organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-amino-4-(3-chloropropoxy)-5methoxybenzoate

Min Zhang,^{a,b} Ran-zhe Lu,^{a,b} Lu-na Han,^{a,b} Wen-bin Wei^{a,b} and Hai-bo Wang^a*

^aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ^bCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: wanghaibo@njut.edu.cn

Received 25 March 2009; accepted 27 March 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.057; wR factor = 0.157; data-to-parameter ratio = 15.1.

The asymmetric unit of the title compound, $C_{12}H_{16}CINO_4$, contains two crystallographically independent molecules. The benzene rings of the two independent molecules are oriented at a dihedral angle of 88.50 (3)°. Intramolecular N-H···O hydrogen bonds involving the methoxybenzoate carbonyl group in each molecule result in the formation of two planar, six-membered rings, oriented at dihedral angles of 1.39 (3) and 0.68 (3)° with respect to the adjacent benzene rings. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules into chains along the *a* axis.

Related literature

For general background to quinazoline derivatives, see: Knesl *et al.* (2006). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data C₁₂H₁₆ClNO₄

 $M_r = 273.71$

Triclinic, $P\overline{1}$ a = 8.1080 (16) Å b = 9.818 (2) Å c = 17.739 (3) Å $\alpha = 82.07 (2)^{\circ}$ $\beta = 83.41 (2)^{\circ}$ $\gamma = 89.37 (3)^{\circ}$

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.921, T_{\max} = 0.973$
5297 measured reflections
Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 325 parameters $wR(F^2) = 0.157$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$ 4919 reflections $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1-H1A\cdots O3$ $N1-H1B\cdots O8^{i}$ $N2-H2C\cdots O8$ $N2-H2C\cdots O8^{ii}$ $N2-H2C\cdots O3$	0.86 0.86 0.86 0.86 0.86 0.86	2.07 2.36 2.09 2.43 2.31	2.709 (4) 3.155 (4) 2.719 (4) 3.216 (4) 3.119 (4)	131 154 130 152 156

V = 1389.3 (5) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

4919 independent reflections 2591 reflections with $I > 2\sigma(I)$

frequency: 120 min intensity decay: 1%

 $\mu = 0.28 \text{ mm}^{-1}$

T = 294 K

 $R_{\rm int} = 0.041$ 3 standard reflections

7 - 4

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y + 1, -z + 2.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2651).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286-297.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o942 [doi:10.1107/S1600536809011374]

Methyl 2-amino-4-(3-chloropropoxy)-5-methoxybenzoate

Min Zhang, Ran-zhe Lu, Lu-na Han, Wen-bin Wei and Hai-bo Wang

S1. Comment

As part of our ongoing studies on quinazoline derivatives (Knesl *et al.*, 2006), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (C4-C9) and A' (C16-C21) are, of course, planar and they are oriented at a dihedral angle of A/A' = 88.50 (3)°. Intramolecular N-H…O hydrogen bonds (Table 1) link the two molecules, also they result in the formations of two six-membered planar rings: B (O3/N1/C6/C7/C11/H1A) and B' (O8/N2/C19/C20/C23/H2C). The dihedral angles between the adjacent rings in each molecule are A/B = 1.39 (3)° and A'/B' = 0.68 (3)°. So, they are also coplanar.

In the crystal structure, intra- and intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains along the a axis (Fig. 2), in which they may be effective in the stabilization of the structure.

S2. Experimental

For the preparation of the title compound, a suspension of methyl 4-(3-chloro- propoxy)-5-methoxy-2-nitrobenzoate (0.016 mol) in HCl (100 ml) was heated at 323-333 K for 5 min, and then a solution of tin(II) chloride (16.0 g, 0.1 mol) in HCl (20 ml) was added dropwise. The reaction mixture was heated at 363-373 K for 45 min. The solid formed was collected and dissolved in water (300 ml). A solution of sodium hydroxide (2N) was added to obtain pH = 8-9. The aqueous solution was then extracted with ethyl acetate (3×100 ml). The combined organic layers were dried over magnesium sulfate and concentrated in vacuo to give the title compound (yield; 2.3 g, 51.1%, m.p. 377 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

S3. Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH₂) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.

Figure 2

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted.

