organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Methylanilinium dihydrogen phosphate-phosphoric acid (1/1)

Hamed Khemiri,* Samah Akriche and Mohamed Rzaigui

Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia Correspondence e-mail: hamedkhemiri@voila.fr

Received 16 April 2009; accepted 18 April 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.092; data-to-parameter ratio = 30.9.

In the title compound, $C_7H_{10}N^+ \cdot H_2PO_4^- \cdot H_3PO_4$, there is a clear distinction between the P-O/P=O and P-OH bond lengths. In the crystal, the $H_2PO_4^-$ anions and H_3PO_4 molecules are linked by $O-H \cdots O$ hydrogen bonds, leading to layers propagating in the bc plane. The organic cations are located between these layers and interact with them by way of N-H···O hydrogen bonds.

Related literature

For related structures, see: Akriche & Rzaigui (2000); Zaccaro et al. (1996). For background, see: Desiraju (1995).

Experimental

Crystal data

 $C_7H_{10}N^+ \cdot H_2PO_4^- \cdot H_3PO_4$ $M_r = 303.14$ Monoclinic, $P2_1/c$ a = 10.8769 (10) Åb = 7.938 (4) Å c = 15.302 (3) Å $\beta = 91.57 \ (2)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 5416 measured reflections 5250 independent reflections V = 1320.7 (7) Å³ Z = 4Ag $K\alpha$ radiation $\mu = 0.19 \text{ mm}^-$ T = 298 K $0.37 \times 0.31 \times 0.25 \ \text{mm}$

4134 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.013$ 2 standard reflections frequency: 120 min intensity decay: 18%

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.092$ S = 1.085250 reflections

170 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-1}$ $\Delta \rho_{\rm min} = -0.41$ e Å⁻³

T	ab	le	1			
~						

Selected bond lengths (Å).

P1-O3	1.4964 (9)	P2-O8	1.4942 (9)
P1-O4	1.5092 (10)	P2-O5	1.5422 (10)
P1-O2	1.5571 (9)	P2-O7	1.5445 (10)
P1-O1	1.5707 (9)	P2-O6	1.5493 (10)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1\cdots O4^{i}$	0.82	1.83	2.6483 (16)	178
$O2-H2\cdots O8^{i}$	0.82	1.80	2.6132 (13)	170
O5−H5···O3	0.82	1.72	2.5351 (15)	176
$O6-H6\cdots O8^{ii}$	0.82	1.81	2.6223 (16)	170
O7−H7···O4 ⁱⁱⁱ	0.82	1.69	2.5109 (13)	177
$N1-H1A\cdotsO1^{i}$	0.89	2.08	2.9627 (16)	172
$N1 - H1B \cdot \cdot \cdot O3$	0.89	1.91	2.7808 (19)	164
$N1 - H1C \cdots O7^{iv}$	0.89	2.18	3.0086 (15)	154

Symmetry codes: (i) -x, $y = \frac{1}{2}$, $-z = \frac{3}{2}$; (ii) -x, -y = 1, -z = 2; (iii) x, $-y = \frac{3}{2}$, $z = \frac{1}{2}$; (iv) x, y - 1, z

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND Brandenburg (2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2955).

References

- Akriche, S. & Rzaigui, M. (2000). Solid State Sci. 2, 397-403.
- Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2321.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Nether-
- lands. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zaccaro, J., Bagieu-Beucher, M., Ibanez, A. & Masse, R. (1996). J. Solid State Chem. 124, 8-16.

supporting information

Acta Cryst. (2009). E65, o1152 [doi:10.1107/S1600536809014536]

2-Methylanilinium dihydrogen phosphate-phosphoric acid (1/1)

Hamed Khemiri, Samah Akriche and Mohamed Rzaigui

S1. Comment

Organic cation phosphates have been intensively studied due to their many uses in various fields such as biomolecular sciences, catalysts and nonlinear optics (e.g. Desiraju, 1995). Nevertheless, a bibliographical study on the organic monophosphates, and especially on the adduct monophosphate reveals that this kind of compounds are relatively very rare if compared with another types of phosphates (Zaccaro *et al.*, 1996).

