organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-6-[(5-Chloro-2-hydroxyanilino)methylene]-4-methoxycyclohexa-2,4dienone 0.25-hydrate

Arzu Özek,^a Orhan Büyükgüngör,^a* Ciğdem Albayrak^b and Mustafa Odabaşoğlu^c

^aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, ^bFaculty of Education, Sinop University, Turkey, and ^cPamukkale University, Denizli Technical Vocational School, Turkey

Correspondence e-mail: orhanb@omu.edu.tr

Received 30 March 2009; accepted 15 April 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; some non-H atoms missing; disorder in solvent or counterion; R factor = 0.031; wR factor = 0.086; data-to-parameter ratio = 13.9.

The title compound, C₁₄H₁₂ClNO₃·0.25H₂O, exists in the keto-amine form, and the aromatic rings are oriented at a dihedral angle of 7.24 (7)°. Bifurcated intramolecular N- $H \cdots (O,O)$ hydrogen bonds result in the formation of planar six- and five-membered rings. In the crystal structure, intermolecular $O-H \cdots O$ and $C-H \cdots O$ hydrogen bonds link the molecules into chains. π - π contacts between benzene rings [centroid–centroid distance = 3.5065(9)Å] may further stabilize the structure. There also exists a weak $C-H\cdots\pi$ interaction.

Related literature

For general background, see: Büyükgüngör et al. (2007); Hökelek et al. (2004); Odabaşoğlu et al. (2004). For related structures, see: Özek et al. (2007, 2008); Ersanlı et al. (2003).

Experimental

Crystal data C14H12CINO3.0.25H2O $M_{\rm r} = 279.95$ Monoclinic, C2/ca = 21.3670 (11) Åb = 6.7600 (3) Å c = 17.7404 (9) Å $\beta = 103.841 \ (4)^{\circ}$

V = 2488.0 (2) Å³ Z = 8Mo Ka radiation $\mu = 0.31 \text{ mm}^{-1}$ T = 100 K $0.68 \times 0.54 \times 0.41 \ \mathrm{mm}$

6976 measured reflections

 $R_{\rm int} = 0.022$

2588 independent reflections

2352 reflections with $I > 2\sigma(I)$

Data collection

Stoe IPDS-II diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.970, \ T_{\max} = 0.970$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.086$	independent and constrained
S = 1.09	refinement
2588 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
186 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1$	0.86	1.84	2.5511 (16)	140
$N1 - H1 \cdots O3$	0.86	2.19	2.6063 (17)	109
C3−H3···O4	0.93	2.43	3.279 (5)	151
$O4-H4A\cdots O2^{i}$	0.831 (19)	2.029 (19)	2.842 (3)	166 (6)
$O3-H3A\cdots O1^{ii}$	0.852 (17)	1.743 (18)	2.5652 (16)	162 (3)
$C12 - H12 \cdots O2^{iii}$	0.93	2.56	3.4372 (18)	157
$C7-H7A\cdots Cg1^{iv}$	0.96	2.83	3.644 (2)	143

Symmetry codes: (i) x, y - 1, z; (ii) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, y + \frac{3}{2}, z$. Cg1 is the centroid of the C1–C6 ring.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-RED32 (Stoe & Cie, 2002); data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant No. F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2658).

References

- Büyükgüngör, O., Odabaşoğlu, M., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, 01996-01998.
- Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. & Erdönmez, A. (2003). Acta Cryst. C59, o601-o602.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60. o803-o805.
- Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, o142-o144.
- Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, 0177-0180.
- Özek, A., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2008). Acta Cryst. E64, o1613-o1614.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2009). E65, o1104 [doi:10.1107/S160053680901410X]

(*Z*)-6-[(5-Chloro-2-hydroxyanilino)methylene]-4-methoxycyclohexa-2,4-dienone 0.25-hydrate

Arzu Özek, Orhan Büyükgüngör, Çiğdem Albayrak and Mustafa Odabaşoğlu

S1. Comment

As part of our ongoing studies on the syntheses and structural characterizations of Schiff-base compounds (Özek *et al.*, 2008; Özek *et al.*, 2007), we report herein the crystal structure of the title compound.