Z = 4

F(000) = 576 $D_{\rm x} = 1.309 {\rm Mg m}^{-3}$

 $\theta = 9-13^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$

T = 294 K

Block, colorless

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

Melting point: 377 K

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections

Methyl 2-amino-4-(3-chloropropoxy)-5-methoxybenzoate

Crystal data
C ₁₂ H ₁₆ ClNO ₄
$M_r = 273.71$
Triclinic, P1

Hall symbol: -P 1 Hall symbol: -P 1 a = 8.1080 (16) Å b = 9.818 (2) Å c = 17.739 (3) Å $a = 82.07 (2)^{\circ}$ $\beta = 83.41 (2)^{\circ}$ $\gamma = 89.37 (3)^{\circ}$ $V = 1389.3 (5) \text{ Å}^{3}$

Data collection

Enraf–Nonius CAD-4	$T_{\min} = 0.921, \ T_{\max} = 0.973$
diffractometer	5297 measured reflections
Radiation source: fine-focus sealed tube	4919 independent reflections
Graphite monochromator	2591 reflections with $I > 2\sigma(I)$
$\omega/2\theta$ scans	$R_{\rm int} = 0.041$
Absorption correction: ψ scan	$\theta_{\rm max} = 25.3^{\circ}, \theta_{\rm min} = 1.2^{\circ}$
(North <i>et al.</i> , 1968)	$h = 0 \rightarrow 9$

$k = -11 \rightarrow 11$ $l = -20 \rightarrow 20$	3 standard reflections every 120 min intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.157$	neighbouring sites
S = 1.01	H-atom parameters constrained
4919 reflections	$w = 1/[\sigma^2(F_o^2) + (0.07P)^2]$
325 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.20$ e Å ⁻³
direct methods	$\Delta ho_{\min} = -0.22 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

