           5275 independent reflections
  diffractometer
Absorption correction: multi-scan
                                           4542 reflections with I > 2\sigma(I)
  (ABSCOR: Higashi, 1995)
                                           R_{\rm int} = 0.013
  T_{\min} = 0.955, T_{\max} = 0.985
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	317 parameters
$wR(F^2) = 0.126$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
5275 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

V = 1170.28 (8) Å³

Mo $K\alpha$ radiation

 $0.58 \times 0.52 \times 0.19 \text{ mm}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 153 K

7 - 2

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support and a grant from the 'Qing Lan' Talent Engineering Funds and Students' Science and Technology Innovation Funds (grant No. DXS2008-040,041) of Lanzhou Jiaotong University. A grant from the Middle-Young Age Science Foundation (grant No. 3YS061-A25-023) and 'Long Yuan Qing Nian' of Gansu Province is also acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2800).

References

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.
- Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. & Castillo, R. (2001). Bioorg. Med. Chem. Lett. 11, 187-190.
- Rigaku/MSC (2004). RAPID-AUTO . Rigaku/MSC, The Woodlands, Texas, USA
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1014 [doi:10.1107/S1600536809012781]

1,3-Bis(1-benzyl-1*H*-benzimidazol-2-yl)-2-oxapropane

Huilu Wu, Ruirui Yun, Kaitong Wang, Xingcai Huang and Qingyu Sun

S1. Comment

Benzimidazole derivatives, such as mebendazole and albendazole, are used as anthelmintic drugs. More recently, the antiprotozoal activity of 2- and 5-substituted benzimidazoles has been reported (Navarrete-Vázquez *et al.* 2001). The benzimidazole core is of interest because of its diverse biological activities, and it is a well known structure in medicinal chemistry (Horton *et al.* 2003). The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between N3/N4/C10-C16 and C18-C23 is 76.79 (12)° and that between N1/N2/C1-C7 and C25-C30 is 86.10 (11)°.

S2. Experimental

A solution of 5.56 (20 mmol) of 1,3-bis(benzimidazol-2-yl)-2-oxopropane with 1.56 g (40 mmol) potassium in 150 ml tetrahydrofuran followed by addition of 5.06 g (40 mmol) benzyl bromide was concentrated and recrystallized from methanol, forming white block crystals suitable for X-ray diffraction studies. (found: C, 78.51; H, 5.73; N,12.24 Calcd. for $C_{30}H_{26}N_4O$: C, 78.58; H, 5.71; N, 12.22)

S3. Refinement

All H atoms were positioned geometrically with C—H distances ranging from 0.95 to 0.99 Å and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2 U_{eq}$ of the carrier atom.

Figure 1

Molecular structure of the title compound. Hydrogen atoms have been omitted for clarity and the displacement ellipsoids are shown at the 30% probability level.

Z = 2F(000) = 484

 $D_{\rm x} = 1.301 {\rm Mg} {\rm m}^{-3}$

 $\theta = 3.0 - 27.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, white

 $0.58 \times 0.52 \times 0.19 \text{ mm}$

T = 153 K

Melting point = 450-451 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5275 reflections

1,3-Bis(1-benzyl-1*H*-benzimidazol-2-yl)-2-oxapropane

Crystal data

 $C_{30}H_{26}N_4O$ $M_r = 458.55$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.5477 (3) Å b = 11.8976 (5) Å c = 12.3961 (5) Å a = 101.300 (1)° $\beta = 92.394$ (1)° $\gamma = 107.765$ (1)° V = 1170.28 (8) Å³

