# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## (E)-4-Bromo-N'-(2-chlorobenzylidene)benzohydrazide

#### Xiao-Hong Shu,<sup>a</sup> Yun-Peng Diao,<sup>a</sup> Mo-Lin Li,<sup>b</sup> Xu Yan<sup>a</sup> and lia Liu<sup>b</sup>\*

<sup>a</sup>College of Pharmacy, Dalian Medical University, Liaoning 116044, People's Republic of China, and <sup>b</sup>College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, People's Republic of China Correspondence e-mail: jialiu09@126.com

Received 4 April 2009; accepted 4 April 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.094; data-to-parameter ratio = 14.2.

In the title compound,  $C_{14}H_{10}BrClN_2O$ , the dihedral angle between the two benzene rings is  $11.4 (2)^{\circ}$ . In the crystal structure, molecules are connected via intermolecular N-H···O hydrogen bonds into one-dimensional chains running parallel to the c axis.

#### **Related literature**

For the biological activity of hydrazones and Schiff bases, see: Bhandari et al. (2008); Sinha et al. (2008). For a related structure, see: Pan & Yang (2005). For bond-length data, see: Allen et al. (1987).



#### **Experimental**

Crystal data C14H10BrClN2O

 $M_r=337.60$ 

| Monoclinic, $P2_1/c$<br>a = 11.218 (4) Å<br>b = 13.512 (5) Å<br>c = 9.200 (3) Å<br>$\beta = 97.077$ (6)°<br>V = 1383.9 (8) Å <sup>3</sup> | Z = 4<br>Mo Kα radiation<br>$\mu = 3.16 \text{ mm}^{-1}$<br>T = 298  K<br>0.23 × 0.20 × 0.20 mm                          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Data collection                                                                                                                           |                                                                                                                          |  |  |
| Bruker SMART CCD<br>diffractometer<br>Absorption correction: multi-scan<br>(SADABS; Siemens, 1996)<br>$T_{min} = 0.491, T_{max} = 0.531$  | 6907 measured reflections<br>2438 independent reflections<br>1948 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.023$ |  |  |
| Refinement                                                                                                                                |                                                                                                                          |  |  |
| $R[F^2 > 2\sigma(F^2)] = 0.035$<br>wR(F <sup>2</sup> ) = 0.094<br>S = 1.03                                                                | 172 parameters<br>H-atom parameters constrained<br>$\Delta \rho_{max} = 0.57 \text{ e} \text{ Å}^{-3}$                   |  |  |

#### Table 1

2438 reflections

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$    | D-H                                      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------|------------------------------------------|-------------------------|--------------|---------------------------|
| $N2-H2\cdotsO1^{i}$ | 0.86                                     | 2.12                    | 2.918 (3)    | 154                       |
| Symmetry code: (i)  | $x_1 - y + \frac{3}{2}, z + \frac{1}{2}$ |                         |              |                           |

 $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ 

(1)  $x, -y + \frac{2}{2}, z + \frac{4}{2}$ 

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work is supported in part by a grant from the Department of Education of Liaoning, China (05 L122).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2944).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.
- Pan, F.-Y. & Yang, J.-G. (2005). Acta Cryst. E61, o354-o355.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.

# supporting information

Acta Cryst. (2009). E65, o1034 [doi:10.1107/S1600536809012860]

## (E)-4-Bromo-N'-(2-chlorobenzylidene)benzohydrazide

## Xiao-Hong Shu, Yun-Peng Diao, Mo-Lin Li, Xu Yan and Jia Liu

#### S1. Comment

Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Bhandari *et al.*, 2008; Sinha *et al.*, 2008). In this paper, the crystal structure of the title compound, (I), a new Schiff base compound derived from the condensation reaction of 2-chlorobenzaldehyde with 4-bromobenzohydrazide is reported.

The Schiff base molecule of the compound displays a *trans* configuration with respect to the C=N and C—N bonds (Fig. 1). All the bond lengths are within normal ranges (Allen *et al.*, 1987), and are comparable to those in the related compound *N'*-(2-chlorobenzylidene)-2-hydroxybenzohydrazide (Pan & Yang, 2005). The dihedral angle between the two benzene rings is 11.4 (2)°. In the crystal structure, the  $C_{14}H_{10}BrClN_2O$  molecules are connected *via* intermolecular N—H···O hydrogen bonds into one-dimensional chains running parallel to the *c* axis (Table 1 & Fig. 2).

