Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

9-Chloro-1-methyl-7-phenyl-5,6-dihydro13 H -indolo[3,2-c]acridine

Makuteswaran Sridharan, ${ }^{\text {a }}$ Karnam J. Rajendra Prasad ${ }^{\text {a }}$ and Matthias Zeller ${ }^{\text {b* }}$
${ }^{\text {a }}$ Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India, and ${ }^{\mathbf{b}}$ Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
Correspondence e-mail: mzeller@ysu.edu

Received 2 April 2009; accepted 13 April 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.053 ; w R$ factor $=0.124 ;$ data-to-parameter ratio $=18.5$.

The title compound, $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClN}_{2}$, is a 5,6-dihydro- 13 H -indolo[3,2-c]acridine prepared by condensation of a $2,3,4,9-$ tetrahydro- 1 H -carbazol-1-one with 2-aminobenzophenone. The crystals undergo a destructive phase change upon cooling at varying temperatures between 270 and 200 K , depending on cooling rate and disturbance by vibration, thus indicating supercooling of the metastable room-temperature structure at lower temperature. The overall planarity of the indolo[3,2-c]acridine part of the molecule is interrupted by the saturated ethylene group, and the planes of the two halves exhibit a dihedral angle of $22.05(6)^{\circ}$ with each other while themselves being essentially planar. Packing is dominated by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. No classical hydrogen bonds or stacking interactions are observed.

Related literature

For general background on the synthesis and properties of carbazole derivatives, see: Knölker \& Reddy (2002); Choi et al. (2008). For synthesis and structures of indoloacridines, see: Sridharan et al. (2009a,b). For pharmacologically active constituents (especially carbazole alkaloids) of Murraya koenigii spreng, see: Iyer \& Devi (2008).

Experimental

Crystal data
$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClN}_{2}$
$\gamma=81.754$ (7) ${ }^{\circ}$
$M_{r}=394.88$
Triclinic, $P \overline{1}$
$a=9.981$ (4) \AA
$b=10.057$ (4) A
$c=10.281$ (4) \AA
$\alpha=76.459$ (7) ${ }^{\circ}$
$\beta=80.279(7)^{\circ}$

$$
V=983.1(7) \AA^{3}
$$

$Z=2$
Mo $K \alpha$ radiation
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.55 \times 0.20 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.851, T_{\text {max }}=0.975$
10234 measured reflections 4857 independent reflections 2826 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053 \quad 263$ parameters
$w R\left(F^{2}\right)=0.124$
H -atom parameters constrained
$S=1.02$
4857 reflections
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$. $C g 1$ is the centroid of the ring $\mathrm{C} 1-\mathrm{C} 6$ and $C g 2$ is the centroid of the indole ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 B \cdots C g 1^{\mathrm{i}}$	0.97	2.96	$3.848(3)$	152
${\mathrm{C} 26-\mathrm{H} 26 \cdots C g 2^{\mathrm{i}}}^{2}$	0.93	2.51	$3.391(3)$	158

Symmetry code: (i) $-x+2,-y+2,-z+2$.
Data collection and cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and Mercury (Macrae et al., 2008).

The authors acknowledge the UGC, New Delhi, India, for the award of a Major Research Project (grant No. F.31-122/ 2005). MS thanks the UGC, New Delhi, for the award of a research fellowship. The diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant No. CAP491, and by YSU.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2247).

References

Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc, Madison, Wisconsin, USA.
Choi, T., Czerwonka, R., Forke, R., Jäger, A., Knöll, J., Krahl, M. P., Krause, T., Reddy, K. R., Franzblau, S. G. \& Knölker, H.-J. (2008). Med. Chem. Res. 17, 374-385.
Iyer, D. \& Devi, P. U. (2008). Pharmacogn. Rev. 2, 180-184.
Knölker, H. J. \& Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sridharan, M., Rajendra Prasad, K. J., Kotheimer, A. E., Wagner, T. R. \& Zeller, M. (2009b). J. Chem. Crystallogr. 39. In the press.
Sridharan, M., Rajendra Prasad, K. J., Ngendahimana, A. \& Zeller, M. (2009a). J. Chem. Crystallogr. 39, 270-278.

supporting information

Acta Cryst. (2009). E65, o1064 [doi:10.1107/S1600536809013737]