G2	0.1070 (4)	0.0005 (4)	0.5101 (2)	0.07(4.(11)
C3	-0.1379 (4)	0.8095 (4)	0.7191 (2)	0.0764 (11)
НЗА	-0.1966	0.8168	0.7691	0.092*
H3B	-0.0983	0.7160	0.7184	0.092*
C4	0.1200 (4)	0.8952 (3)	0.7498 (2)	0.0599 (9)
C5	0.1262 (4)	0.8003 (4)	0.8155 (2)	0.0660 (9)
H5A	0.0414	0.7356	0.8294	0.079*
C6	0.2574 (4)	0.7991 (3)	0.8619 (2)	0.0591 (9)
C7	0.3857 (4)	0.8969 (3)	0.84021 (18)	0.0552 (8)
C8	0.3773 (4)	0.9923 (3)	0.77157 (18)	0.0536 (8)
H8A	0.4628	1.0561	0.7566	0.064*
С9	0.2495 (4)	0.9941 (3)	0.72703 (19)	0.0553 (8)
C10	0.3629 (5)	1.1770 (4)	0.6326 (2)	0.0895 (13)
H10A	0 3364	1 2330	0 5868	0.134*
H10B	0.4630	1 1269	0.6213	0.134*
HIOC	0.3786	1 2345	0.6708	0.134*
C11	0.5700	0.9032(3)	0.88748 (10)	0.0562 (8)
C12	0.5223(4) 0.7623(5)	0.9052(5)	0.00740(19)	0.0302(0)
	0.7033(3)	1.0230 (4)	0.9032 (2)	0.0924 (13)
ПIZA UIDD	0.0310	1.1018	0.0002	0.139*
HI2B	0.8288	0.9434	0.9093	0.139*
HI2C	0.7185	1.0429	0.9554	0.139*
C13	0.3339 (5)	0.6258 (4)	0.5663 (2)	0.0937 (14)
H13A	0.2670	0.6044	0.5275	0.112*
H13B	0.4427	0.5856	0.5564	0.112*
C14	0.2526 (4)	0.5629 (4)	0.6458 (3)	0.0914 (13)
H14A	0.1515	0.6130	0.6580	0.110*
H14B	0.2214	0.4686	0.6434	0.110*
C15	0.3612 (4)	0.5635 (4)	0.7106 (2)	0.0767 (11)
H15A	0.4001	0.6559	0.7126	0.092*
H15B	0.2997	0.5290	0.7595	0.092*
C16	0.6215 (4)	0.4591 (3)	0.7408 (2)	0.0581 (9)
C17	0.7518 (4)	0.3703 (3)	0.71711 (18)	0.0546 (8)
C18	0.8796 (4)	0.3485 (3)	0.76205 (17)	0.0516 (8)
H18A	0.9653	0.2904	0.7476	0.062*
C19	0.8872 (4)	0.4108 (3)	0.83011 (17)	0.0485 (7)
C20	0.7570 (4)	0.4991 (3)	0.85342 (19)	0.0575 (8)
C21	0.6255 (4)	0.5203 (3)	0.8067 (2)	0.0618 (9)
H21A	0.5385	0.5774	0.8208	0.074*
C22	0.8708 (5)	0 2353 (4)	0.6222.(2)	0.0900(13)
Н224	0.8456	0.2011	0.5766	0.135*
H22R	0.8905	0.1595	0.6604	0.135*
H22D	0.0682	0.2025	0.6104	0.135*
C23	1.0255(4)	0.2923	0.0104	0.155
C24	1.0235(4) 1.2755(5)	0.3618(3) 0.2503(4)	0.87074(18)	0.0323(0)
	1.2700 (0)	0.2333 (+)	0.0929 (2)	0.0937(14) 0.1/1*
1124A 1124D	1.3402	0.1700	0.0005	0.141*
п240	1.2343	0.2109	0.9433	0.141*
п24С	1.3330	0.3410	0.0902	0.141*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C11	0.0972 (8)	0.1075 (9)	0.0950 (8)	0.0024 (6)	-0.0306 (6)	-0.0116 (6)
Cl2	0.1009 (8)	0.1059 (9)	0.0894 (8)	0.0022 (6)	-0.0347 (6)	-0.0126 (6)
01	0.0498 (14)	0.0805 (17)	0.0951 (19)	-0.0060 (12)	-0.0240 (13)	-0.0026 (14)
