

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1,2-Dimethyl-4,5-diphenylbenzene determined on a Bruker SMART X2S benchtop crystallographic system

Jonathan B. Briggs, Mikaël D. Jazdzyk and Glen P. Miller*

Department of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824-3598, USA Correspondence e-mail: glen.miller@unh.edu

Received 26 March 2009; accepted 23 April 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.046; wR factor = 0.166; data-to-parameter ratio = 14.9.

The title compound, $C_{20}H_{18}$, has two crystallographically independent molecules in the asymmetric unit. The phenyl substituents of molecule A are twisted away from the plane defined by the central benzene ring by 131.8 (2) and -52.7 (3)°. The phenyl substituents of molecule B are twisted by -133.3 (2) and 50.9 (3)°. Each molecule is stabilized by a pair of intramolecular $C(\text{aryl}, sp^2) - H \cdots \pi$ interactions, as well as by several intermolecular $C(\text{methyl}, sp^3) - H \cdots \pi$ interactions.

Related literature

For potential applications and utility of the title compound as a synthetic intermediate, see: Kharasch *et al.* (1965); Horiuchi *et al.* (2008); Amine & Chen (2008); Eaton (2008); Peters & Friedrichsen (1995); Segura & Martín (1999). For the synthesis and related crystal structures, see: Maier *et al.*, (1969); Maeyama & Yonezawa (2003); Brown & Levy (1979).

Experimental

Crystal data

 $\begin{array}{lll} {\rm C}_{20}{\rm H}_{18} & c = 16.3322 \ (12) \ {\rm \mathring{A}} \\ M_r = 258.34 & \alpha = 93.793 \ (3)^{\circ} \\ {\rm Triclinic,} \ P\overline{\rm I} & \beta = 98.934 \ (3)^{\circ} \\ a = 9.3033 \ (7) \ {\rm \mathring{A}} & \gamma = 106.549 \ (2)^{\circ} \\ b = 10.7546 \ (9) \ {\rm \mathring{A}} & V = 1536.8 \ (2) \ {\rm \mathring{A}}^3 \end{array}$

Z = 4 T = 296 K Mo $K\alpha$ radiation $0.50 \times 0.50 \times 0.05$ mm u = 0.06 mm⁻¹

Data collection

 $\begin{array}{lll} \mbox{Bruker SMART X2S diffractometer} & 15460 \mbox{ measured reflections} \\ \mbox{Absorption correction: multi-scan} & 5450 \mbox{ independent reflections} \\ \mbox{($SADABS$; Bruker, 2007)} & 3881 \mbox{ reflections with $I > 2\sigma(I)$} \\ \mbox{$T_{\rm min} = 0.969, $T_{\rm max} = 0.997$} & R_{\rm int} = 0.031 \\ \end{array}$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.046 & 365 \text{ parameters} \\ wR(F^2) = 0.166 & \text{H-atom parameters constrained} \\ S = 0.87 & \Delta\rho_{\text{max}} = 0.25 \text{ e Å}^{-3} \\ 5450 \text{ reflections} & \Delta\rho_{\text{min}} = -0.32 \text{ e Å}^{-3} \end{array}$

Table 1 $C-H\cdots\pi$ interaction geometry $(\mathring{A}, °)$.

$C-H\cdots\pi$	С-Н	$H \cdot \cdot \cdot \pi$	$C \cdot \cdot \cdot \pi$	$C-H\cdots\pi$
C7 <i>A</i> − H7 <i>A</i> 2···C5 <i>A</i>	0.96	2.892	3.780	154.41
C7 <i>A</i> − H7 <i>A</i> 3···C12 <i>A</i>	0.96	2.920	3.824	157.38
$C8A - H8A1 \cdot \cdot \cdot C16B$	0.96	3.014	3.924	158.82
$C14A - H14A \cdot \cdot \cdot C15A$	0.93	2.811	3.126	101.09
$C16A - H16A \cdot \cdot \cdot C9A$	0.93	2.881	3.167	99.24
$C7B-H7B1\cdots C11B$	0.96	2.991	3.666	128.53
$C8B-H8B1\cdots C12B$	0.96	2.943	3.809	150.67
$C14B-H14B\cdots C15B$	0.93	2.784	3.129	103.11
$C16B-H16B\cdots C9B$	0.93	2.823	3.138	101.13

Data collection: *GIS* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Science Foundation for support of this work through the EPSCoR Research Infrastructure Improvement program (award No. 0432060) and The Center for High-rate Nanomanufacturing (CHN, award No. EEC-0425826). The authors also thank Dr Charles F. Campana and Scott Phillips of Bruker AXS for helpful discussions and training.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2245).

References

Amine, K. & Chen, Z. (2008). US Patent Appl. US 2007-767114.
Brown, G. M. & Levy, H. A. (1979). Acta Cryst. B35, 785–788.
Bruker (2007). APEX2, GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Eaton, R. F. (2008). PCT Int. Appl. WO, 2008112965.

 Horiuchi, H., Tanaka, T. & Soma, M. (2008). US Patent Appl. US 2008-136831.
 Kharasch, N., Alston, T. G., Lewis, H. B. & Wolf, W. (1965). *Chem. Commun.* pp. 242–243.