In the atomic arrangement of the title compound (I), the asymmetric unit consists of three fundamentals entities, the H_2PO_4 anion, the H_3PO_4 molecule and the organic cation $C_7H_{10}N_+$ (Fig. 1). A view of the structure projected along the b direction (Fig. 2) shows that the inorganic entities are organized in layers developed around the bc plane. The organic cations are arranged in opposite direction along the a axis in the interlayer spacing to neutralize the negative charge of the inorganic layers. Inside each layer the H_2PO_4 anions form an inorganic chains parallel to b direction and situated at Z =1/4 and Z = 3/4. The H₃PO₄ molecules are associated by strong hydrogen bonds to form a dimmer of formula [H₆P₂O₈] centred at (0 1/2 0) and (0 0 1/2). The both entities are interconnected together via hydrogen bonds to form inorganic layer parallel to the bc plane (Fig. 2). In the two crystallographically independent phosphate groups, the P-O bonds are shorter than P—OH bonds (Table 1). The average values of P—O distances and O—P—O angles are 1,533 Å, 109,44° and 1.533 Å, 109.38°, respectively for $P(1)O_4$ and $P(2)O_4$ tetrahedra. These configurations are comparable to that observed elsewhere (Zaccaro et al., 1996). The organic and inorganic species establish between them two types of hydrogen bonds. The first one is O—H···O, involving short contacts with H···O lengths ranging between 1,69 - 1,83 Å, connects the H_2PO_4 and H_3PO_4 entities to develop the inorganic layer parallel to bc plane. The second type is N—H···O, with H…O distances ranging from 1,91 Å to 2,18 Å, links the organic cations to the phosphoric layer. The pattern of hydrogen bonds participate with the electrostatic and van Der Waals interactions to the cohesion of the network. The atoms C1, C2, C3, C4, C5 and C6 of the anilinium ring of the title compound are coplanar and they form a conjugated plane with average deviation of 0.0013 Å. The C—C distances ranging from 1.374 (2) to 1.496 (3) Å agree with those observed in literature (Akriche & Rzaigui 2000).

S2. Experimental

A solution of orthophosphoric acid (0.50 mmol in 30 ml of water) was added drop by drop to an ethanolic solution of 2methylaniline (2.336 mmol in 5 ml). The so-obtained solution was slowly evaporated at room temperature, until colourless prisms of (I) formed.

S3. Refinement

The H atoms were fixed geometrically and treated as riding with C—H = 0.93Å, N—H = 0.89 Å and O—H = 0.82 Å with $U_{iso}(H) = 1.2 U_{eq}(\text{carrier})$.

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. Hydrogen bonds are represented as dashed lines.

Figure 2

DIAMOND (Brandenburg, 2005) Projection of (I) along the b axis.

2-Methylanilinium dihydrogen phosphate-phosphoric acid (1/1)

Crystal data

C₇H₁₀N⁺·H₂PO₄⁻·H₃PO₄ $M_r = 303.14$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.8769 (10) Å b = 7.938 (4) Å c = 15.302 (3) Å $\beta = 91.57 (2)^{\circ}$ $V = 1320.7 (7) \text{ Å}^3$ Z = 4 F(000) = 632 $D_x = 1.525 \text{ Mg m}^{-3}$ Ag K\$\alpha\$ radiation, \$\lambda\$ = 0.56085 Å Cell parameters from 25 reflections \$\theta\$ = 8-12° \$\mu\$ = 0.19 mm^{-1}\$ \$T = 298 K\$ Prism, colorless \$0.37 \times 0.31 \times 0.25 mm Data collection

Enraf–Nonius CAD-4	$R_{int} = 0.013$
diffractometer	$\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$
Radiation source: fine-focus sealed tube	$h = -16 \rightarrow 16$
Nonprofiled ω scans	$k = 0 \rightarrow 12$
5416 measured reflections	$l = 0 \rightarrow 23$
5250 independent reflections	2 standard reflections every 120 min
4134 reflections with $I > 2\sigma(I)$	intensity decay: 18%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.08	H-atom parameters constrained
5250 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0493P)^2 + 0.181P]$
170 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.30$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.41$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.08064 (3)	0.43847 (3)	0.736601 (16)	0.02322 (6)	
P2	0.10749 (3)	0.71819 (3)	0.986049 (17)	0.02487 (7)	
01	-0.06037 (8)	0.40074 (11)	0.74454 (6)	0.03314 (17)	
H1	-0.0695	0.3079	0.7670	0.050*	
O2	0.13778 (8)	0.28822 (10)	0.68641 (6)	0.03396 (18)	
H2	0.0974	0.2708	0.6413	0.051*	
O3	0.14542 (9)	0.44285 (11)	0.82411 (5)	0.03420 (18)	
O4	0.08566 (9)	0.59919 (10)	0.68413 (6)	0.03335 (18)	
05	0.19612 (9)	0.70906 (12)	0.90923 (6)	0.0394 (2)	
H5	0.1806	0.6250	0.8798	0.059*	
O6	0.14555 (9)	0.58760 (11)	1.05701 (6)	0.0372 (2)	
H6	0.1003	0.5052	1.0530	0.056*	
O7	0.13831 (9)	0.89278 (10)	1.02544 (5)	0.03362 (18)	
H7	0.1232	0.8928	1.0776	0.050*	
08	-0.02457 (8)	0.69700 (11)	0.95881 (6)	0.03445 (18)	
N1	0.20745 (9)	0.11752 (14)	0.87628 (7)	0.0355 (2)	
H1A	0.1698	0.0513	0.8370	0.053*	