9-Chloro-1-methyl-7-phenyl-5,6-dihydro-13H-indolo[3,2-c]acridine Makuteswaran Sridharan, Karnam J. Rajendra Prasad and Matthias Zeller

S1. Comment

Nitrogen-containing heterocyclic compounds are the key building blocks used to develop compounds of biological and medicinal interest to chemists. Among nitrogen heterocycles, carbazole alkaloids represent an important class of natural products. The Indian medicinal plant Murraya koenigii spreng (Rutaceae) has been found to be a rich source of many carbazole alkaloids (Iyer \& Devi, 2008). A number of carbazole alkaloids with intriguing novel structures and useful biological activities were isolated from natural sources over the past decades which had attracted chemists to frame novel synthetic strategies towards the synthesis of carbazole and its derivatives. The continuous increase of isolable natural products as well as pharmacological action of these carbazole derivatives has generated synthetic interest; consequently the syntheses of carbazoles have been a vigorously active area of study (Knölker \& Reddy, 2002, and references therein; Choi et al. 2008).
Based on the structural, biological and pharmacological importance of the carbazole derivatives, the present investigation was aimed to devise a viable synthetic route to prepare these classes of compound using different synthetic methodologies. For our synthetic strategy 2,3,4,9-tetra-hydro-1H-carbazol-1-ones, prepared in our laboratory as potential precursors, have opened new avenues for the synthesis of highly functionalized carbazole derivatives. Based on these facts we have developed and reported an efficient syntheses of novel indoloacridines and have reported the crystallographic behavior of some of these compounds (Sridharan et al., 2009a,b). The current contribution presents the synthesis (Fig. 1) and crystal structure of the title compound which represents one such indoloacridine.
The compound undergoes a destructive phase change upon cooling at varying temperatures between 270 and 200 K , depending on cooling rate and disturbance by vibration, thus indicating supercooling of the room-temperature phase. To guarantee collection of a whole dataset the collection was thus performed at room temperture. An ORTEPstyle plot of the molecule is shown in Fig. 2.
The overall planarity of the indolo[3,2-c]acridine part of the molecule is interrupted by the saturated ethylene group of C 9 and C 10 . The planes formed by C 1 to $\mathrm{C} 9, \mathrm{C} 19$ and N 1 as well as the plane made up of atoms C10 to C18, C20 and N 2 are overall planar with r.m.s. deviations from planarity of only 0.01 and $0.03 \AA$, respectively. With each other the two planes form an angle of $22.05(6)^{\circ}$. C10 deviates from the first plane by 0.807 (3) $\AA, \mathrm{C} 9$ from the second by 0.476 (3) \AA. The phenyl ring is at an angle to the first plane of $77.81(6)^{\circ}$.
The $\mathrm{N} — \mathrm{H}$ group does not form a classical hydrogen bond in the solid state and no strong $\pi-\pi$ stacking interactions are observed. Other than van der Waals dispersive forces the packing of the compound in the solid state is dominated by C $\mathrm{H} \cdots \pi$ interactions (Fig. 3). The two most prominent such interactions are between $\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$ and the centroid $C g 1$ of the ring built by atoms C 1 to C 6 (the chlorine-substituted phenyl ring), and between $\mathrm{C} 26-\mathrm{H} 26$ and the centroid Cg 2 of the indole ring with $\mathrm{H} \cdots \mathrm{Cg}$ distances of 2.96 and $2.51 \AA$ (Table 1). Additional very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{C}$ interactions are indicated in Fig. 3.

In a recent publication (Sridharan et al., 2009b) we reported the structure of the dehydrogenated derivative of the title compound. It crystallizes in a primitive inversion symmetric setting with a similar volume as for the structure of the title compound. There are however no further reaching similarities between the structures of the two compounds. The hydrogenated molecule is essentially planar and packing, shape of the unit cell and location of the inversion centers are different for the two related compounds (Fig. 4).