O2	0.0595 (15)	0.0726 (16)	0.0808 (17)	-0.0087 (12)	-0.0293 (13)	0.0114 (13)
O3	0.0785 (17)	0.0769 (17)	0.0805 (18)	0.0031 (13)	-0.0326 (14)	0.0056 (14)
O4	0.0662 (16)	0.0832 (18)	0.0821 (17)	-0.0119 (14)	-0.0315 (13)	0.0007 (14)
O5	0.0503 (14)	0.0827 (16)	0.0981 (19)	0.0173 (12)	-0.0337 (13)	-0.0217 (14)
06	0.0619 (15)	0.0820 (17)	0.0800 (17)	0.0160 (12)	-0.0338 (13)	-0.0268 (14)
O7	0.0794 (17)	0.0878 (18)	0.0771 (17)	0.0366 (14)	-0.0420 (14)	-0.0324 (14)
08	0.0732 (16)	0.0944 (19)	0.0674 (16)	0.0184 (13)	-0.0250 (13)	-0.0315 (14)
N1	0.090 (2)	0.090 (2)	0.089 (2)	-0.0231 (19)	-0.0257 (19)	0.021 (2)
N2	0.083 (2)	0.097 (2)	0.072 (2)	0.0380 (18)	-0.0256 (17)	-0.0295 (18)
C1	0.077 (3)	0.104 (3)	0.092 (3)	-0.018 (2)	-0.038 (2)	0.017 (3)
C2	0.051 (2)	0.087 (3)	0.127 (4)	-0.0035 (19)	-0.026 (2)	-0.006 (3)
C3	0.052 (2)	0.093 (3)	0.086 (3)	-0.016 (2)	-0.0068 (19)	-0.017 (2)
C4	0.0443 (19)	0.067 (2)	0.071 (2)	0.0045 (16)	-0.0116 (17)	-0.0129 (19)
C5	0.059 (2)	0.063 (2)	0.076 (3)	-0.0071 (17)	-0.0097 (19)	-0.0052 (19)
C6	0.055 (2)	0.056 (2)	0.065 (2)	0.0012 (16)	-0.0076 (17)	-0.0035 (17)
C7	0.0506 (19)	0.055 (2)	0.061 (2)	0.0074 (16)	-0.0110 (16)	-0.0096 (17)
C8	0.0398 (17)	0.059 (2)	0.063 (2)	0.0000 (14)	-0.0102 (15)	-0.0059 (17)
C9	0.0496 (19)	0.053 (2)	0.064 (2)	0.0042 (15)	-0.0119 (16)	-0.0044 (16)
C10	0.087 (3)	0.084 (3)	0.092 (3)	-0.022 (2)	-0.033 (2)	0.027 (2)
C11	0.057 (2)	0.055 (2)	0.057 (2)	0.0072 (17)	-0.0102 (17)	-0.0104 (17)
C12	0.075 (3)	0.100 (3)	0.106 (3)	-0.013 (2)	-0.041 (2)	-0.003 (3)
C13	0.089 (3)	0.115 (3)	0.095 (3)	0.047 (3)	-0.051 (3)	-0.045 (3)
C14	0.054 (2)	0.087 (3)	0.140 (4)	0.011 (2)	-0.039 (3)	-0.018 (3)
C15	0.045 (2)	0.091 (3)	0.092 (3)	0.0118 (19)	-0.0162 (19)	0.000 (2)
C16	0.0459 (18)	0.060 (2)	0.071 (2)	0.0022 (15)	-0.0211 (17)	-0.0046 (18)
C17	0.0503 (19)	0.058 (2)	0.059 (2)	0.0051 (15)	-0.0188 (16)	-0.0122 (16)
C18	0.0455 (17)	0.0504 (19)	0.060 (2)	0.0031 (14)	-0.0135 (15)	-0.0041 (16)
C19	0.0481 (18)	0.0469 (18)	0.0492 (19)	0.0014 (14)	-0.0075 (14)	-0.0008 (14)
C20	0.060 (2)	0.057 (2)	0.055 (2)	0.0044 (16)	-0.0116 (17)	-0.0024 (16)
C21	0.0463 (19)	0.065 (2)	0.073 (2)	0.0118 (16)	-0.0070 (17)	-0.0062 (18)
C22	0.094 (3)	0.103 (3)	0.089 (3)	0.031 (2)	-0.046 (2)	-0.043 (2)
C23	0.057 (2)	0.0484 (19)	0.053 (2)	0.0024 (15)	-0.0117 (16)	-0.0073 (16)
C24	0.087 (3)	0.109 (3)	0.099 (3)	0.049 (2)	-0.053 (2)	-0.031 (3)