Maeyama, K. & Yonezawa, N. (2003). Recent. Res. Dev. Org. Chem., 7, 53–61.
 Maier, G., Heep, U., Wiessler, M. & Strasser, M. (1969). Chem. Ber. 102, 1928–1936

Peters, O. & Friedrichsen, W. (1995). *Trends Heterocycl. Chem.* **4**, 217–259. Segura, J. L. & Martín, N. (1999). *Chem. Rev.* **99**, 3199–3246. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

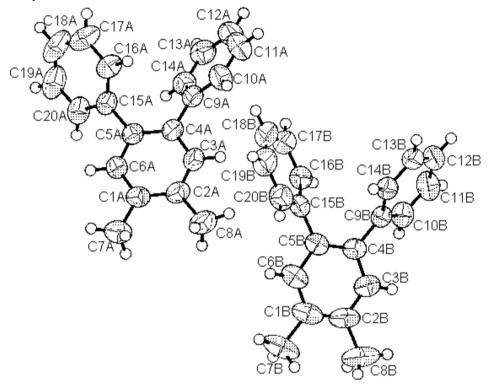
Acta Cryst. (2009). E65, o1171 [doi:10.1107/S1600536809015311]

1,2-Dimethyl-4,5-diphenylbenzene determined on a Bruker SMART X2S benchtop crystallographic system

Jonathan B. Briggs, Mikaël D. Jazdzyk and Glen P. Miller

S1. Comment

o-Terphenyl has been utilized as a photochemical precursor to triphenylene (Kharasch et al., (1965)), as part of a cathode active material layer in battery applications (Horiuchi et al., (2008)), as a stabilizing additive in non-aqueous electrolytes (Amine & Chen, (2008)), and as a voltage stabilizer within the insulating layer of power cables (Eaton, (2008)). The title compound, an o-terphenyl derivative, is a potentially interesting synthetic intermediate leading to novel isobenzofuran (Peters & Friedrichsen, (1995)) and/or quinodimethane (Segura & Martín, (1999)) species and was first prepared in 1969 (Maier et al., (1969)). The synthesis of o-terphenyl derivatives was recently reviewed (Maeyama & Yonezawa, (2003)). A crystal structure of unsubstituted o-terphenyl has been published (Brown & Levy, (1979)).


The asymmetric unit of (I) contains two molecules (Fig. 1). The relative rotations of the phenyl substituents at C4 and C5 are influenced by a pair of stabilizing intramolecular $C(\text{aryl}, sp^2)$ -H··· π interactions involving one *ortho* hydrogen atom on each phenyl substituent and one π bond associated with the *ipso* carbon of the other phenyl substituent (Fig. 2). The atoms of closest contact (H_{ortho}—C_{ipso}) are separated by 2.784 Å (Table 1). An *MM2* force field minimization for a single molecule in a vacuum places the same two atoms 2.80 Å apart indicating that the molecular conformation within the crystal lattice is little influenced by packing forces. There are, *e.g.*, no significant π - π interactions in the crystal structure.

Weaker intermolecular CH··· π interactions involving both methyl substituents and π bonds on adjacent molecules help to define the spacing between molecules in the crystal structure (Table 1, Figs. 3–4). There are a total of five unique intermolecular CH··· π interactions. Within the asymmetric unit, there is one intermolecular CH··· π interaction (H8A1 $_{methyl}$ ···C16B $_{ortho}$, 3.014 Å) involving one molecule A and one molecule B (A—B). Additionally, each molecule A and molecule B within the asymmetric unit has two unique CH··· π interactions involving other molecules of the same type (2 A—A; 2 B—B). The two type A—A intermolecular CH··· π interactions can be described as H7A2 $_{methyl}$ -C5A $_{central}$ $_{ring}$ (2.892 Å) and H7A3 $_{methyl}$ -C12A $_{para}$ (2.920 Å). The two type B—B intermolecular CH··· π interactions can be described as H7B1 $_{methyl}$ -C11B $_{meta}$ (2.991 Å) and H8B1 $_{methyl}$ -C12B $_{para}$ (2.943 Å). Figure 3 illustrates the one unique type A—B intermolecular CH··· π interaction as well as one type A—A and one type B—B CH··· π interaction.

S2. Experimental

The title compound was prepared as illustrated in Fig. 5. An oven-dried glass pressure vessel containing a magnetic stir bar was charged with palladium(II) acetate (0.034 g, 0.152 mmol), 1,2-dibromo-4,5-dimethylbenzene (2 g, 7.58 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.124 g, 0.303 mmol), phenylboronic acid (2.77 g, 22.7 mmol) and powdered, anhydrous potassium phosphate (11.26 g, 53.0 mmol). Dry THF (20 ml) was added and N_2 gas was bubbled through the resulting mixture for 15 min. The glass pressure vessel was sealed with a Teflon cap and heated at 75 °C for 20 h with stirring. The reaction mixture was allowed to cool to room temperature after which the mixture was diluted

with diethyl ether (30 ml) and washed with water three times. The organic layer was dried over magnesium sulfate and concentrated at reduced pressure. The crude product was purified by flash column chromatography on silica gel using hexane-chloroform (80/20 v/v) as eluent. The title compound, 1,2-dimethyl-4,5-diphenylbenzene, was obtained in 76% isolated yield. ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 6H), 7.11–7.21 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 19.6 (CH3), 126.4 (CH), 128.0 (CH), 130.1 (CH), 132.1 (CH), 136.0 (C), 138.2 (C), 141.7 (C). An X-ray grade crystal was obtained by slow evaporation of a dichloromethane solution.

Figure 1The molecular structure showing the crystallographic labelling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

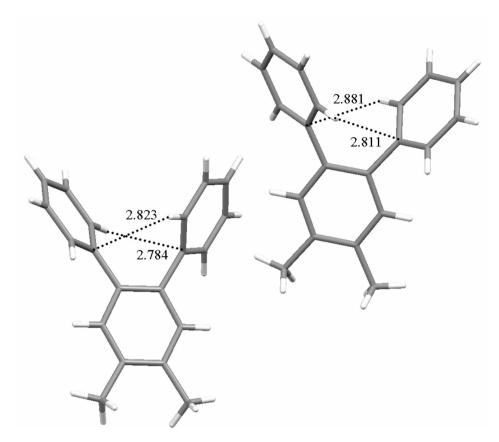


Figure 2 Perspective view of the title molecule showing the two pairs of stabilizing intramolecular $C(\text{aryl}, sp^2)$ -H··· π interactions involving one *ortho* hydrogen atom on each phenyl substituent and one π bond associated with the *ipso* carbon of the other phenyl substituent.