#### **S2. Experimental**

2-Chlorobenzaldehyde (0.1 mmol) and 4-bromobenzohydrazide acid hydrazide (0.1 mmol) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Colourless blocks of (I) were formed by gradual evaporation of the solvent over a period of five days at room temperature.

#### **S3. Refinement**

All H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å and N—H = 0.86 Å.  $U_{iso}(H) = 1.2U_{eq}(C,N)$ .



#### Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.



#### Figure 2

The one-dimensional chains structure along c axis. The donor-acceptor for the intermolecular hydrogen bonds are shown as dashed lines.

#### (E)-4-Bromo-N'-(2-chlorobenzylidene)benzohydrazide

Crystal data

C<sub>14</sub>H<sub>10</sub>BrClN<sub>2</sub>O  $M_r = 337.60$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 11.218 (4) Å b = 13.512 (5) Å c = 9.200 (3) Å  $\beta = 97.077$  (6)° V = 1383.9 (8) Å<sup>3</sup> Z = 4

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Siemens, 1996)  $T_{\min} = 0.491, T_{\max} = 0.531$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.035$  $wR(F^2) = 0.094$ S = 1.032438 reflections 172 parameters F(000) = 672  $D_x = 1.620 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2695 reflections  $\theta = 2.4-26.2^{\circ}$   $\mu = 3.16 \text{ mm}^{-1}$  T = 298 KBlock, colorless  $0.23 \times 0.20 \times 0.20 \text{ mm}$ 

6907 measured reflections 2438 independent reflections 1948 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.023$  $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 1.8^{\circ}$  $h = -13 \rightarrow 13$  $k = -10 \rightarrow 16$  $l = -10 \rightarrow 10$ 

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

| H-atom parameters constrained                     | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
|---------------------------------------------------|-----------------------------------------------------------|
| $w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 0.9326P]$ | $\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$ |
| where $P = (F_o^2 + 2F_c^2)/3$                    | $\Delta  ho_{ m min} = -0.39 \  m e \  m \AA^{-3}$        |

Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | У            | Z            | $U_{\rm iso}$ */ $U_{\rm eq}$ |  |
|-----|--------------|--------------|--------------|-------------------------------|--|
| Br1 | 0.45713 (4)  | 1.17921 (3)  | 0.84354 (5)  | 0.07653 (18)                  |  |
| Cl1 | 0.23484 (10) | 0.37589 (7)  | 0.63350 (10) | 0.0790 (3)                    |  |
| N1  | 0.1872 (2)   | 0.66418 (16) | 0.4378 (2)   | 0.0423 (5)                    |  |
| N2  | 0.2302 (2)   | 0.74288 (16) | 0.5254 (2)   | 0.0419 (5)                    |  |
| H2  | 0.2331       | 0.7398       | 0.6191       | 0.050*                        |  |
| 01  | 0.2623 (2)   | 0.83236 (15) | 0.3250 (2)   | 0.0555 (6)                    |  |
| C1  | 0.1301 (3)   | 0.4950 (2)   | 0.4158 (3)   | 0.0439 (7)                    |  |
| C2  | 0.1495 (3)   | 0.3987 (2)   | 0.4655 (3)   | 0.0521 (7)                    |  |
| C3  | 0.1046 (3)   | 0.3167 (2)   | 0.3829 (4)   | 0.0634 (9)                    |  |
| H3  | 0.1184       | 0.2529       | 0.4190       | 0.076*                        |  |
| C4  | 0.0401 (3)   | 0.3319 (3)   | 0.2483 (4)   | 0.0674 (10)                   |  |
| H4  | 0.0100       | 0.2781       | 0.1924       | 0.081*                        |  |
| C5  | 0.0197 (3)   | 0.4264 (3)   | 0.1954 (4)   | 0.0670 (10)                   |  |
| H5  | -0.0245      | 0.4358       | 0.1041       | 0.080*                        |  |
| C6  | 0.0637 (3)   | 0.5072 (3)   | 0.2759 (4)   | 0.0558 (8)                    |  |
| H6  | 0.0497       | 0.5705       | 0.2378       | 0.067*                        |  |
| C7  | 0.1768 (3)   | 0.5816 (2)   | 0.5014 (3)   | 0.0448 (7)                    |  |
| H7  | 0.1987       | 0.5760       | 0.6019       | 0.054*                        |  |
| C8  | 0.2680 (3)   | 0.82507 (19) | 0.4591 (3)   | 0.0402 (6)                    |  |
| C9  | 0.3160 (2)   | 0.90782 (19) | 0.5568 (3)   | 0.0387 (6)                    |  |
| C10 | 0.3159 (3)   | 1.0028 (2)   | 0.4976 (4)   | 0.0639 (10)                   |  |
| H10 | 0.2873       | 1.0121       | 0.3993       | 0.077*                        |  |
| C11 | 0.3572 (4)   | 1.0832 (2)   | 0.5811 (4)   | 0.0687 (10)                   |  |
| H11 | 0.3549       | 1.1463       | 0.5404       | 0.082*                        |  |
| C12 | 0.4020 (3)   | 1.0687 (2)   | 0.7257 (3)   | 0.0485 (7)                    |  |
| C13 | 0.4055 (3)   | 0.9757 (2)   | 0.7869 (3)   | 0.0502 (7)                    |  |
| H13 | 0.4371       | 0.9667       | 0.8844       | 0.060*                        |  |
| C14 | 0.3620(3)    | 0.8957 (2)   | 0.7029 (3)   | 0.0432 (6)                    |  |
| H14 | 0.3635       | 0.8330       | 0.7447       | 0.052*                        |  |