Data collection

Rigaku R-AXIS Spider	11531 measured reflections
diffractometer	5275 independent reflections
Radiation source: fine-focus sealed tube	4542 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.013$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 10$
(ABSCOR; Higashi, 1995)	$k = -15 \rightarrow 15$
$T_{\min} = 0.955, \ T_{\max} = 0.985$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.0736P)^2 + 0.3041P]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
5275 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
317 parameters	$\Delta \rho_{\rm max} = 0.50 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: SHELXL, Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.044 (4)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
0	0.80479 (11)	0.49510 (8)	0.70677 (7)	0.0252 (2)
N1	0.73219 (13)	0.71312 (9)	0.90708 (8)	0.0233 (2)
N2	0.54296 (12)	0.52783 (9)	0.85764 (8)	0.0214 (2)
N3	0.99857 (12)	0.31236 (9)	0.79071 (8)	0.0231 (2)
N4	0.77779 (12)	0.22141 (9)	0.66368 (8)	0.0231 (2)
C1	0.58038 (15)	0.71864 (10)	0.93941 (9)	0.0213 (2)
C2	0.53783 (16)	0.81685 (11)	0.99680 (10)	0.0256 (3)
H2	0.6172	0.8953	1.0182	0.031*
C3	0.37662 (17)	0.79594 (12)	1.02133 (10)	0.0276 (3)
Н3	0.3451	0.8610	1.0611	0.033*
C4	0.25816 (16)	0.68035 (12)	0.98864 (10)	0.0276 (3)
H4	0.1483	0.6695	1.0065	0.033*
C5	0.29667 (15)	0.58181 (11)	0.93114 (10)	0.0247 (3)
Н5	0.2164	0.5039	0.9086	0.030*
C6	0.46015 (15)	0.60377 (10)	0.90831 (9)	0.0208 (2)
C7	0.70389 (15)	0.59876 (11)	0.85997 (9)	0.0217 (2)
C8	0.83822 (16)	0.55036 (12)	0.82143 (10)	0.0264 (3)
H8A	0.9446	0.6171	0.8349	0.032*
H8B	0.8481	0.4902	0.8640	0.032*
С9	0.92732 (15)	0.44005 (11)	0.67180 (10)	0.0258 (3)
H9A	1.0385	0.4975	0.7013	0.031*
H9B	0.9208	0.4227	0.5900	0.031*
C10	0.90483 (14)	0.32529 (11)	0.71040 (10)	0.0222 (2)

C11	0.79369 (14)	0.13374 (11)	0.71787 (9)	0.0221 (2)
C12	0.70094 (16)	0.01242 (12)	0.70590 (11)	0.0284 (3)
H12	0.6078	-0.0257	0.6520	0.034*