Geometric parameters (Å, °)

Cl1—C1	1.772 (4)	C6—C7	1.407 (4)	
Cl2—C13	1.773 (4)	C7—C8	1.438 (4)	
O1—C4	1.373 (4)	C7—C11	1.471 (4)	
O1—C3	1.434 (4)	C8—C9	1.372 (4)	
O2—C9	1.395 (4)	C8—H8A	0.9300	
O2—C10	1.412 (4)	C10—H10A	0.9600	

O3 C11	1 232 (1)	C10 H10B	0.9600
04	1.252 (4)	C10—H10C	0.9600
04-C12	1.350 (4)	C_{12} H12A	0.9600
05	1 376 (3)	C12_H12R	0.9600
05	1.370(3) 1.430(4)	C12 - H12C	0.9600
06 C17	1.439(4) 1.204(2)	C_{12} C_{14}	1.536 (6)
06 622	1.394(3) 1.423(4)	C_{13} U_{12} U_{12}	1.330 (0)
07 622	1.425(4) 1.242(4)	C12 U12D	0.9700
07 C24	1.342(4)	C14 C15	0.9700
$0^{-}-C^{24}$	1.400 (4)	C14C15	1.527 (5)
08-023	1.233 (3)	CI4—HI4A	0.9700
	1.388 (4)	C14—H14B	0.9700
NI—HIA	0.8600	CI5—HI5A	0.9700
NI—HIB	0.8600	CI5—HI5B	0.9700
N2—C20	1.392 (4)	C16—C21	1.389 (4)
N2—H2C	0.8600	C16—C17	1.425 (4)
N2—H2D	0.8600	C17—C18	1.376 (4)
C1—C2	1.537 (5)	C18—C19	1.434 (4)
C1—H1C	0.9700	C18—H18A	0.9300
C1—H1D	0.9700	C19—C20	1.420 (4)
C2—C3	1.525 (5)	C19—C23	1.471 (4)
C2—H2A	0.9700	C20—C21	1.420 (4)
C2—H2B	0.9700	C21—H21A	0.9300
С3—НЗА	0.9700	C22—H22A	0.9600
C3—H3B	0.9700	C22—H22B	0.9600
C4—C5	1.393 (5)	C22—H22C	0.9600
C4—C9	1.423 (4)	C24—H24A	0.9600
C5—C6	1.417 (4)	C24—H24B	0.9600
С5—Н5А	0.9300	C24—H24C	0.9600
C4—O1—C3	118.2 (3)	O4—C12—H12A	109.5
C9—O2—C10	117.0 (2)	O4—C12—H12B	109.5
C11—O4—C12	115.7 (3)	H12A—C12—H12B	109.5
C16—O5—C15	118.5 (3)	O4—C12—H12C	109.5
C17—O6—C22	116.5 (2)	H12A—C12—H12C	109.5
C23—O7—C24	115.1 (3)	H12B—C12—H12C	109.5
C6—N1—H1A	120.0	C14—C13—Cl2	111.2 (3)
C6—N1—H1B	120.0	C14—C13—H13A	109.4
H1A—N1—H1B	120.0	Cl2—Cl3—H13A	109.4
C_{20} N2 H2C	120.0	C14—C13—H13B	109.4
C_{20} N2 H2D	120.0	Cl2—Cl3—H13B	109.4
$H^2C - N^2 - H^2D$	120.0	H13A—C13—H13B	108.0
$C^2 - C^1 - C^{11}$	111.6 (3)	$C_{15} - C_{14} - C_{13}$	1149(3)
$C_2 = C_1 = H_1C$	109.3	$C_{15} - C_{14} - H_{14A}$	108 5
Cl1—C1—H1C	109.3	C13 - C14 - H14A	108.5
$C_2 - C_1 - H_1 D$	109.3	C15 $C14$ $H14R$	108.5
	109.3	C13 - C14 - H14B	108.5
	109.5	$H_{14} - C_{14} + H_{14} B$	107.5
$C_2 = C_2 = C_1$	115 5 (2)	05 C15 C14	107.5 105.4(2)
C3-C2-C1	113.3 (3)	03-013-014	103.4 (3)

C3—C2—H2A	108.4	O5—C15—H15A	110.7
C1—C2—H2A	108.4	C14—C15—H15A	110.7
C3—C2—H2B	108.4	O5—C15—H15B	110.7
C1—C2—H2B	108.4	C14—C15—H15B	110.7
H2A—C2—H2B	107.5	H15A—C15—H15B	108.8
O1—C3—C2	105.3 (3)	O5—C16—C21	125.9 (3)
O1—C3—H3A	110.7	O5—C16—C17	113.5 (3)
С2—С3—НЗА	110.7	C21—C16—C17	120.6 (3)
O1—C3—H3B	110.7	C18—C17—O6	126.9 (3)
С2—С3—Н3В	110.7	C18—C17—C16	117.2 (3)
НЗА—СЗ—НЗВ	108.8	O6—C17—C16	115.9 (3)
O1—C4—C5	126.5 (3)	C17—C18—C19	123.3 (3)
O1—C4—C9	113.7 (3)	C17—C18—H18A	118.4
C5—C4—C9	119.8 (3)	C19—C18—H18A	118.4
C4—C5—C6	122.2 (3)	C20-C19-C18	119.2 (3)
C4—C5—H5A	118.9	C20—C19—C23	119.8 (3)
C6—C5—H5A	118.9	C18 - C19 - C23	120.9 (3)
N1-C6-C7	122.1 (3)	N2-C20-C19	123.2(3)
N1-C6-C5	1194(3)	N2-C20-C21	1199(3)
C7-C6-C5	118 5 (3)	C_{19} C_{20} C_{21}	116.9 (3)
C6-C7-C8	118.1 (3)	C_{16} C_{21} C_{20} C_{21} C_{20}	122.7(3)
C6-C7-C11	120.8 (3)	C16—C21—H21A	118.6
C8-C7-C11	121.0(3)	C20—C21—H21A	118.6
C9—C8—C7	123.3 (3)	O6-C22-H22A	109.5
C9—C8—H8A	118.3	06—C22—H22B	109.5
C7—C8—H8A	118.3	H22A—C22—H22B	109.5
C8-C9-O2	126.8 (3)	06-C22-H22C	109.5
C8-C9-C4	118.0 (3)	H22A—C22—H22C	109.5
02	115.2 (3)	H22B—C22—H22C	109.5
O2-C10-H10A	109.5	08—C23—O7	120.9 (3)
02—C10—H10B	109.5	08-C23-C19	126.5(3)
H10A—C10—H10B	109.5	07-C23-C19	112.6 (3)
02—C10—H10C	109.5	07—C24—H24A	109.5
H10A—C10—H10C	109.5	07—C24—H24B	109.5
H10B— $C10$ — $H10C$	109.5	$H_{24} - C_{24} - H_{24}B$	109.5
03-C11-04	121.7(3)	07-C24-H24C	109.5
03-C11-C7	1261(3)	H_{24A} C_{24} H_{24C}	109.5
04-C11-C7	112.1(3)	H24B— $C24$ — $H24C$	109.5
	112.1 (5)		109.5
Cl1—C1—C2—C3	71.5 (4)	Cl2—C13—C14—C15	-70.8(4)
C4-01-C3-C2	179.4 (3)	$C_{16} - O_{5} - C_{15} - C_{14}$	177.8 (3)
C1-C2-C3-O1	63.9 (4)	C13—C14—C15—O5	-64.7(4)
$C_{3}-O_{1}-C_{4}-C_{5}$	-0.5(5)	C15-05-C16-C21	0.9 (5)
C3-01-C4-C9	179.3 (3)	C15-05-C16-C17	-179.3(3)
01-C4-C5-C6	-179.4 (3)	C22—O6—C17—C18	-6.1 (5)
C9—C4—C5—C6	0.8 (5)	$C_{22} = 06 = C_{17} = C_{16}$	174.4 (3)
C4—C5—C6—N1	-179.4(3)	O5-C16-C17-C18	-179.7(3)
C4-C5-C6-C7	-0.4(5)	C_{21} C_{16} C_{17} C_{18}	0.1 (5)
			(.)