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|-------------|-------------|-------------|---------------|--------------|---------------|
| Br1 | 0.0834 (3)  | 0.0523 (2)  | 0.0923 (3)  | -0.02495 (18) | 0.0047 (2)   | -0.02263 (19) |
| Cl1 | 0.1214 (8)  | 0.0504 (5)  | 0.0598 (6)  | 0.0029 (5)    | -0.0099(5)   | 0.0011 (4)    |
| N1  | 0.0549 (14) | 0.0366 (13) | 0.0344 (12) | 0.0020 (10)   | 0.0014 (10)  | -0.0050 (10)  |
| N2  | 0.0650 (15) | 0.0336 (12) | 0.0262 (11) | -0.0013 (10)  | 0.0018 (10)  | -0.0021 (9)   |
| O1  | 0.0959 (17) | 0.0437 (12) | 0.0263 (11) | 0.0018 (11)   | 0.0054 (10)  | 0.0010 (8)    |
| C1  | 0.0496 (16) | 0.0391 (15) | 0.0445 (16) | -0.0057 (12)  | 0.0120 (13)  | -0.0079 (13)  |
| C2  | 0.0590 (19) | 0.0442 (17) | 0.0542 (18) | -0.0014 (14)  | 0.0108 (15)  | -0.0081 (14)  |
| C3  | 0.076 (2)   | 0.0392 (17) | 0.077 (3)   | -0.0050 (15)  | 0.017 (2)    | -0.0117 (16)  |
| C4  | 0.076 (2)   | 0.058 (2)   | 0.066 (2)   | -0.0167 (18)  | 0.0048 (19)  | -0.0232 (18)  |
| C5  | 0.069 (2)   | 0.071 (2)   | 0.058 (2)   | -0.0143 (18)  | -0.0046 (17) | -0.0136 (18)  |
| C6  | 0.0590 (19) | 0.0543 (19) | 0.0540 (19) | -0.0083 (15)  | 0.0061 (15)  | -0.0098 (15)  |
| C7  | 0.0588 (18) | 0.0397 (16) | 0.0360 (15) | -0.0021 (13)  | 0.0058 (13)  | -0.0027 (12)  |
| C8  | 0.0519 (17) | 0.0352 (14) | 0.0332 (15) | 0.0075 (12)   | 0.0038 (12)  | 0.0004 (11)   |
| С9  | 0.0510 (16) | 0.0333 (14) | 0.0322 (14) | 0.0015 (12)   | 0.0067 (12)  | -0.0004 (11)  |
| C10 | 0.105 (3)   | 0.0416 (17) | 0.0414 (18) | -0.0093 (17)  | -0.0061 (17) | 0.0104 (14)   |
| C11 | 0.103 (3)   | 0.0325 (17) | 0.068 (2)   | -0.0132 (17)  | 0.001 (2)    | 0.0098 (16)   |
| C12 | 0.0519 (17) | 0.0397 (16) | 0.0542 (19) | -0.0110 (13)  | 0.0078 (14)  | -0.0071 (14)  |
| C13 | 0.0638 (19) | 0.0464 (17) | 0.0384 (16) | -0.0065 (14)  | -0.0024 (14) | -0.0024 (13)  |
| C14 | 0.0570 (17) | 0.0341 (14) | 0.0381 (15) | -0.0007 (12)  | 0.0042 (12)  | 0.0041 (12)   |