C13	0.75138 (17)	-0.04945 (12)	0.77646 (11)	0.0295 (3)
H13	0.6919	-0.1325	0.7706	0.035*
C14	0.88820 (17)	0.00726 (12)	0.85663 (11)	0.0283 (3)
H14	0.9187	-0.0382	0.9040	0.034*
C15	0.98002 (15)	0.12805 (12)	0.86844 (10)	0.0258 (3)
H15	1.0722	0.1661	0.9231	0.031*
C16	0.93194 (14)	0.19187 (10)	0.79690 (10)	0.0212 (2)
C17	0.64947 (15)	0.20654 (12)	0.57568 (10)	0.0257 (3)
H17A	0.6159	0.2803	0.5873	0.031*
H17B	0.5516	0.1378	0.5808	0.031*
C18	0.70267 (15)	0.18411 (11)	0.46087 (10)	0.0236 (3)
C19	0.66731 (18)	0.24654 (12)	0.38477 (11)	0.0312 (3)
H19	0.6115	0.3040	0.4057	0.037*
C20	0.7125 (2)	0.22588 (14)	0.27833 (12)	0.0403 (4)
H20	0.6869	0.2686	0.2266	0.048*
C21	0.7950 (2)	0.14290 (14)	0.24755 (12)	0.0393 (3)
H21	0.8275	0.1294	0.1750	0.047*
C22	0.82983 (19)	0.07973 (13)	0.32288 (12)	0.0363 (3)
H22	0.8861	0.0225	0.3020	0.044*
C23	0.78271 (17)	0.09980 (12)	0.42866 (11)	0.0303 (3)
H23	0.8055	0.0553	0.4797	0.036*
C24	0.46863 (16)	0.39871 (10)	0.81196 (10)	0.0250 (3)
H24A	0.3901	0.3635	0.8622	0.030*
H24B	0.5565	0.3603	0.8095	0.030*
C25	0.37816 (14)	0.36798 (10)	0.69711 (10)	0.0214 (2)
C26	0.28424 (15)	0.24803 (12)	0.65272 (12)	0.0289 (3)
H26	0.2773	0.1885	0.6950	0.035*
C27	0.20114 (18)	0.21494 (13)	0.54754 (13)	0.0383 (3)
H27	0.1383	0.1327	0.5179	0.046*
C28	0.20876 (18)	0.30063 (14)	0.48511 (12)	0.0382 (3)
H28	0.1505	0.2778	0.4132	0.046*
C29	0.30168 (19)	0.41940 (14)	0.52837 (12)	0.0352 (3)
H29	0.3079	0.4787	0.4859	0.042*
C30	0.38665 (17)	0.45315 (12)	0.63410 (11)	0.0287 (3)
H30	0.4508	0.5352	0.6631	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0	0.0294 (4)	0.0282 (4)	0.0204 (4)	0.0137 (4)	0.0023 (3)	0.0041 (3)
N1	0.0256 (5)	0.0211 (5)	0.0220 (5)	0.0072 (4)	-0.0003 (4)	0.0032 (4)
N2	0.0266 (5)	0.0177 (5)	0.0187 (5)	0.0064 (4)	-0.0011 (4)	0.0031 (4)
N3	0.0228 (5)	0.0223 (5)	0.0224 (5)	0.0066 (4)	0.0023 (4)	0.0019 (4)
N4	0.0236 (5)	0.0234 (5)	0.0208 (5)	0.0060 (4)	-0.0005 (4)	0.0043 (4)
C1	0.0254 (6)	0.0206 (5)	0.0176 (5)	0.0066 (4)	0.0005 (4)	0.0051 (4)