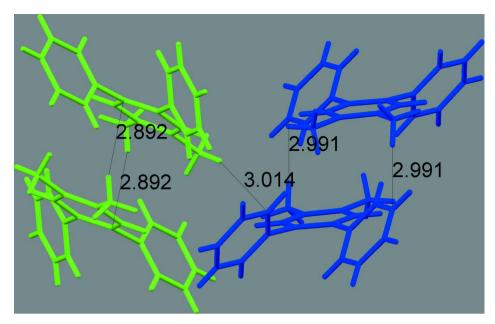
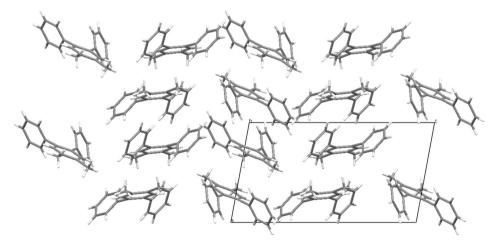



Figure 3 Perspective view of the title molecule showing stabilizing intermolecular $C(\text{methyl}, sp^3)$ -H··· π interactions involving methyl substituents and π bonds associated with carbons of neighboring phenyl substituents. Molecule A is colored in green and molecule B is colored in blue. One unique type A—B as well as one type A—A and one type B—B CH··· π interaction is shown.

Figure 4Perspective view of long range packing in the crystal structure.

Figure 5Synthesis of the title compound, 1,2-dimethyl-4,5-diphenylbenzene.

1,2-Dimethyl-4,5-diphenylbenzene

Crystal data

 $C_{20}H_{18}$ $M_r = 258.34$ Triclinic, $P\bar{1}$ Hall symbol: -P 1 a = 9.3033 (7) Å b = 10.7546 (9) Å c = 16.3322 (12) Å $\alpha = 93.793$ (3)° $\beta = 98.934$ (3)° $\gamma = 106.549$ (2)° V = 1536.8 (2) Å³

Data collection

Bruker SMART X2S diffractometer Radiation source: micro-focus sealed tube Doubly curved silicon crystal monochromator

ω scans Absorption correction: multi-scan (SADABS; Bruker, 2007)

 $T_{\min} = 0.969, T_{\max} = 0.997$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.166$ S = 0.875450 reflections 365 parameters 0 restraints Z = 4

F(000) = 552 $D_x = 1.117 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 5281 reflections

 $\theta = 1.3-25.2^{\circ}$ $\mu = 0.06 \text{ mm}^{-1}$ T = 296 K

Plate, clear colourless $0.50 \times 0.50 \times 0.05$ mm

15460 measured reflections 5450 independent reflections 3881 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.031$

 $\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$

 $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -19 \rightarrow 19$

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

$$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1P)^{2} + 0.5P]$$

$$where P = (F_{o}^{2} + 2F_{c}^{2})/3$$

$$(\Delta/\sigma)_{max} < 0.001$$

$$\Delta\rho_{min} = -0.32 \text{ e Å}^{-3}$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

		1 1	1 1		
	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1A	0.6791 (2)	1.08007 (18)	0.97275 (13)	0.0567 (5)	
C2A	0.6269(2)	1.01769 (19)	0.89127 (13)	0.0602 (5)	
C3A	0.6488(2)	0.89721 (19)	0.87258 (12)	0.0595 (5)	
H3A	0.6152	0.8566	0.8181	0.071*	
C4A	0.7186(2)	0.83381 (17)	0.93120 (11)	0.0527 (4)	
C5A	0.7660(2)	0.89453 (17)	1.01371 (11)	0.0507 (4)	
C6A	0.7463 (2)	1.01665 (18)	1.03178 (12)	0.0555 (5)	
H6A	0.7800	1.0577	1.0862	0.067*	
C7A	0.6614(3)	1.2118 (2)	0.99848 (16)	0.0750 (6)	
H7A1	0.6947	1.2338	1.0577	0.112*	
H7A2	0.5562	1.2084	0.9840	0.112*	
H7A3	0.7221	1.2768	0.9701	0.112*	
C8A	0.5478 (3)	1.0778 (2)	0.82374 (16)	0.0822 (7)	
H8A1	0.5130	1.0175	0.7737	0.123*	
H8A2	0.6180	1.1570	0.8129	0.123*	
H8A3	0.4623	1.0970	0.8418	0.123*	
C9A	0.7423 (2)	0.70697 (18)	0.90456 (11)	0.0547 (5)	
C10A	0.6240(3)	0.6064(2)	0.85743 (14)	0.0714 (6)	
H10A	0.5287	0.6184	0.8425	0.086*	
C11A	0.6455 (3)	0.4888 (2)	0.83227 (16)	0.0858 (7)	
H11A	0.5645	0.4221	0.8013	0.103*	
C12A	0.7859(3)	0.4703 (2)	0.85288 (15)	0.0788 (7)	
H12A	0.8006	0.3915	0.8352	0.095*	
C13A	0.9046 (3)	0.5682(2)	0.89956 (14)	0.0703 (6)	
H13A	0.9996	0.5554	0.9142	0.084*	
C14A	0.8836(2)	0.6858 (2)	0.92493 (12)	0.0610 (5)	
H14A	0.9652	0.7519	0.9561	0.073*	
C15A	0.8283 (2)	0.83145 (19)	1.08364 (11)	0.0543 (5)	
C16A	0.7485 (3)	0.7074 (2)	1.09899 (14)	0.0686 (6)	
H16A	0.6561	0.6625	1.0646	0.082*	
C17A	0.8049 (3)	0.6501(3)	1.16471 (17)	0.0899 (8)	
H17A	0.7512	0.5667	1.1743	0.108*	