Atomic displacement parameters  $(Å^2)$ 

## Geometric parameters (Å, °)

| 1.377 (4) |
|-----------|
| 0.9300    |
| 0.9300    |
| 0.9300    |
| 1.493 (4) |
| 1.388 (4) |
| 1.394 (4) |
| 1.378 (5) |
| 0.9300    |
| 1.377 (5) |
| 0.9300    |
| 1.376 (4) |
| 1.383 (4) |
| 0.9300    |
| 0.9300    |
| 120.1     |
| 120.1     |
| 122.3 (3) |
| 120.9(2)  |
| 116.8 (2) |
| 117.9 (3) |
|           |
|           |

| C1—C2—C3     | 122.1 (3)  | C10—C9—C8       | 118.1 (2)  |
|--------------|------------|-----------------|------------|
| C1—C2—Cl1    | 120.3 (2)  | C11—C10—C9      | 121.6 (3)  |
| C3—C2—C11    | 117.5 (3)  | C11—C10—H10     | 119.2      |
| C4—C3—C2     | 119.1 (3)  | C9—C10—H10      | 119.2      |
| С4—С3—Н3     | 120.5      | C12—C11—C10     | 118.9 (3)  |
| С2—С3—Н3     | 120.5      | C12—C11—H11     | 120.5      |
| C3—C4—C5     | 120.3 (3)  | C10-C11-H11     | 120.5      |
| C3—C4—H4     | 119.8      | C13—C12—C11     | 121.0 (3)  |
| C5—C4—H4     | 119.8      | C13—C12—Br1     | 119.5 (2)  |
| C4—C5—C6     | 120.9 (3)  | C11—C12—Br1     | 119.5 (2)  |
| С4—С5—Н5     | 119.5      | C12—C13—C14     | 119.6 (3)  |
| С6—С5—Н5     | 119.5      | C12—C13—H13     | 120.2      |
| C5—C6—C1     | 120.7 (3)  | C14—C13—H13     | 120.2      |
| С5—С6—Н6     | 119.7      | C13—C14—C9      | 120.9 (3)  |
| С1—С6—Н6     | 119.7      | C13—C14—H14     | 119.6      |
| N1—C7—C1     | 119.9 (3)  | C9—C14—H14      | 119.6      |
|              |            |                 |            |
| C7—N1—N2—C8  | 165.4 (3)  | N1—N2—C8—C9     | -178.9 (2) |
| C6-C1-C2-C3  | -0.9(5)    | O1—C8—C9—C14    | -157.9 (3) |
| C7—C1—C2—C3  | 180.0 (3)  | N2-C8-C9-C14    | 22.8 (4)   |
| C6-C1-C2-Cl1 | 177.7 (2)  | O1-C8-C9-C10    | 21.4 (4)   |
| C7—C1—C2—Cl1 | -1.4 (4)   | N2-C8-C9-C10    | -158.0 (3) |
| C1—C2—C3—C4  | 0.5 (5)    | C14—C9—C10—C11  | -1.6 (5)   |
| Cl1—C2—C3—C4 | -178.1 (3) | C8-C9-C10-C11   | 179.1 (3)  |
| C2—C3—C4—C5  | -0.2 (6)   | C9—C10—C11—C12  | 1.4 (6)    |
| C3—C4—C5—C6  | 0.3 (6)    | C10-C11-C12-C13 | -0.1 (6)   |
| C4—C5—C6—C1  | -0.7 (6)   | C10-C11-C12-Br1 | -179.0 (3) |
| C2-C1-C6-C5  | 1.0 (5)    | C11—C12—C13—C14 | -1.0(5)    |
| C7—C1—C6—C5  | -179.9 (3) | Br1-C12-C13-C14 | 177.9 (2)  |
| N2—N1—C7—C1  | 179.2 (2)  | C12—C13—C14—C9  | 0.8 (5)    |
| C2-C1-C7-N1  | 160.0 (3)  | C10-C9-C14-C13  | 0.5 (5)    |
| C6-C1-C7-N1  | -19.1 (4)  | C8—C9—C14—C13   | 179.7 (3)  |
| N1—N2—C8—O1  | 1.8 (4)    |                 |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                 | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-------------------------|------|-------|-----------|-------------------------|
| N2—H2···O1 <sup>i</sup> | 0.86 | 2.12  | 2.918 (3) | 154                     |

Symmetry code: (i) x, -y+3/2, z+1/2.