S2. Experimental

8-Methyl-2,3,4,9-tetrahydro-1 H-carbazol-1-one ($0.995 \mathrm{~g}, 5 \mathrm{mmol}$) and 2-amino-5-chlorobenzophenone (1.155 g, 5 mmol) were refluxed for 5 h in glacial acetic acid (4 ml) containing one drop of sulfuric acid. The reaction was monitored by TLC. After the completion of the reaction, the mixture was poured into crushed ice, extracted with chloroform, and the organic layer dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The crude product obtained on removal of the solvent was purified by column chromatography over silica gel using petroleum ether:ethyl acetate (98:5) to yield the title compound. $1.26 \mathrm{~g}, 64 \%$, m.p. $527-529$ K. Single crystals suitable for data collection were grown by slow evaporation from a solution in ethanol.

S3. Refinement

All H atoms were added in calculated positions with $\mathrm{C}-\mathrm{H}$ bond distances of 0.97 (methylene), 0.93 (aromatic) and 0.96 \AA (methyl) and an $\mathrm{N} — \mathrm{H}$ distance of $0.86 \AA$. They were refined with isotropic displacement parameters $U_{\text {iso }}$ of 1.5 (methyl) or 1.2 times $U_{\text {eq }}$ (all others) of the adjacent C or N atom.

$+$

Figure 1
Synthesis of the title compound

Figure 2
Thermal ellipsoid plot of the title compound with the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level, H atoms are shown as capped sticks.

Figure 3
Packing view of the title compound showing $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{C}$ interactions (blue dotted lines).

Figure 4

Overlay of the title compound with its hydrogenated counterpart (Sridharan et al., 2009b). The chlorobenzene part of the top molecule was used to define the overlay of the two compounds. The other molecules are created by the symmetry operations of their respective structures.

9-Chloro-1-methyl-7-phenyl-5,6-dihydro-13H-indolo[3,2-c]acridine

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClN}_{2}$
$M_{r}=394.88$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=9.981$ (4) \AA
$b=10.057$ (4) \AA
$c=10.281$ (4) \AA
$\alpha=76.459(7)^{\circ}$
$\beta=80.279$ (7) ${ }^{\circ}$
$\gamma=81.754(7)^{\circ}$
$V=983.1(7) \AA^{3}$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(APEX2; Bruker, 2008)
$T_{\text {min }}=0.851, T_{\text {max }}=0.975$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.124$
$S=1.02$
4857 reflections
263 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$Z=2$
$F(000)=412$
$D_{\mathrm{x}}=1.334 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 417 reflections
$\theta=2.6-30.3^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, yellow
$0.55 \times 0.20 \times 0.12 \mathrm{~mm}$

10234 measured reflections
4857 independent reflections
2826 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-13 \rightarrow 13$
$k=-13 \rightarrow 13$
$l=-13 \rightarrow 13$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0406 P)^{2}+0.0904 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	1.0539 (2)	0.6878 (2)	0.9185 (2)	0.0377 (5)
C2	1.1590 (2)	0.6123 (2)	0.8474 (2)	0.0483 (6)
H2	1.1628	0.6231	0.7546	0.058*
C3	1.2550 (2)	0.5237 (2)	0.9125 (2)	0.0499 (6)
H3	1.3237	0.4741	0.8645	0.060*
C4	1.2495 (2)	0.5079 (2)	1.0516 (2)	0.0433 (5)
C5	1.1507 (2)	0.5793 (2)	1.1249 (2)	0.0401 (5)
H5	1.1498	0.5674	1.2175	0.048*
C6	1.04930 (19)	0.6717 (2)	1.05958 (19)	0.0360 (5)
C7	0.9424 (2)	0.7498 (2)	1.12968 (19)	0.0366 (5)
C8	0.8504 (2)	0.8392 (2)	1.0570 (2)	0.0384 (5)
C9	0.7306 (2)	0.9240 (2)	1.1197 (2)	0.0481 (6)
H9A	0.7504	0.9349	1.2056	0.058*
H9B	0.6509	0.8741	1.1379	0.058*
C10	0.6961 (2)	1.0667 (2)	1.0325 (2)	0.0481 (6)
H10A	0.6064	1.1058	1.0675	0.058*
H10B	0.7625	1.1270	1.0357	0.058*
C11	0.6973 (2)	1.0559 (2)	0.8900 (2)	0.0399 (5)
C12	0.6403 (2)	1.1467 (2)	0.7787 (2)	0.0406 (5)
C13	0.5656 (2)	1.2770 (2)	0.7608 (2)	0.0509 (6)
H13	0.5405	1.3216	0.8323	0.061*
C14	0.5304 (2)	1.3371 (3)	0.6356 (3)	0.0607 (7)
H14	0.4825	1.4245	0.6219	0.073*
C15	0.5649 (2)	1.2703 (3)	0.5283 (3)	0.0606 (7)
H15	0.5364	1.3135	0.4457	0.073*
C16	0.6396 (2)	1.1428 (2)	0.5396 (2)	0.0496 (6)
C17	0.6786 (2)	1.0840 (2)	0.6669 (2)	0.0412 (5)
C18	0.7711 (2)	0.9486 (2)	0.8411 (2)	0.0388 (5)
C19	0.8654 (2)	0.8472 (2)	0.91467 (19)	0.0370 (5)
C20	0.6795 (3)	1.0715 (3)	0.4238 (2)	0.0692 (8)
H20A	0.6358	1.1226	0.3482	0.104*
H20B	0.6512	0.9805	0.4503	0.104*
H20C	0.7769	1.0657	0.3987	0.104*
C21	0.9294 (2)	0.7292 (2)	1.27990 (19)	0.0373 (5)
C22	0.8344 (2)	0.6490 (3)	1.3624 (2)	0.0557 (6)