In general, *o*-hydroxy Schiff bases exhibit two possible tautomeric forms, namely, phenol-imine and keto-amine. In the solid state, the keto-amine form is observed in naphthaldimine (Odabaşoğlu *et al.*, 2004), while the phenol-imine form is observed in salicylaldimine (Büyükgüngör *et al.*, 2007) Schiff bases. However, naphthaldimine and salicylaldimine can also exist in the phenol-imine and keto-amine forms, respectively depending on the stereochemistry of the molecule and the type of nitrogen substituents in naphthaldimine and salicylaldimine Schiff bases (Hökelek *et al.*, 2004).

In the title compound (Fig. 1), the keto-amine form is favored over the phenol-imine form, as indicated by C2—O1 [1.2924 (18) Å], C8—N1 [1.3122 (19) Å], C1—C8 [1.412 (2) Å] and C1—C2 [1.433 (2) Å] bonds. The C2—O1 and C8 —N1 bonds indicate double-bond and a high degree of single-bond characters, respectively. Similar results were observed for 2-[(2-hydroxy-4-nitrophenyl) -aminomethylene]cyclohexa-3,5-dien-1(2*H*)-one [C—O = 1.298 (2) and C— N = 1.308 (2) Å; Ersanlı *et al.*, 2003].

It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or nonplanarity of the molecule, respectively. Therefore, one can expect thermochromic properties in the title compound caused by planarity of the molecule; the dihedral angle between rings A (C1—C6) and B (C9—C14) is 7.24 (7)°. Intramolecular N—H···O hydrogen bonds (Table 1) result in the formations of planar six- and five-membered rings C (O1/N1/C1/C2/C8/H1) and D (O3/N1/C9/C10/H1). They are oriented with respect to the adjacent rings at dihedral angles of A/C = 4.44 (9), A/D = 9.6 (9), B/C = 5.42 (9), B/D = 2.96 (9) and C/D = 6.55 (9)°. So, they are nearly coplanar.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The π - π contact between the phenyl rings, Cg1— $Cg2^i$ [symmetry code: (i) 1/2 - x, 3/2 - y, -z, where Cg1 and Cg2 are centroids of the rings A (C1—C6) and B (C9—C14), respectively] may further stabilize the structure, with centroid-centroid distance of 3.5065 (9) Å. There also exists a weak C—H··· π interaction (Table 1).

S2. Experimental

For the preparation of the title compound, the mixture of 5-methoxysalicyl- aldehyde (0.5 g, 3.3 mmol) in ethanol (20 ml) and 2-hydroxy-5-chloroaniline (0.47 g, 3.3 mmol) in ethanol (20 ml) was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from methanol by slow evaporation (yield; % 84, m.p. 415–416 K).

S3. Refinement

H atoms of water molecule and hydroxy group were located in difference Fourier maps and refined isotropically, with restrains of O3—H3A = 0.852 (17) and O4—H4A = 0.831 (19) Å. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

(Z)-6-[(5-Chloro-2-hydroxyanilino)methylene]-4-methoxycyclohexa- 2,4-dienone 0.25-hydrate

Crystal data

C₁₄H₁₂ClNO₃·0.25H₂O $M_r = 279.95$ Monoclinic, C2/c Hall symbol: -C 2yc a = 21.3670 (11) Å b = 6.7600 (3) Å c = 17.7404 (9) Å $\beta = 103.841$ (4)° V = 2488.0 (2) Å³ Z = 8

Data collection

Stoe IPDS-II diffractometer Radiation source: fine-focus sealed tube Plane graphite monochromator Detector resolution: 6.67 pixels mm⁻¹ ω scans Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) $T_{\min} = 0.970, T_{\max} = 0.970$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.086$ S = 1.09 F(000) = 1162 $D_x = 1.495 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6976 reflections $\theta = 2.0-28.0^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 100 KPrism, red $0.68 \times 0.54 \times 0.41 \text{ mm}$