C18A	0.9418 (4)	0.7172 (4)	1.21634 (16)	0.0999 (10)
H18A	0.9797	0.6791	1.2610	0.120*
C19A	1.0214 (3)	0.8393 (3)	1.20186 (15)	0.0925 (8)
H19A	1.1137	0.8837	1.2365	0.111*
C20A	0.9653 (3)	0.8970(2)	1.13604 (13)	0.0712 (6)
H20A	1.0197	0.9803	1.1269	0.085*
C1B	0.2893 (2)	1.2264 (2)	0.56098 (18)	0.0736 (6)
C2B	0.3057(3)	1.2009 (2)	0.47854 (18)	0.0767 (7)
C3B	0.2838 (2)	1.0722 (2)	0.44640 (15)	0.0670(6)
Н3В	0.2929	1.0554	0.3912	0.080*
C4B	0.2488 (2)	0.96758 (17)	0.49331 (12)	0.0534 (4)
C5B	0.2360(2)	0.99418 (17)	0.57707 (13)	0.0549 (5)
C6B	0.2545 (2)	1.12292 (19)	0.60791 (15)	0.0670(6)
H6B	0.2429	1.1400	0.6627	0.080*
C7B	0.3143 (3)	1.3648 (2)	0.6001(2)	0.1030 (10)
H7B1	0.4207	1.4124	0.6084	0.155*
H7B2	0.2808	1.3622	0.6528	0.155*
H7B3	0.2570	1.4073	0.5637	0.155*
C8B	0.3495 (4)	1.3080(3)	0.4225 (2)	0.1211 (12)
H8B1	0.2807	1.3598	0.4215	0.182*
H8B2	0.3436	1.2692	0.3670	0.182*
H8B3	0.4517	1.3624	0.4437	0.182*
C9B	0.2263 (2)	0.83396 (17)	0.45237 (11)	0.0508 (4)
C10B	0.3309(2)	0.8121 (2)	0.40513 (13)	0.0646 (5)
H10B	0.4156	0.8809	0.4008	0.077*
C11B	0.3109(3)	0.6904(3)	0.36479 (15)	0.0773 (6)
H11B	0.3815	0.6779	0.3331	0.093*
C12B	0.1874(3)	0.5871 (2)	0.37099 (14)	0.0756 (7)
H12B	0.1748	0.5049	0.3438	0.091*
C13B	0.0818(3)	0.6059(2)	0.41787 (13)	0.0683 (6)
H13B	-0.0017	0.5363	0.4225	0.082*
C14B	0.1012(2)	0.72904 (18)	0.45784 (12)	0.0586 (5)
H14B	0.0295	0.7416	0.4887	0.070*
C15B	0.2085 (2)	0.89099 (18)	0.63430 (12)	0.0569 (5)
C16B	0.2983 (3)	0.8077 (2)	0.64348 (13)	0.0652 (5)
H16B	0.3765	0.8157	0.6131	0.078*
C17B	0.2728(3)	0.7128 (2)	0.69743 (15)	0.0832 (7)
H17B	0.3336	0.6575	0.7028	0.100*
C18B	0.1585 (4)	0.7000(3)	0.74299 (16)	0.0958 (9)
H18B	0.1418	0.6360	0.7790	0.115*
C19B	0.0694 (4)	0.7813 (3)	0.73542 (16)	0.0950 (9)
H19B	-0.0081	0.7725	0.7663	0.114*
C20B	0.0939(3)	0.8768 (2)	0.68189 (14)	0.0762 (6)
H20B	0.0330	0.9321	0.6776	0.091*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1A	0.0489 (10)	0.0504 (10)	0.0671 (12)	0.0102 (8)	0.0060 (9)	0.0126 (9)
C2A	0.0538 (11)	0.0589 (11)	0.0632 (12)	0.0116 (9)	0.0017 (9)	0.0185 (9)
C3A	0.0609 (12)	0.0608 (12)	0.0490 (10)	0.0114 (9)	-0.0011 (9)	0.0083 (9)
C4A	0.0492 (10)	0.0530 (10)	0.0511 (10)	0.0094(8)	0.0043 (8)	0.0095 (8)
C5A	0.0452 (9)	0.0532 (10)	0.0506 (10)	0.0110(8)	0.0045 (8)	0.0102(8)
C6A	0.0526 (10)	0.0544 (11)	0.0526 (10)	0.0096 (8)	0.0024 (8)	0.0044 (8)
C7A	0.0728 (14)	0.0597 (13)	0.0910 (16)	0.0206 (11)	0.0075 (12)	0.0120 (11)