H22	0.7773	0.6089	1.3236	0.067^{*}
C23	$0.8222(3)$	$0.6269(3)$	$1.5009(2)$	$0.0594(7)$
H23	0.7574	0.5723	1.5548	0.071^{*}
C24	$0.9056(2)$	$0.6854(2)$	$1.5591(2)$	$0.0493(6)$
H24	0.8983	0.6703	1.6527	0.059^{*}
C25	$0.9988(3)$	$0.7656(3)$	$1.4794(2)$	$0.0608(7)$
H25	1.0548	0.8065	1.5188	0.073^{*}
C26	$1.0116(2)$	$0.7874(3)$	$1.3397(2)$	$0.0575(7)$
H26	1.0767	0.8420	1.2864	0.069^{*}
C12	$1.37259(6)$	$0.39220(7)$	$1.13247(6)$	$0.0601(2)$
N1	$0.96084(17)$	$0.77544(17)$	$0.84684(16)$	$0.0407(4)$
N2	$0.75957(17)$	$0.96338(17)$	$0.70665(17)$	$0.0433(4)$
H2A	0.7966	0.9069	0.6563	0.052^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0383 (11)	0.0386 (12)	0.0376 (11)	-0.0026 (9)	-0.0047 (9)	-0.0122 (9)
C2	0.0522 (13)	0.0554 (15)	0.0375 (12)	0.0053 (11)	-0.0065 (10)	-0.0170 (11)
C3	0.0457 (13)	0.0552 (15)	0.0493 (13)	0.0090 (11)	-0.0070 (10)	-0.0208 (12)
C4	0.0414 (12)	0.0400 (12)	0.0476 (13)	0.0002 (10)	-0.0110 (10)	-0.0069 (10)
C5	0.0420 (12)	0.0422 (13)	0.0352 (11)	-0.0035 (10)	-0.0069 (9)	-0.0059 (10)
C6	0.0382 (11)	0.0361 (11)	0.0348 (11)	-0.0046 (9)	-0.0044 (9)	-0.0098 (9)
C7	0.0406 (11)	0.0359 (12)	0.0335 (10)	-0.0060 (9)	-0.0032 (9)	-0.0084 (9)
C8	0.0400 (11)	0.0383 (12)	0.0363 (11)	-0.0038 (9)	-0.0015 (9)	-0.0098 (9)
C9	0.0495 (13)	0.0506 (14)	0.0398 (12)	0.0051 (11)	-0.0006 (10)	-0.0109 (11)
C10	0.0538 (14)	0.0446 (14)	0.0448 (13)	0.0035 (11)	-0.0038 (10)	-0.0147 (11)
C11	0.0397 (11)	0.0359 (12)	0.0427 (12)	-0.0005 (9)	-0.0038 (9)	-0.0094 (10)
C12	0.0360 (11)	0.0391 (12)	0.0455 (12)	-0.0003 (10)	-0.0040 (9)	-0.0105 (10)
C13	0.0504 (14)	0.0418 (13)	0.0583 (15)	0.0047 (11)	-0.0051 (11)	-0.0139 (12)
C14	0.0621 (16)	0.0425 (14)	0.0703 (17)	0.0089 (12)	-0.0152 (13)	-0.0026 (13)
C15	0.0665 (16)	0.0538 (16)	0.0576 (15)	0.0043 (13)	-0.0236 (13)	-0.0002 (13)
C16	0.0544 (14)	0.0459 (14)	0.0491 (14)	-0.0024 (11)	-0.0170 (11)	-0.0064 (11)
C17	0.0403 (12)	0.0358 (12)	0.0474 (13)	-0.0007 (10)	-0.0109 (9)	-0.0076 (10)
C18	0.0438 (12)	0.0377 (12)	0.0352 (11)	-0.0016 (10)	-0.0073 (9)	-0.0090 (9)
C19	0.0402 (11)	0.0356 (12)	0.0361 (11)	-0.0023 (9)	-0.0048 (9)	-0.0106 (9)
C20	0.090 (2)	0.0684 (18)	0.0523 (15)	0.0027 (15)	-0.0249 (14)	-0.0146 (14)
C21	0.0389 (11)	0.0392 (12)	0.0330 (11)	-0.0012 (10)	-0.0040 (9)	-0.0089 (9)
C22	0.0668 (16)	0.0670 (17)	0.0387 (13)	-0.0280 (14)	-0.0050 (11)	-0.0115 (12)
C23	0.0729 (17)	0.0674 (17)	0.0386 (13)	-0.0267 (14)	0.0006 (12)	-0.0069 (12)
C24	0.0595 (15)	0.0525 (14)	0.0338 (11)	0.0004 (12)	-0.0067 (10)	-0.0087 (11)
C25	0.0627 (16)	0.0808 (19)	0.0467 (14)	-0.0232 (15)	-0.0142 (12)	-0.0151 (13)
C26	0.0587 (15)	0.0747 (18)	0.0430 (13)	-0.0280 (14)	-0.0049 (11)	-0.0096 (13)
C12	0.0529 (4)	0.0598 (4)	0.0614 (4)	0.0131 (3)	-0.0138 (3)	-0.0083 (3)
N1	0.0444 (10)	0.0417 (10)	0.0368 (9)	0.0045 (8)	-0.0088 (8)	-0.0134 (8)
N2	0.0524 (11)	0.0383 (10)	0.0408 (10)	0.0047 (9)	-0.0107 (8)	-0.0148 (8)