H1B	0.1808	0.2228	0.8695	0.053*	
H1C	0.1910	0.0818	0.9298	0.053*	
C1	0.34057 (12)	0.11198 (18)	0.86394 (10)	0.0400 (3)	
C2	0.41777 (14)	0.1876 (2)	0.92552 (12)	0.0517 (4)	
C3	0.54313 (16)	0.1826 (3)	0.90905 (19)	0.0797 (7)	
H3C	0.5986	0.2305	0.9492	0.096*	
C4	0.58628 (19)	0.1090 (4)	0.8354 (2)	0.0930 (8)	
H4C	0.6702	0.1099	0.8252	0.112*	
C5	0.5070(2)	0.0340 (4)	0.7763 (2)	0.0930 (8)	
H5C	0.5374	-0.0182	0.7269	0.112*	
C6	0.38195 (18)	0.0357 (3)	0.78970 (14)	0.0643 (5)	
H6C	0.3272	-0.0136	0.7496	0.077*	
C7	0.3703 (2)	0.2703 (4)	1.00570 (16)	0.0795 (7)	
H7A	0.3238	0.1902	1.0382	0.119*	
H7B	0.3185	0.3634	0.9890	0.119*	
H7C	0.4382	0.3104	1.0413	0.119*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.03254 (13)	0.01806 (11)	0.01906 (11)	0.00111 (9)	0.00062 (9)	-0.00078 (8)
P2	0.03360 (14)	0.02046 (11)	0.02043 (11)	-0.00449 (9)	-0.00143 (9)	0.00068 (9)
01	0.0333 (4)	0.0282 (4)	0.0379 (4)	-0.0007 (3)	0.0019 (3)	0.0069 (3)
O2	0.0416 (5)	0.0282 (4)	0.0317 (4)	0.0095 (3)	-0.0053 (3)	-0.0105 (3)
03	0.0498 (5)	0.0286 (4)	0.0238 (4)	-0.0003(3)	-0.0071 (3)	-0.0040 (3)
O4	0.0491 (5)	0.0222 (3)	0.0292 (4)	0.0023 (3)	0.0101 (3)	0.0047 (3)
05	0.0494 (5)	0.0385 (5)	0.0309 (4)	-0.0126 (4)	0.0104 (4)	-0.0106 (4)
06	0.0437 (5)	0.0286 (4)	0.0387 (5)	-0.0069 (3)	-0.0126 (4)	0.0104 (3)
O7	0.0533 (5)	0.0225 (3)	0.0252 (4)	-0.0075 (3)	0.0034 (3)	-0.0037 (3)
08	0.0366 (4)	0.0299 (4)	0.0363 (4)	-0.0056 (3)	-0.0082 (3)	0.0101 (3)
N1	0.0315 (5)	0.0339 (5)	0.0409 (5)	-0.0036 (4)	-0.0042 (4)	0.0062 (4)
C1	0.0318 (5)	0.0355 (6)	0.0526 (8)	0.0023 (5)	-0.0013 (5)	0.0065 (6)
C2	0.0360 (6)	0.0522 (9)	0.0662 (10)	0.0007 (6)	-0.0108 (6)	-0.0003 (8)
C3	0.0317 (7)	0.0912 (16)	0.1154 (19)	0.0004 (9)	-0.0107 (10)	-0.0069 (14)
C4	0.0366 (8)	0.123 (2)	0.120 (2)	0.0120 (11)	0.0082 (11)	-0.0074 (19)
C5	0.0630 (13)	0.113 (2)	0.105 (2)	0.0177 (13)	0.0272 (13)	-0.0215 (17)
C6	0.0528 (9)	0.0726 (12)	0.0677 (11)	0.0044 (9)	0.0066 (8)	-0.0128 (10)
C7	0.0610 (12)	0.1016 (18)	0.0752 (14)	-0.0020 (11)	-0.0123 (10)	-0.0313 (13)