C8A	0.0858 (16)	0.0770 (15)	0.0801 (15)	0.0267 (13)	-0.0071 (13)	0.0244 (12)
C9A	0.0594 (11)	0.0552 (11)	0.0475 (10)	0.0132 (9)	0.0098 (8)	0.0100(8)
C10A	0.0699 (13)	0.0681 (13)	0.0691 (13)	0.0176 (11)	0.0023 (11)	-0.0036 (11)
C11A	0.0900 (18)	0.0720 (15)	0.0832 (16)	0.0149 (13)	0.0075 (13)	-0.0150 (12)
C12A	0.1027 (19)	0.0640 (14)	0.0766 (15)	0.0291 (13)	0.0306 (14)	0.0039 (11)
C13A	0.0769 (14)	0.0765 (14)	0.0696 (13)	0.0319 (12)	0.0289 (12)	0.0176 (11)
C14A	0.0615 (12)	0.0629 (12)	0.0588 (11)	0.0156 (9)	0.0157 (9)	0.0114 (9)
C15A	0.0542 (11)	0.0673 (12)	0.0469 (10)	0.0264 (9)	0.0088 (8)	0.0091 (9)
C16A	0.0686 (13)	0.0759 (14)	0.0676 (13)	0.0271 (11)	0.0139 (10)	0.0252 (11)
C17A	0.101(2)	0.107(2)	0.0881 (18)	0.0555 (17)	0.0322 (16)	0.0513 (16)
C18A	0.113(2)	0.161(3)	0.0649 (15)	0.090(2)	0.0245 (16)	0.0473 (18)
C19A	0.0822 (17)	0.145 (3)	0.0585 (14)	0.0564 (18)	-0.0049(12)	0.0087 (16)
C20A	0.0644 (13)	0.0904 (16)	0.0576 (12)	0.0285 (12)	-0.0011 (10)	0.0046 (11)
C1B	0.0521 (12)	0.0495 (11)	0.119(2)	0.0181 (9)	0.0116 (12)	0.0077 (12)
C2B	0.0601 (13)	0.0559 (12)	0.115(2)	0.0187 (10)	0.0071 (13)	0.0307 (13)
C3B	0.0625 (12)	0.0623 (13)	0.0765 (14)	0.0185 (10)	0.0085 (10)	0.0205 (10)
C4B	0.0445 (10)	0.0502 (10)	0.0649 (12)	0.0148 (8)	0.0052 (8)	0.0111 (9)
C5B	0.0465 (10)	0.0493 (10)	0.0678 (12)	0.0137 (8)	0.0096 (9)	0.0032 (9)
C6B	0.0566 (12)	0.0540 (12)	0.0895 (15)	0.0153 (9)	0.0173 (11)	-0.0022(11)
C7B	0.0788 (16)	0.0497 (13)	0.178(3)	0.0202 (12)	0.0189 (18)	-0.0019 (15)
C8B	0.133 (3)	0.0742 (17)	0.164(3)	0.0323 (17)	0.028(2)	0.0610 (19)
C9B	0.0499 (10)	0.0542 (10)	0.0473 (10)	0.0179 (8)	0.0008 (8)	0.0089(8)
C10B	0.0574 (12)	0.0755 (14)	0.0597 (12)	0.0216 (10)	0.0056 (9)	0.0042 (10)
C11B	0.0712 (15)	0.0945 (17)	0.0694 (14)	0.0399 (14)	0.0012 (11)	-0.0092 (12)
C12B	0.0977 (18)	0.0681 (14)	0.0625 (13)	0.0447 (14)	-0.0140 (12)	-0.0042 (11)
C13B	0.0821 (15)	0.0544 (12)	0.0576 (12)	0.0139 (10)	-0.0080(11)	0.0087 (9)
C14B	0.0613 (12)	0.0579 (11)	0.0529 (11)	0.0146 (9)	0.0049 (9)	0.0074 (9)
C15B	0.0603 (11)	0.0493 (10)	0.0524 (10)	0.0073 (9)	0.0053 (9)	-0.0031 (8)
C16B	0.0709 (13)	0.0606 (12)	0.0592 (12)	0.0185 (10)	0.0007 (10)	0.0040 (10)
C17B	0.109(2)	0.0675 (14)	0.0639 (14)	0.0247 (13)	-0.0077 (14)	0.0088 (11)
C18B	0.134(3)	0.0789 (17)	0.0597 (14)	0.0105 (17)	0.0105 (16)	0.0154 (12)
C19B	0.115(2)	0.0932 (19)	0.0661 (15)	0.0049 (17)	0.0355 (15)	0.0097 (14)
C20B	0.0830 (15)	0.0723 (14)	0.0707 (14)	0.0155 (12)	0.0243 (12)	-0.0002(11)