C2	0.0331 (6)	0.0207 (6)	0.0217 (6)	0.0085 (5)	0.0023 (5)	0.0023 (4)
C3	0.0374 (7)	0.0288 (6)	0.0200 (6)	0.0159 (5)	0.0062 (5)	0.0044 (5)
C4	0.0297 (6)	0.0346 (7)	0.0204 (6)	0.0120 (5)	0.0047 (5)	0.0075 (5)
C5	0.0265 (6)	0.0262 (6)	0.0192 (5)	0.0046 (5)	0.0011 (4)	0.0060 (4)
C6	0.0268 (6)	0.0208 (5)	0.0147 (5)	0.0072 (4)	0.0002 (4)	0.0045 (4)
C7	0.0250 (6)	0.0221 (6)	0.0181 (5)	0.0079 (4)	-0.0011 (4)	0.0046 (4)
C8	0.0286 (6)	0.0284 (6)	0.0225 (6)	0.0128 (5)	-0.0019 (5)	0.0015 (5)
C9	0.0272 (6)	0.0257 (6)	0.0260 (6)	0.0094 (5)	0.0086 (5)	0.0065 (5)
C10	0.0217 (5)	0.0223 (6)	0.0217 (5)	0.0071 (4)	0.0051 (4)	0.0021 (4)
C11	0.0240 (6)	0.0232 (6)	0.0182 (5)	0.0071 (5)	0.0030 (4)	0.0034 (4)
C12	0.0294 (6)	0.0251 (6)	0.0243 (6)	0.0019 (5)	-0.0017 (5)	0.0022 (5)
C13	0.0358 (7)	0.0217 (6)	0.0281 (6)	0.0046 (5)	0.0050 (5)	0.0056 (5)
C14	0.0343 (7)	0.0292 (6)	0.0253 (6)	0.0138 (5)	0.0050 (5)	0.0083 (5)
C15	0.0256 (6)	0.0290 (6)	0.0224 (6)	0.0099 (5)	0.0003 (5)	0.0036 (5)
C16	0.0209 (5)	0.0211 (5)	0.0201 (5)	0.0064 (4)	0.0040 (4)	0.0011 (4)
C17	0.0225 (6)	0.0314 (6)	0.0229 (6)	0.0092 (5)	0.0002 (5)	0.0048 (5)
C18	0.0225 (6)	0.0210 (5)	0.0230 (6)	0.0025 (4)	-0.0037 (4)	0.0030 (4)
C19	0.0393 (7)	0.0268 (6)	0.0285 (6)	0.0122 (5)	-0.0017 (5)	0.0070 (5)
C20	0.0543 (9)	0.0395 (8)	0.0271 (7)	0.0124 (7)	-0.0023 (6)	0.0127 (6)
C21	0.0470 (8)	0.0395 (8)	0.0243 (6)	0.0057 (6)	0.0046 (6)	0.0036 (6)
C22	0.0408 (8)	0.0321 (7)	0.0352 (7)	0.0125 (6)	0.0092 (6)	0.0032 (6)
C23	0.0348 (7)	0.0297 (6)	0.0298 (7)	0.0132 (5)	0.0044 (5)	0.0096 (5)
C24	0.0343 (6)	0.0171 (5)	0.0223 (6)	0.0064 (5)	0.0001 (5)	0.0048 (4)
C25	0.0205 (5)	0.0211 (6)	0.0217 (6)	0.0071 (4)	0.0030 (4)	0.0019 (4)
C26	0.0247 (6)	0.0222 (6)	0.0367 (7)	0.0056 (5)	0.0011 (5)	0.0027 (5)
C27	0.0330 (7)	0.0272 (7)	0.0438 (8)	0.0053 (5)	-0.0093 (6)	-0.0076 (6)
C28	0.0369 (7)	0.0422 (8)	0.0285 (7)	0.0121 (6)	-0.0081 (6)	-0.0050 (6)
C29	0.0403 (7)	0.0370 (7)	0.0262 (7)	0.0099 (6)	-0.0040 (6)	0.0077 (6)
C30	0.0337 (7)	0.0238 (6)	0.0245 (6)	0.0044 (5)	-0.0022 (5)	0.0046 (5)