Geometric parameters (A, ${ }^{\circ}$)

C1-N1	1.369 (2)	C13-H13	0.9300
C1-C2	1.408 (3)	C14-C15	1.393 (3)
C1-C6	1.415 (3)	C14-H14	0.9300
C2-C3	1.361 (3)	C15-C16	1.378 (3)
C2-H2	0.9300	C15-H15	0.9300
C3-C4	1.394 (3)	C16-C17	1.400 (3)
C3-H3	0.9300	C16-C20	1.499 (3)
C4-C5	1.362 (3)	C17-N2	1.375 (2)
C4-C12	1.742 (2)	C18-N2	1.378 (2)
C5-C6	1.416 (3)	C18-C19	1.450 (3)
C5-H5	0.9300	C19-N1	1.315 (2)
C6-C7	1.428 (3)	C20-H20A	0.9600
C7-C8	1.375 (3)	C20-H20B	0.9600
C7-C21	1.495 (3)	C20-H20C	0.9600
C8-C19	1.430 (3)	C21-C26	1.368 (3)
C8-C9	1.509 (3)	C21-C22	1.377 (3)
C9-C10	1.530 (3)	C22-C23	1.375 (3)
C9-H9A	0.9700	C22-H22	0.9300
C9-H9B	0.9700	C23-C24	1.368 (3)
C10-C11	1.492 (3)	C23-H23	0.9300
C10-H10A	0.9700	C24-C25	1.355 (3)
C10-H10B	0.9700	C24-H24	0.9300
C11-C18	1.364 (3)	C25-C26	1.388 (3)
C11-C12	1.432 (3)	C25-H25	0.9300
C12-C13	1.400 (3)	C26-H26	0.9300
C12-C17	1.410 (3)	N2-H2A	0.8600
C13-C14	1.369 (3)		
N1-C1-C2	118.08 (18)	C13-C14-H14	119.3
N1-C1-C6	122.72 (18)	C15-C14-H14	119.3
C2- $21-\mathrm{C} 6$	119.20 (18)	C16-C15-C14	122.7 (2)
C3-C2-C1	121.0 (2)	C16-C15-H15	118.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.5	C14-C15-H15	118.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.5	C15-C16-C17	115.4 (2)
C2-C3-C4	119.4 (2)	C15-C16-C20	123.0 (2)
C2-C3-H3	120.3	C17-C16-C20	121.6 (2)
C4-C3-H3	120.3	N2-C17-C16	128.9 (2)
C5-C4-C3	121.83 (19)	N2-C17-C12	108.05 (17)
C5-C4-Cl2	119.76 (16)	C16-C17-C12	123.0 (2)
C3-C4-Cl2	118.41 (16)	C11-C18-N2	110.36 (18)
C4- $\mathrm{C} 5-\mathrm{C} 6$	119.80 (18)	C11-C18-C19	123.91 (18)
C4- $45-\mathrm{H} 5$	120.1	N2-C18-C19	124.99 (18)
C6-C5-H5	120.1	N1-C19-C8	125.10 (18)
C1-C6-C5	118.68 (18)	N1-C19-C18	118.81 (18)
C1-C6-C7	118.34 (18)	C8-C19-C18	116.00 (18)
C5-C6-C7	122.98 (18)	C16-C20-H20A	109.5