Geometric parameters (Å, °)

C1A—C6A	1.389 (3)	C1B—C6B	1.384 (3)
C1A—C2A	1.397 (3)	C1B—C2B	1.397 (4)

C1A—C7A	1.512 (3)	C1B—C7B	1.519(3)
C2A—C3A	1.390(3)	C2B—C3B	1.394(3)
C2A—C8A	1.513 (3)	C2B—C8B	1.522 (3)
C3A—C4A	1.396 (3)	C3B—C4B	1.394(3)
СЗА—НЗА	0.9300	СЗВ—НЗВ	0.9300
C4A—C5A	1.404 (3)	C4B—C5B	1.409 (3)
C4A—C9A	1.491 (3)	C4B—C9B	1.488 (3)
C5A—C6A	1.396 (3)	C5B—C6B	1.395 (3)
C5A—C15A	1.491 (3)	C5B—C15B	1.490 (3)
C6A—H6A	0.9300	С6В—Н6В	0.9300
C7A—H7A1	0.9600	C7B—H7B1	0.9600
C7A—H7A2	0.9600	C7B—H7B2	0.9600
C7A—H7A3	0.9600	C7B—H7B3	0.9600
C8A—H8A1	0.9600	C8B—H8B1	0.9600
C8A—H8A2	0.9600	C8B—H8B2	0.9600
C8A—H8A3	0.9600	C8B—H8B3	0.9600
C9A—C10A		C9B—C14B	
C9A—C10A C9A—C14A	1.386 (3)	C9B—C14B	1.391 (3)
	1.391 (3)		1.391 (3)
C10A—C11A	1.382 (3)	C10B—C11B	1.375 (3)
C10A—H10A	0.9300	C10B—H10B	0.9300
C11A—C12A	1.371 (4)	C11B—C12B	1.374 (3)
C11A—H11A	0.9300	C11B—H11B	0.9300
C12A—C13A	1.371 (3)	C12B—C13B	1.385 (3)
C12A—H12A	0.9300	C12B—H12B	0.9300
C13A—C14A	1.381 (3)	C13B—C14B	1.388 (3)
C13A—H13A	0.9300	C13B—H13B	0.9300
C14A—H14A	0.9300	C14B—H14B	0.9300
C15A—C20A	1.386 (3)	C15B—C16B	1.389 (3)
C15A—C16A	1.390 (3)	C15B—C20B	1.394 (3)
C16A—C17A	1.380 (3)	C16B—C17B	1.386 (3)
C16A—H16A	0.9300	C16B—H16B	0.9300
C17A—C18A	1.384 (4)	C17B—C18B	1.371 (4)
C17A—H17A	0.9300	C17B—H17B	0.9300
C18A—C19A	1.367 (4)	C18B—C19B	1.364 (4)
C18A—H18A	0.9300	C18B—H18B	0.9300
C19A—C20A	1.383 (3)	C19B—C20B	1.385 (3)
C19A—H19A	0.9300	C19B—H19B	0.9300
C20A—H20A	0.9300	C20B—H20B	0.9300
C6A—C1A—C2A	118.28 (18)	C6B—C1B—C2B	118.5 (2)
C6A—C1A—C7A	119.56 (18)	C6B—C1B—C7B	120.1 (3)
C2A—C1A—C7A	122.15 (18)	C2B—C1B—C7B	121.3 (2)
C3A—C2A—C1A	118.55 (17)	C3B—C2B—C1B	118.8 (2)
C3A—C2A—C8A	119.69 (19)	C3B—C2B—C8B	118.4 (3)
C1A—C2A—C8A	121.76 (19)	C1B—C2B—C8B	122.8 (2)
C2A—C3A—C4A	123.52 (18)	C2B—C3B—C4B	123.0 (2)
C2A—C3A—H3A	118.2	C2B—C3B—H3B	118.5
C4A—C3A—H3A	118.2	C4B—C3B—H3B	118.5
CHI COIL HOR	110,4	C-C3D-113D	110.5

C3A—C4A—C5A	117.80 (17)	C3B—C4B—C5B	118.06 (18)
C3A—C4A—C9A	119.66 (17)	C3B—C4B—C9B	118.42 (18)
C5A—C4A—C9A	122.53 (16)	C5B—C4B—C9B	123.52 (16)
C6A—C5A—C4A	118.40 (16)	C6B—C5B—C4B	118.42 (18)
C6A—C5A—C15A	118.50 (16)	C6B—C5B—C15B	119.01 (18)
C4A—C5A—C15A	123.02 (16)	C4B—C5B—C15B	122.54 (16)
C1A—C6A—C5A	123.39 (18)	C1B—C6B—C5B	123.2 (2)
C1A—C6A—H6A	118.3	C1B—C6B—H6B	118.4
C5A—C6A—H6A	118.3	C5B—C6B—H6B	118.4
C1A—C7A—H7A1	109.5	C1B—C7B—H7B1	109.5
C1A—C7A—H7A2	109.5	C1B—C7B—H7B2	109.5
H7A1—C7A—H7A2	109.5	H7B1—C7B—H7B2	109.5
C1A—C7A—H7A3	109.5	C1B—C7B—H7B3	109.5
H7A1—C7A—H7A3	109.5	H7B1—C7B—H7B3	109.5
H7A2—C7A—H7A3	109.5	H7B2—C7B—H7B3	109.5
C2A—C8A—H8A1	109.5	C2B—C8B—H8B1	109.5
C2A—C8A—H8A2	109.5	C2B—C8B—H8B2	109.5
H8A1—C8A—H8A2	109.5	H8B1—C8B—H8B2	109.5
C2A—C8A—H8A3	109.5	C2B—C8B—H8B3	109.5
H8A1—C8A—H8A3	109.5	H8B1—C8B—H8B3	109.5
H8A2—C8A—H8A3	109.5	H8B2—C8B—H8B3	109.5
C10A—C9A—C14A	117.72 (19)	C14B—C9B—C10B	118.09 (18)
C10A—C9A—C14A C10A—C9A—C4A	` /		, ,
	120.83 (18)	C14B—C9B—C4B	122.16 (17)
C14A—C9A—C4A	121.45 (17)	C10B—C9B—C4B	119.72 (17)
C11A—C10A—C9A	121.1 (2)	C11B—C10B—C9B	121.0 (2)
C11A—C10A—H10A	119.5	C11B—C10B—H10B	119.5
C9A—C10A—H10A	119.5	C9B—C10B—H10B	119.5
C12A—C11A—C10A	120.2 (2)	C10B—C11B—C12B	120.5 (2)
C12A—C11A—H11A	119.9	C10B—C11B—H11B	119.7
C10A—C11A—H11A	119.9	C12B—C11B—H11B	119.7
C13A—C12A—C11A	119.8 (2)	C11B—C12B—C13B	119.7 (2)
C13A—C12A—H12A	120.1	C11B—C12B—H12B	120.1
C11A—C12A—H12A	120.1	C13B—C12B—H12B	120.1
C12A—C13A—C14A	120.2 (2)	C12B—C13B—C14B	119.7 (2)
C12A—C13A—H13A	119.9	C12B—C13B—H13B	120.1
C14A—C13A—H13A	119.9	C14B—C13B—H13B	120.1
C13A—C14A—C9A	121.0 (2)	C13B—C14B—C9B	120.9 (2)
C13A—C14A—H14A	119.5	C13B—C14B—H14B	119.5
C9A—C14A—H14A	119.5	C9B—C14B—H14B	119.5
C20A—C15A—C16A	118.71 (19)	C16B—C15B—C20B	117.8 (2)
C20A—C15A—C5A	120.54 (18)	C16B—C15B—C5B	121.12 (18)
C16A—C15A—C5A	120.72 (18)	C20B—C15B—C5B	121.11 (19)
C17A—C16A—C15A	120.7 (2)	C17B—C16B—C15B	120.7 (2)
C17A—C16A—H16A	119.7	C17B—C16B—H16B	119.6
C15A—C16A—H16A	119.7	C15B—C16B—H16B	119.6
C16A—C17A—C18A	119.7 (3)	C18B—C17B—C16B	120.4 (3)
C16A—C17A—H17A	120.1	C18B—C17B—H17B	119.8
C18A—C17A—H17A	120.1	C16B—C17B—H17B	119.8
01011 01/11 111/11	120.1	CIOD CITE IIITE	117.0