Geometric parameters (Å, °)

0	1.4211 (14)	С13—Н13	0.9500
О—С9	1.4350 (14)	C14—C15	1.3865 (18)
N1—C7	1.3141 (15)	C14—H14	0.9500
N1C1	1.3907 (16)	C15—C16	1.3985 (17)
N2C7	1.3726 (15)	C15—H15	0.9500
N2—C6	1.3846 (15)	C17—C18	1.5108 (17)
N2-C24	1.4553 (14)	C17—H17A	0.9900
N3—C10	1.3136 (16)	C17—H17B	0.9900
N3—C16	1.3905 (15)	C18—C23	1.3850 (18)
N4—C10	1.3748 (15)	C18—C19	1.3859 (18)
N4—C11	1.3825 (15)	C19—C20	1.387 (2)
N4—C17	1.4596 (15)	C19—H19	0.9500
C1—C2	1.3996 (17)	C20—C21	1.384 (2)
C1—C6	1.4056 (16)	C20—H20	0.9500
С2—С3	1.3816 (18)	C21—C22	1.383 (2)
С2—Н2	0.9500	C21—H21	0.9500

C3—C4	1.4065 (19)	C22—C23	1.385 (2)
С3—Н3	0.9500	C22—H22	0.9500
C4—C5	1.3851 (18)	С23—Н23	0.9500
C4—H4	0.9500	C24—C25	1.5134 (16)
C5—C6	1.3929 (17)	C24—H24A	0.9900
С5—Н5	0.9500	C24—H24B	0.9900
C7—C8	1.4898 (17)	C25—C30	1.3828 (17)
C8—H8A	0.9900	C25—C26	1.3930 (16)
C8—H8B	0.9900	C26—C27	1.382 (2)
C9—C10	1.4945 (17)	C26—H26	0.9500
С9—Н9А	0.9900	C27—C28	1.384 (2)
C9—H9B	0.9900	C27—H27	0.9500
C11—C12	1,3935 (17)	C28—C29	1.378 (2)
C11—C16	1,4049 (16)	C28—H28	0.9500
C12—C13	1.3811 (19)	C_{29} C_{30}	1.3938 (18)
С12—Н12	0.9500	C29—H29	0.9500
C13—C14	1 4033 (19)	C_{30} H30	0.9500
	1.4055 (17)	650 1150	0.9500
C8—O—C9	110.65 (9)	C13—C14—H14	119.2
C7—N1—C1	104.47 (10)	C14—C15—C16	117.55 (11)
C7—N2—C6	106.33 (9)	C14—C15—H15	121.2
C7—N2—C24	128.47 (10)	С16—С15—Н15	121.2
C6—N2—C24	125.20 (10)	N3—C16—C15	130.02 (11)
C10 - N3 - C16	104.83 (10)	N3-C16-C11	109.99 (10)
C10—N4—C11	106.39 (10)	C15—C16—C11	119.97 (11)
C10—N4—C17	127.05 (11)	N4—C17—C18	113.67 (10)
C11—N4—C17	126.55 (10)	N4—C17—H17A	108.8
N1-C1-C2	129.86 (11)	C18—C17—H17A	108.8
N1-C1-C6	110.28 (10)	N4—C17—H17B	108.8
$C_{2}-C_{1}-C_{6}$	119.85 (11)	C18—C17—H17B	108.8
C_{3} $-C_{2}$ $-C_{1}$	117 78 (11)	H17A—C17—H17B	107.7
$C_3 - C_2 - H_2$	121.1	C_{23} C_{18} C_{19}	118 91 (12)
C1 - C2 - H2	121.1	C_{23} C_{18} C_{17}	121.38(11)
$C^2 - C^3 - C^4$	121.34(12)	C19 - C18 - C17	119 69 (11)
C2—C3—H3	119 3	C18 - C19 - C20	120.65(13)
C4-C3-H3	119.3	C18 - C19 - H19	119.7
$C_{5}-C_{4}-C_{3}$	122.06(12)	C20-C19-H19	119.7
C5-C4-H4	119.0	C_{21} C_{20} C_{19} C_{19}	119.7
$C_3 - C_4 - H_4$	119.0	$C_{21} = C_{20} = H_{20}$	120.0
C4-C5-C6	116.01 (11)	C19 - C20 - H20	120.0
C4—C5—H5	122.0	$C_{22} = C_{21} = C_{20}$	119 69 (13)
C6-C5-H5	122.0	$C_{22} = C_{21} = C_{20}$	120.2
$N_2 - C_5 - C_5$	131.85 (11)	$C_{22} = C_{21} = H_{21}$	120.2
N2-C6-C1	105 17 (10)	C_{21} C_{22} C_{23}	120.2 120.05(14)
-561	122.06 (11)	$C_{21} = C_{22} = C_{23}$	120.03 (14)
1 = 1	112 75 (11)	$C_{21} - C_{22} - H_{22}$	120.0
$\frac{1}{1} - \frac{1}{2} - \frac{1}{1}$ N1 C7 C8	113.73 (11)	$C_{23} = C_{22} = \Pi_{22}$	120.0 120.71 (12)
$N_{1} = 0 - 0$	122.37 (11)	$C_{10} - C_{23} - C_{22}$	120.71 (12)
$1N2 - U/ - U\delta$	123.08 (11)	С10—С23—П23	119.0