C8-C7-C6	118.72 (17)
C8-C7- 21	121.44 (18)
C6-C7-C21	119.80 (17)
C7-C8-C19	118.02 (18)
C7-C8-C9	123.77 (18)
C19-C8-C9	118.14 (18)
C8-C9-C10	114.34 (18)
C8-C9-H9A	108.7
C10-C9-H9A	108.7
C8-C9-H9B	108.7
C10-C9-H9B	108.7
H9A-C9-H9B	107.6
C11-C10-C9	109.85 (18)
C11-C10-H10A	109.7
C9-C10-H10A	109.7
C11-C10-H10B	109.7
C9-C10-H10B	109.7
H10A-C10-H10B	108.2
C18-C11-C12	106.56 (18)
C18-C11-C10	121.04 (18)
C12-C11-C10	132.23 (19)
C13-C12-C17	118.90 (19)
C13-C12-C11	134.2 (2)
C17-C12-C11	106.81 (18)
C14-C13-C12	118.4 (2)
C14-C13-H13	120.8
C12-C13-H13	120.8
C13-C14-C15	121.4 (2)
N1-C1-C2-C3	179.8 (2)
C6-C1-C2-C3	0.5 (3)
C1-C2-C3-C4	-0.2 (3)
C2-C3-C4-C5	-0.3 (3)
C2-C3-C4-Cl2	179.24 (18)
C3-C4-C5-C6	0.6 (3)
C12-C4-C5-C6	-178.99 (15)
N1-C1-C6-C5	-179.55 (18)
C2-C1-C6-C5	-0.2 (3)
N1-C1-C6-C7	0.3 (3)
C2-C1-C6-C7	179.7 (2)
C4-C5-C6-C1	-0.3 (3)
C4-C5-C6-C7	179.8 (2)
C1-C6-C7-C8	-1.3 (3)
C5-C6-C7-C8	178.57 (19)
C1-C6-C7-C21	176.41 (18)
C5-C6-C7-C21	-3.7 (3)
C6-C7-C8-C19	1.1 (3)
C21-C7-C8-C19	-176.52 (18)