6976 measured reflections 2588 independent reflections 2352 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 26.5^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -25 \rightarrow 26$ $k = -8 \rightarrow 7$ $l = -22 \rightarrow 22$

2588 reflections186 parameters2 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0376P)^2 + 3.3917P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
and constrained refinement	

Special details

Experimental. 141 frames, detector distance = 100 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.64391 (7)	0.8209 (2)	0.49336 (8)	0.0163 (3)	
C2	0.63352 (7)	0.6614 (2)	0.43854 (8)	0.0171 (3)	
C3	0.58193 (7)	0.6836 (2)	0.37118 (9)	0.0191 (3)	
Н3	0.5736	0.5834	0.3342	0.023*	
C4	0.54480 (7)	0.8493 (2)	0.36036 (8)	0.0189 (3)	
H4	0.5112	0.8593	0.3162	0.023*	
C5	0.55578 (7)	1.0069 (2)	0.41439 (8)	0.0175 (3)	
C6	0.60491 (7)	0.9945 (2)	0.47962 (8)	0.0170 (3)	
H6	0.6129	1.0986	0.5149	0.020*	
C7	0.51514 (8)	1.3060 (2)	0.45380 (9)	0.0211 (3)	
H7A	0.5063	1.2434	0.4987	0.032*	
H7B	0.4832	1.4055	0.4349	0.032*	
H7C	0.5570	1.3663	0.4675	0.032*	
C8	0.69160 (7)	0.8057 (2)	0.56359 (8)	0.0164 (3)	
H8	0.6987	0.9125	0.5976	0.020*	
C9	0.77299 (7)	0.6029 (2)	0.65047 (8)	0.0158 (3)	
C10	0.79878 (7)	0.4110 (2)	0.65524 (9)	0.0181 (3)	
C11	0.84717 (7)	0.3589 (2)	0.71999 (9)	0.0201 (3)	
H11	0.8645	0.2321	0.7238	0.024*	
C12	0.86950 (7)	0.4950 (2)	0.77875 (8)	0.0190 (3)	
H12	0.9020	0.4604	0.8218	0.023*	
C13	0.84290 (7)	0.6831 (2)	0.77270 (8)	0.0175 (3)	
C14	0.79444 (7)	0.7395 (2)	0.70949 (8)	0.0172 (3)	
H14	0.7767	0.8657	0.7066	0.021*	
Cl1	0.873014 (18)	0.85790 (6)	0.84450 (2)	0.02270 (12)	
N1	0.72613 (6)	0.64456 (19)	0.58204 (7)	0.0165 (3)	
H1	0.7192	0.5522	0.5477	0.020*	
01	0.66836 (5)	0.50302 (16)	0.45048 (6)	0.0219 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

O2	0.51359 (5)	1.16195 (17)	0.39490 (6)	0.0229 (3)	
O3	0.77355 (5)	0.28754 (18)	0.59629 (7)	0.0236 (3)	
H3A	0.7990 (11)	0.196 (3)	0.5898 (15)	0.055 (8)*	
O4	0.5000	0.3573 (10)	0.2500	0.0253 (14)	0.25
H4A	0.500 (4)	0.286 (5)	0.2880 (13)	0.03 (2)*	0.25