Geometric parameters (Å, °)

P1—O3	1.4964 (9)	N1—H1C	0.8900	
P104	1.5092 (10)	C1—C6	1.374 (2)	
P1	1.5571 (9)	C1—C2	1.382 (2)	
P101	1.5707 (9)	C2—C3	1.394 (2)	
P2—O8	1.4942 (9)	C2—C7	1.496 (3)	
P2—O5	1.5422 (10)	C3—C4	1.365 (4)	
P2—O7	1.5445 (10)	C3—H3C	0.9300	

supporting information

P2 0(1 5402 (10)	C4 C5	1 2 (0 (1)
P2	1.5493 (10)		1.368 (4)
	0.8200	C4—H4C	0.9300
02—H2	0.8200	C5—C6	1.381 (3)
O5—H5	0.8200	C5—H5C	0.9300
О6—Н6	0.8200	С6—Н6С	0.9300
O7—H7	0.8200	С7—Н7А	0.9600
N1—C1	1.4659 (16)	С7—Н7В	0.9600
N1—H1A	0.8900	C7—H7C	0.9600
N1—H1B	0.8900		
O3—P1—O4	115.69 (5)	C6—C1—N1	117.83 (14)
O3—P1—O2	105.94 (5)	C2—C1—N1	118.88 (14)
O4—P1—O2	111.37 (6)	C1—C2—C3	116.33 (18)
O3—P1—O1	111.84 (6)	C1—C2—C7	122.21 (15)
O4—P1—O1	104.60 (5)	C3—C2—C7	121.46 (18)
O2—P1—O1	107.21 (5)	C4—C3—C2	121.5 (2)
O8—P2—O5	113.47 (6)	C4—C3—H3C	119.3
08—P2—07	113.99 (6)	С2—С3—Н3С	119.3
O5—P2—O7	101.89 (5)	C3—C4—C5	120.51 (19)
$08 - P^2 - 06$	110.89 (5)	C3—C4—H4C	1197
05—P2—06	110.01 (6)	C5-C4-H4C	119.7
07—P2—06	106.02 (6)	C4-C5-C6	120.2(2)
P1-01-H1	109 5	C4	1199
P1H2	109.5	C6-C5-H5C	119.9
P2H5	109.5	C1 - C6 - C5	119.9 118.3(2)
P2 06 H6	109.5	C1 C6 H6C	120.0
P2 07 H7	109.5	C_{1} C_{0} H_{6}	120.9
12 - 07 - 117	109.5	$C_2 = C_7 = H_7 \Lambda$	120.9
C1 = N1 = H1R	109.5	$C_2 = C_7 = H_7 P$	109.5
	109.5		109.5
CI NI UIC	109.5	$\Pi/A - C / - \Pi/B$	109.5
ULA NI LUC	109.5	$C_2 = C_1 = H/C$	109.5
HIA-NI-HIC	109.5	$\Pi/A = C/ = \Pi/C$	109.5
HIB—NI—HIC	109.5	H/B - C/ - H/C	109.5
C6C1C2	123.26 (15)		
C6—C1—C2—C3	-0.3 (3)	C2—C3—C4—C5	-1.6 (5)
N1—C1—C2—C3	-178.19 (16)	C3—C4—C5—C6	1.6 (5)
C6—C1—C2—C7	179.8 (2)	C2—C1—C6—C5	0.3 (3)
N1—C1—C2—C7	1.9 (3)	N1—C1—C6—C5	178.2 (2)
C1—C2—C3—C4	0.9 (3)	C4—C5—C6—C1	-0.9 (4)
C7—C2—C3—C4	-179.1 (3)		. /

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O4 ⁱ	0.82	1.83	2.6483 (16)	178
O2—H2···O8 ⁱ	0.82	1.80	2.6132 (13)	170
O5—H5…O3	0.82	1.72	2.5351 (15)	176

supporting information

O6—H6…O8 ⁱⁱ	0.82	1.81	2.6223 (16)	170
O7—H7···O4 ⁱⁱⁱ	0.82	1.69	2.5109 (13)	177
N1—H1A···O1 ⁱ	0.89	2.08	2.9627 (16)	172
N1—H1 <i>B</i> ···O3	0.89	1.91	2.7808 (19)	164
N1—H1 C ···O7 ^{iv}	0.89	2.18	3.0086 (15)	154

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+3/2; (ii) -*x*, -*y*+1, -*z*+2; (iii) *x*, -*y*+3/2, *z*+1/2; (iv) *x*, *y*-1, *z*.