OC8C7	110.75 (10)	C22—C23—H23	119.6
O—C8—H8A	109.5	N2—C24—C25	114.13 (10)
С7—С8—Н8А	109.5	N2—C24—H24A	108.7
O	109.5	C25—C24—H24A	108.7
С7—С8—Н8В	109.5	N2—C24—H24B	108.7
H8A—C8—H8B	108.1	C25—C24—H24B	108.7
O—C9—C10	112.03 (10)	H24A—C24—H24B	107.6
О—С9—Н9А	109.2	C30—C25—C26	118.82 (11)
С10—С9—Н9А	109.2	C30—C25—C24	122.96 (11)
О—С9—Н9В	109.2	C26—C25—C24	118.21 (11)
С10—С9—Н9В	109.2	C27—C26—C25	120.48 (13)
Н9А—С9—Н9В	107.9	С27—С26—Н26	119.8
N3-C10-N4	113.39 (11)	C25—C26—H26	119.8
N3-C10-C9	125.14 (11)	C26—C27—C28	120.52 (13)
N4—C10—C9	121.46 (11)	С26—С27—Н27	119.7
N4—C11—C12	131.98 (11)	С28—С27—Н27	119.7
N4—C11—C16	105 38 (10)	$C_{29} C_{28} C_{27}$	119 31 (13)
C12-C11-C16	122.64 (11)	C29—C28—H28	120.3
C13 - C12 - C11	116 55 (11)	C27—C28—H28	120.3
C13 - C12 - H12	121 7	C_{28} C_{29} C_{30}	120.3 120.41(13)
C11 - C12 - H12	121.7	$C_{28} = C_{29} = H_{29}$	119.8
C12 - C13 - C14	121.7	C_{30} C_{29} H_{29}	119.8
C12—C13—H13	119.2	$C_{25} = C_{30} = C_{29}$	120 44 (12)
C14—C13—H13	119.2	$C_{25} = C_{30} = H_{30}$	119.8
C15-C14-C13	121 61 (12)	C29-C30-H30	119.8
C15 - C14 - H14	119.2	027 030 1130	119.0
	119.2		
C7—N1—C1—C2	177.64 (12)	C17—N4—C11—C16	-178.40 (11)
C7—N1—C1—C6	-0.91 (12)	N4—C11—C12—C13	-179.01 (13)
N1—C1—C2—C3	-178.07 (12)	C16—C11—C12—C13	0.11 (19)
C6—C1—C2—C3	0.35 (17)	C11—C12—C13—C14	0.5 (2)
C1—C2—C3—C4	-0.82 (18)	C12—C13—C14—C15	-0.4 (2)
C2—C3—C4—C5	0.42 (19)	C13—C14—C15—C16	-0.32 (19)
C3—C4—C5—C6	0.47 (18)	C10—N3—C16—C15	-178.95 (12)
C7—N2—C6—C5	-178.66 (12)	C10—N3—C16—C11	-0.61 (13)
C24—N2—C6—C5	1.42 (19)	C14—C15—C16—N3	179.09 (12)
C7—N2—C6—C1	-0.40 (12)	C14—C15—C16—C11	0.90 (17)
C24—N2—C6—C1	179.68 (10)	N4—C11—C16—N3	-0.03 (13)
C4—C5—C6—N2	177.04 (12)	C12—C11—C16—N3	-179.35 (11)
C4—C5—C6—C1	-0.95 (17)	N4—C11—C16—C15	178.50 (10)
N1—C1—C6—N2	0.82 (12)	C12—C11—C16—C15	-0.82 (18)
C2-C1-C6-N2	-177.89 (10)	C10—N4—C17—C18	82.90 (15)
N1—C1—C6—C5	179.27 (10)	C11—N4—C17—C18	-98.27 (14)
C2—C1—C6—C5	0.56 (17)	N4—C17—C18—C23	47.20 (16)
C1—N1—C7—N2	0.66 (13)	N4—C17—C18—C19	-134.51 (12)
C1—N1—C7—C8	-174.66 (11)	C23—C18—C19—C20	-0.6 (2)
C6—N2—C7—N1	-0.17 (13)	C17—C18—C19—C20	-178.91 (12)
C24—N2—C7—N1	179.75 (11)	C18—C19—C20—C21	-0.5 (2)
	. /		× /

C6—N2—C7—C8	175.08 (10)	C19—C20—C21—C22	0.9 (2)
C24—N2—C7—C8	-5.00 (18)	C20—C21—C22—C23	-0.2 (2)
C9—O—C8—C7	-175.36 (10)	C19—C18—C23—C22	1.3 (2)
N1—C7—C8—O	-122.70 (12)	C17—C18—C23—C22	179.60 (12)
N2—C7—C8—O	62.45 (15)	C21—C22—C23—C18	-0.9 (2)
C8—O—C9—C10	74.56 (13)	C7—N2—C24—C25	-98.23 (14)
C16—N3—C10—N4	1.06 (13)	C6—N2—C24—C25	81.68 (14)
C16—N3—C10—C9	-179.86 (11)	N2-C24-C25-C30	9.57 (17)
C11—N4—C10—N3	-1.10 (14)	N2-C24-C25-C26	-171.39 (11)
C17—N4—C10—N3	177.92 (11)	C30—C25—C26—C27	0.00 (19)
C11—N4—C10—C9	179.78 (10)	C24—C25—C26—C27	-179.08 (12)
C17—N4—C10—C9	-1.20 (18)	C25—C26—C27—C28	-0.6 (2)
O-C9-C10-N3	-106.11 (13)	C26—C27—C28—C29	0.7 (2)
O-C9-C10-N4	72.90 (14)	C27—C28—C29—C30	-0.3 (2)
C10-N4-C11-C12	179.86 (13)	C26—C25—C30—C29	0.43 (19)
C17—N4—C11—C12	0.8 (2)	C24—C25—C30—C29	179.46 (13)
C10-N4-C11-C16	0.63 (13)	C28—C29—C30—C25	-0.3 (2)