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0144 (7)	0.0192 (7)	0.0150 (6)	-0.0005 (6)	0.0028 (5)	-0.0001 (6)
C2	0.0154 (7)	0.0190 (7)	0.0166 (7)	0.0000 (6)	0.0033 (5)	-0.0010 (6)
C3	0.0184 (7)	0.0226 (8)	0.0155 (7)	-0.0012 (6)	0.0023 (6)	-0.0039 (6)
C4	0.0166 (7)	0.0262 (8)	0.0127 (7)	-0.0004 (6)	0.0012 (5)	0.0000 (6)
C5	0.0158 (7)	0.0202 (7)	0.0167 (7)	0.0021 (6)	0.0043 (5)	0.0017 (6)
C6	0.0173 (7)	0.0187 (7)	0.0147 (6)	0.0001 (6)	0.0037 (5)	-0.0016 (5)
C7	0.0221 (8)	0.0180 (7)	0.0213 (7)	0.0030 (6)	0.0017 (6)	-0.0009 (6)
C8	0.0142 (7)	0.0192 (7)	0.0161 (7)	-0.0004 (6)	0.0045 (5)	-0.0018 (6)
C9	0.0119 (6)	0.0217 (7)	0.0139 (6)	0.0004 (6)	0.0031 (5)	0.0008 (6)
C10	0.0165 (7)	0.0194 (7)	0.0180 (7)	0.0003 (6)	0.0031 (6)	-0.0021 (6)
C11	0.0178 (7)	0.0196 (7)	0.0220 (7)	0.0035 (6)	0.0030 (6)	0.0025 (6)
C12	0.0153 (7)	0.0245 (8)	0.0158 (7)	0.0016 (6)	0.0011 (5)	0.0043 (6)
C13	0.0143 (7)	0.0235 (8)	0.0146 (7)	-0.0019 (6)	0.0035 (5)	-0.0017 (6)
C14	0.0158 (7)	0.0183 (7)	0.0166 (7)	0.0018 (6)	0.0021 (5)	0.0009 (6)
Cl1	0.0219 (2)	0.0258 (2)	0.01674 (19)	0.00025 (14)	-0.00266 (14)	-0.00406 (14)
N1	0.0151 (6)	0.0184 (6)	0.0142 (6)	0.0007 (5)	0.0001 (5)	-0.0018 (5)
01	0.0205 (5)	0.0206 (6)	0.0221 (5)	0.0040 (4)	0.0002 (4)	-0.0053 (4)
O2	0.0226 (6)	0.0233 (6)	0.0189 (5)	0.0078 (4)	-0.0030 (4)	-0.0015 (4)
03	0.0206 (6)	0.0228 (6)	0.0238 (6)	0.0049 (5)	-0.0016 (4)	-0.0077 (5)
O4	0.036 (4)	0.021 (3)	0.016 (3)	0.000	-0.001 (3)	0.000

Geometric parameters (Å, °)

C1—C8	1.412 (2)	C8—H8	0.9300
C1—C6	1.426 (2)	C9—C14	1.389 (2)
C1—C2	1.433 (2)	C9—C10	1.404 (2)
C2—O1	1.2924 (18)	C9—N1	1.4050 (18)
C2—C3	1.427 (2)	C10—O3	1.3459 (18)
C3—C4	1.359 (2)	C10—C11	1.395 (2)
С3—Н3	0.9300	C11—C12	1.387 (2)
C4—C5	1.415 (2)	C11—H11	0.9300
C4—H4	0.9300	C12—C13	1.386 (2)
C5—C6	1.366 (2)	C12—H12	0.9300
C5—O2	1.3720 (18)	C13—C14	1.385 (2)
С6—Н6	0.9300	C13—C11	1.7438 (15)
С7—О2	1.4229 (19)	C14—H14	0.9300
С7—Н7А	0.9600	N1—H1	0.8600
С7—Н7В	0.9600	O3—H3A	0.852 (17)
С7—Н7С	0.9600	O4—H4A	0.831 (19)