N1—C6—C7—C8	178.5 (3)	O5—C16—C17—O6	-0.2 (4)
C5—C6—C7—C8	-0.4 (5)	C21—C16—C17—O6	179.6 (3)
N1-C6-C7-C11	-3.0 (5)	O6—C17—C18—C19	-179.8 (3)
C5—C6—C7—C11	178.1 (3)	C16—C17—C18—C19	-0.4 (5)
C6—C7—C8—C9	1.0 (5)	C17—C18—C19—C20	0.4 (5)
C11—C7—C8—C9	-177.5 (3)	C17—C18—C19—C23	178.9 (3)
C7—C8—C9—O2	179.5 (3)	C18—C19—C20—N2	-179.7 (3)
C7—C8—C9—C4	-0.7 (5)	C23-C19-C20-N2	1.8 (5)
C10—O2—C9—C8	4.2 (5)	C18—C19—C20—C21	0.0 (4)
C10—O2—C9—C4	-175.7 (3)	C23-C19-C20-C21	-178.6 (3)
O1—C4—C9—C8	179.9 (3)	O5-C16-C21-C20	-180.0 (3)
C5—C4—C9—C8	-0.2 (5)	C17—C16—C21—C20	0.2 (5)
01	-0.2 (4)	N2-C20-C21-C16	179.4 (3)
C5—C4—C9—O2	179.6 (3)	C19—C20—C21—C16	-0.2 (5)
C12—O4—C11—O3	-2.5 (5)	C24—O7—C23—O8	1.3 (5)
C12—O4—C11—C7	177.5 (3)	C24—O7—C23—C19	-179.1 (3)
C6—C7—C11—O3	3.5 (5)	C20—C19—C23—O8	-2.1 (5)
C8—C7—C11—O3	-177.9 (3)	C18—C19—C23—O8	179.3 (3)
C6—C7—C11—O4	-176.4 (3)	C20—C19—C23—O7	178.4 (3)
C8—C7—C11—O4	2.1 (4)	C18—C19—C23—O7	-0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N1—H1A…O3	0.86	2.07	2.709 (4)	131	
N1—H1 <i>B</i> ···O8 ⁱ	0.86	2.36	3.155 (4)	154	
N2—H2C···O8	0.86	2.09	2.719 (4)	130	
N2—H2 <i>C</i> ···O8 ⁱⁱ	0.86	2.43	3.216 (4)	152	
N2—H2 <i>D</i> ···O3	0.86	2.31	3.119 (4)	156	

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*+1, -*z*+2.