C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C4A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18) C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)				
C17A—C18A—H18A 119.9 C17B—C18B—H18B 120.0 C18A—C19A—C20A 120.3 (3) C18B—C19B—C20B 120.3 (3) 3) C18B—C19B—H19B 119.8 C18B—C19B—H19B 119.8 C20A—C19A—H19A 119.8 C20B—C19B—H19B 119.8 C19B—C20B—C15B 120.9 (2) C19B—C20B—H20B 119.8 C19B—C20B—H20B 119.8 C19B—C20B—H20B 119.6 C15A—C20A—H20A 119.8 C19B—C20B—H20B 119.6 C6A—C1A—C2A—C3A 1.9 (3) C6B—C1B—C2B—C3B 120.9 (2) C0CA—C1A—C2A—C3A 1.9 (3) C6B—C1B—C2B—C3B 1.2 (3) C7A—C1A—C2A—C3A 1.79.46 (18) C7B—C1B—C2B—C3B 1.70 (2) C6A—C1A—C2A—C3A 1.79.46 (18) C7B—C1B—C2B—C3B 1.79 (2) C6A—C1A—C2A—C3A 1.79.46 (18) C7B—C1B—C2B—C3B 1.77 (2) C6A—C1A—C2A—C3A 1.79.46 (18) C7B—C1B—C2B—C3B 1.77 (2) C7A—C1A—C2A—C8A 1.70 (9) C6B—C1B—C2B—C3B 1.77 (2) C7A—C1A—C2A—C8A 1.70 (9) C6B—C1B—C2B—C3B 1.77 (2) C7A—C1A—C4A—C5A 1.3 (3) C1B—C3B—C3B—C4B 1.77 (2) C2A—C3A—C4A—C5A 1.3 (3) C1B—C3B—C3B—C4B 1.77 (2) C2A—C3A—C4A—C5A—C6A	C19A—C18A—C17A	120.1 (2)	C19B—C18B—C17B	119.9 (3)
C18A—C19A—C20A 120.3 (3) C18B—C19B—C20B 120.3 (3) C18A—C19A—H19A 119.8 C18B—C19B—H19B 119.8 C20A—C19A—H19A 119.8 C20B—C19B—H19B 119.8 C19A—C20A—C15A 120.4 (2) C19B—C20B—C15B 120.9 (2) C19A—C20A—H20A 119.8 C19B—C20B—H20B 119.6 C15A—C20A—H20A 119.8 C19B—C20B—H20B 119.6 C6A—C1A—C2A—C3A -1.9 (3) C6B—C1B—C2B—C3B 1.2 (3) C7A—C1A—C2A—C3A -1.9 (3) C6B—C1B—C2B—C3B 1.79.0 (2) C6A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 1.79.0 (2) C6A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 1.77.0 (2) C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C8B 0.1 (4) C1A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B -1.2 (3) C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B -1.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C9A -177.20 (18) C2B—C3B—C4B—C5B -0.3 (3)	C19A—C18A—H18A	119.9	C19B—C18B—H18B	120.0
C18A—C19A—H19A 119.8 C20B—C19B—H19B 119.8 C20A—C19A—H19A 119.8 C20B—C19B—H19B 119.8 C19A—C20A—C15A 120.4 (2) C19B—C20B—C15B 120.9 (2) C19A—C20A—H20A 119.8 C19B—C20B—H20B 119.6 C15A—C20A—H20A 119.8 C15B—C20B—H20B 119.6 C6A—C1A—C2A—C3A 119.46 (18) C7B—C1B—C2B—C3B 1.2 (3) C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 179.07 (2) C6A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 177.7 (2) C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 177.7 (2) C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 177.7 (2) C7A—C1A—C2A—C3A 179.49 (19) C6B—C1B—C2B—C3B 177.7 (2) C8A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B 172. (3) C8A—C2A—C3A—C4A 1.99.04 (19) C8B—C2B—C3B—C4B 177. 72 (3) C8A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3)	C17A—C18A—H18A	119.9	C17B—C18B—H18B	120.0
C20A—C19A—H19A 119.8 C20B—C19B—H19B 119.8 C19A—C20A—C15A 120.4 (2) C19B—C20B—C15B 120.9 (2) C19A—C20A—H20A 119.8 C19B—C20B—H20B 119.6 C15A—C20A—H20A 119.8 C15B—C20B—H20B 119.6 C6A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 1.2 (3) C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 1.7 (7) C6A—C1A—C2A—C8A 178.02 (19) C6B—C1B—C2B—C3B 1.7 (7) C7A—C1A—C2A—C8A -0.6 (3) C7B—C1B—C2B—C8B -1.7 (7) C7A—C1A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B -1.2 (3) C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B -1.2 (3) C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B -1.2 (3) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C5A 1.7 (3) C3B—C4B—C5B—C6B 17.9 (4) C3A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (C18A—C19A—C20A	120.3 (3)	C18B—C19B—C20B	120.3 (3)
C19A—C20A—C15A 120.4 (2) C19B—C20B—C15B 120.9 (2) C19A—C20A—H20A 119.8 C19B—C20B—H20B 119.6 C15A—C20A—H20A 119.8 C15B—C20B—H20B 119.6 C6A—C1A—C2A—C3A 119.9 C15B—C20B—H20B 119.6 C6A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 179.0 (2) C6A—C1A—C2A—C8A 178.02 (19) C6B—C1B—C2B—C8B -177.7 (2) C7A—C1A—C2A—C8A -0.6 (3) C7B—C1B—C2B—C8B 0.1 (4) C1A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B 177.77 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B 0.1 (4) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B 0.1 (4) C3A—C4A—C5A—C6A -177.72 (18) C2B—C3B—C4B—C5B 1.9 (3) C3A—C4A—C5A—C6A -176.55 (16) C9B—C3B—C4B—C5B 1.9 (3) C3A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B 1.9 (3) C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -177.88 (C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -174.16 (2)<	C18A—C19A—H19A	119.8	C18B—C19B—H19B	119.8