C8—N1	1.3122 (19)		
C8—C1—C6	118.69 (13)	N1—C8—H8	119.2
C8—C1—C2	120.36 (14)	С1—С8—Н8	119.2
C6—C1—C2	120.91 (13)	C14—C9—C10	120.98 (13)
O1—C2—C3	121.57 (14)	C14—C9—N1	123.82 (13)
01—C2—C1	121.51 (13)	C10-C9-N1	115.19 (13)
C3—C2—C1	116.90 (14)	O3—C10—C11	124.28 (14)
C4—C3—C2	120.85 (14)	O3—C10—C9	116.60 (13)
С4—С3—Н3	119.6	C11—C10—C9	119.10 (14)
С2—С3—Н3	119.6	C12—C11—C10	120.35 (14)
C3—C4—C5	121.89 (13)	C12—C11—H11	119.8
C3—C4—H4	119.1	C10-C11-H11	119.8
C5—C4—H4	119.1	C13—C12—C11	119.30 (13)
C6—C5—O2	125.86 (14)	C13—C12—H12	120.3
C6—C5—C4	119.79 (14)	C11—C12—H12	120.3
O2—C5—C4	114.34 (12)	C14—C13—C12	121.88 (14)
C5—C6—C1	119.64 (14)	C14—C13—Cl1	118.58 (12)
С5—С6—Н6	120.2	C12—C13—Cl1	119.49 (11)
С1—С6—Н6	120.2	C13—C14—C9	118.37 (14)
O2—C7—H7A	109.5	C13—C14—H14	120.8
O2—C7—H7B	109.5	C9—C14—H14	120.8
H7A—C7—H7B	109.5	C8—N1—C9	128.60 (13)
O2—C7—H7C	109.5	C8—N1—H1	115.7
H7A—C7—H7C	109.5	C9—N1—H1	115.7
H7B—C7—H7C	109.5	C5—O2—C7	116.07 (11)
N1—C8—C1	121.66 (14)	С10—О3—НЗА	114.0 (18)
C8—C1—C2—O1	-2.1 (2)	C14—C9—C10—C11	-0.7 (2)
C6-C1-C2-O1	-179.69 (14)	N1-C9-C10-C11	177.86 (14)
C8—C1—C2—C3	176.39 (14)	O3—C10—C11—C12	-178.82 (15)
C6—C1—C2—C3	-1.2 (2)	C9-C10-C11-C12	-0.1 (2)
O1—C2—C3—C4	178.48 (14)	C10-C11-C12-C13	0.5 (2)
C1—C2—C3—C4	0.0 (2)	C11—C12—C13—C14	0.0 (2)
C2—C3—C4—C5	0.6 (2)	C11—C12—C13—Cl1	-177.44 (12)
C3—C4—C5—C6	0.0 (2)	C12—C13—C14—C9	-0.9 (2)
C3—C4—C5—O2	-179.47 (14)	Cl1—C13—C14—C9	176.63 (11)
O2—C5—C6—C1	178.19 (14)	C10-C9-C14-C13	1.2 (2)
C4—C5—C6—C1	-1.2 (2)	N1-C9-C14-C13	-177.27 (14)
C8—C1—C6—C5	-175.82 (14)	C1—C8—N1—C9	-176.94 (14)
C2-C1-C6-C5	1.8 (2)	C14—C9—N1—C8	-5.5 (2)
C6-C1-C8-N1	175.38 (14)	C10—C9—N1—C8	175.95 (14)
C2-C1-C8-N1	-2.3 (2)	C6—C5—O2—C7	-10.6 (2)
C14—C9—C10—O3	178.07 (14)	C4—C5—O2—C7	168.79 (13)
N1—C9—C10—O3	-3.3 (2)		

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H1…O1	0.86	1.84	2.5511 (16)	140
N1—H1…O3	0.86	2.19	2.6063 (17)	109
С3—Н3…О4	0.93	2.43	3.279 (5)	151
O4—H4A····O2 ⁱ	0.83 (2)	2.03 (2)	2.842 (3)	166 (6)
O3—H3 <i>A</i> …O1 ⁱⁱ	0.85 (2)	1.74 (2)	2.5652 (16)	162 (3)
C12—H12····O2 ⁱⁱⁱ	0.93	2.56	3.4372 (18)	157
C7—H7 A ···· $Cg1^{iv}$	0.96	2.83	3.644 (2)	143
C12—H12···O2 ⁱⁱⁱ C7—H7 A ··· $Cg1^{iv}$	0.93 0.96	2.56 2.83	3.4372 (18) 3.644 (2)	157 143

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x, y-1, z; (ii) -x+3/2, -y+1/2, -z+1; (iii) x+1/2, -y+3/2, z+1/2; (iv) x+1/2, y+3/2, z.