$\mathrm{C} 16-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~B}$	109.5
$\mathrm{H} 20 \mathrm{C}-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~B}$	109.5
$\mathrm{C} 16-\mathrm{C} 20-\mathrm{H} 20 \mathrm{C}$	109.5
$\mathrm{H} 20 \mathrm{C}-\mathrm{C} 20-\mathrm{H} 20 \mathrm{C}$	109.5
$\mathrm{H} 20 \mathrm{~B}-\mathrm{C} 20-\mathrm{H} 20 \mathrm{C}$	109.5
$\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 22$	$117.98(19)$
$\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 7$	$121.54(19)$
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 7$	$120.48(18)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 21$	$121.5(2)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	119.3
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	119.3
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 22$	$119.8(2)$
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 23$	120.1
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23$	120.1
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 23$	$119.5(2)$
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{H} 24$	120.3
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 24$	120.3
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$120.7(2)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 25$	119.6
$\mathrm{C} 26-\mathrm{C} 25-\mathrm{H} 25$	119.6
$\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$	$120.5(2)$
$\mathrm{C} 21-\mathrm{C} 26-\mathrm{H} 26$	119.7
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{H} 26$	119.7
$\mathrm{C} 19-\mathrm{N} 1-\mathrm{C} 1$	$117.09(17)$
$\mathrm{C} 17-\mathrm{N} 2-\mathrm{C} 18$	$108.15(17)$
$\mathrm{C} 17-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	125.9
$\mathrm{C} 18-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	125.9

$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$	$2.6(3)$
$\mathrm{C} 20-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$	$-178.5(2)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17-\mathrm{N} 2$	$175.20(18)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17-\mathrm{N} 2$	$-2.2(2)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$-3.4(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$179.2(2)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 18-\mathrm{N} 2$	$-2.4(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 18-\mathrm{N} 2$	$-178.18(18)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 19$	$168.12(19)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 19$	$-7.7(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 19-\mathrm{N} 1$	$0.0(3)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 19-\mathrm{N} 1$	$-177.1(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 19-\mathrm{C} 18$	$-176.48(18)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 19-\mathrm{C} 18$	$6.4(3)$
$\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 19-\mathrm{N} 1$	$-159.1(2)$
$\mathrm{N} 2-\mathrm{C} 18-\mathrm{C} 19-\mathrm{N} 1$	$10.0(3)$
$\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 8$	$17.6(3)$
$\mathrm{N} 2-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 8$	$-173.25(19)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 21-\mathrm{C} 26$	$-103.4(3)$

$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$178.06(19)$
$\mathrm{C} 21-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.4(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$144.9(2)$
$\mathrm{C} 19-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-38.2(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$45.2(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 18$	$-24.0(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$161.5(2)$
$\mathrm{C} 18-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-174.0(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$1.1(4)$
$\mathrm{C} 18-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17$	$2.8(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17$	$177.9(2)$
$\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$1.3(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$177.8(2)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$1.3(4)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-2.1(4)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$0.1(4)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 20$	$-178.7(2)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{N} 2$	$-175.6(2)$
$\mathrm{C} 20-\mathrm{C} 16-\mathrm{C} 17-\mathrm{N} 2$	$3.2(4)$

$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 21-\mathrm{C} 26$	$78.9(3)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 21-\mathrm{C} 22$	$77.4(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 21-\mathrm{C} 22$	$-100.2(2)$
$\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$-0.3(4)$
$\mathrm{C} 7-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$178.9(2)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$0.0(4)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$0.5(4)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$-0.8(4)$
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$	$0.0(4)$
$\mathrm{C} 7-\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$	$-179.2(2)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 21$	$0.6(4)$
$\mathrm{C} 8-\mathrm{C} 19-\mathrm{N} 1-\mathrm{C} 1$	$-1.0(3)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{N} 1-\mathrm{C} 1$	$175.42(17)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 19$	$-178.57(19)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 19$	$0.8(3)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{N} 2-\mathrm{C} 18$	$179.2(2)$
$\mathrm{C} 12-\mathrm{C} 17-\mathrm{N} 2-\mathrm{C} 18$	$0.8(2)$
$\mathrm{C} 11-\mathrm{C} 18-\mathrm{N} 2-\mathrm{C} 17$	$1.1(2)$
$\mathrm{C} 19-\mathrm{C} 18-\mathrm{N} 2-\mathrm{C} 17$	$-169.34(19)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10 — \mathrm{H} 10 B \cdots C g 1^{\mathrm{i}}$	0.97	2.96	$3.848(3)$	152
$\mathrm{C} 26-\mathrm{H} 26 \cdots C g 2^{\mathrm{i}}$	0.93	2.51	$3.391(3)$	158

Symmetry code: (i) $-x+2,-y+2,-z+2$.