C19A—C20A—H20A 119.8 C19B—C20B—H20B 119.6 C15A—C20A—H20A 119.8 C15B—C20B—H20B 119.6 C6A—C1A—C2A—C3A -1.9 (3) C6B—C1B—C2B—C3B 1.2 (3) C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 179.0 (2) C6A—C1A—C2A—C8A 178.02 (19) C6B—C1B—C2B—C8B -177.7 (2) C7A—C1A—C2A—C8A -0.6 (3) C7B—C1B—C2B—C8B 0.1 (4) C1A—C2A—C3A—C4A -0.9 (3) C1B—C2B—C3B—C4B -1.2 (3) C8A—C2A—C3A—C4A -179.04 (19) C8B—C3B—C4B -17.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C9A -177.72 (18) C2B—C3B—C4B—C5B -0.3 (3) C3A—C4A—C5A—C6A -2.5 (3) C3B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B 1.77.88 (C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -177.4 (2) C9A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -177.4 (2) C4A—C5A—C15A 179.40 (18) C7B—C1B—C6B—C5B -	C20A—C19A—H19A	119.8	C20B—C19B—H19B	119.8
C19A—C20A—H20A 119.8 C19B—C20B—H20B 119.6 C15A—C20A—H20A 119.8 C15B—C20B—H20B 119.6 C6A—C1A—C2A—C3A -1.9 (3) C6B—C1B—C2B—C3B 1.2 (3) C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 179.0 (2) C6A—C1A—C2A—C8A 178.02 (19) C6B—C1B—C2B—C8B -177.7 (2) C7A—C1A—C2A—C8A -0.6 (3) C7B—C1B—C2B—C8B 0.1 (4) C1A—C2A—C3A—C4A -0.9 (3) C1B—C2B—C3B—C4B -1.2 (3) C8A—C2A—C3A—C4A -179.04 (19) C8B—C3B—C4B -17.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C9A -177.72 (18) C2B—C3B—C4B—C5B -0.3 (3) C3A—C4A—C5A—C6A -2.5 (3) C3B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B 1.77.88 (C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -177.4 (2) C9A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -177.4 (2) C4A—C5A—C15A 179.40 (18) C7B—C1B—C6B—C5B -	C19A—C20A—C15A	120.4 (2)	C19B—C20B—C15B	120.9 (2)
C15A—C20A—H20A 119.8 C15B—C20B—H20B 119.6 C6A—C1A—C2A—C3A -1.9 (3) C6B—C1B—C2B—C3B 1.2 (3) C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 179.0 (2) C6A—C1A—C2A—C8A 178.02 (19) C6B—C1B—C2B—C8B -177.7 (2) C7A—C1A—C2A—C8A -0.6 (3) C7B—C1B—C2B—C8B 0.1 (4) C1A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B -1.2 (3) C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B -1.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B 1.9 (3) C3A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C15B -176.16 (5) C3A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B -176.16 (6) C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B		` ′		` '
C6A—C1A—C2A—C3A -1.9 (3) C6B—C1B—C2B—C3B 1.2 (3) C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 179.0 (2) C6A—C1A—C2A—C8A 178.02 (19) C6B—C1B—C2B—C8B -177.7 (2) C7A—C1A—C2A—C8A -0.6 (3) C7B—C1B—C2B—C8B 0.1 (4) C1A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B -1.2 (3) C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B 177.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B 0.3 (3) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B 0.7 (3) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B 0.7 (3) C3A—C4A—C5A—C6A -177.72 (18) C2B—C3B—C4B—C5B—C6B 179.45 (18) C3A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C6B 1.17.88 (18) C9A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (15) C9A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C1A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6				
C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 179.0 (2) C6A—C1A—C2A—C8A 178.02 (19) C6B—C1B—C2B—C8B -177.7 (2) C7A—C1A—C2A—C8A -0.6 (3) C7B—C1B—C2B—C8B 0.1 (4) C1A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B 177.7 (2) C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B 177.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C9A -177.72 (18) C2B—C3B—C4B—C9B 179.45 (18) C3A—C4A—C5A—C6A -176.55 (16) C9B—C4B—C5B—C6B 1.77.88 (18) C3A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B 1.77.88 (18) C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (18) C3A—C4A—C5A—C15A 179.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C2A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C6A—C1A -15 (3) C4B—C5B—C6B—C1B -177.4 (2) C3A—C4A—C9A—C10A -175.20 (17)			3332 3332 33232	
C7A—C1A—C2A—C3A 179.46 (18) C7B—C1B—C2B—C3B 179.0 (2) C6A—C1A—C2A—C8A 178.02 (19) C6B—C1B—C2B—C8B -177.7 (2) C7A—C1A—C2A—C8A -0.6 (3) C7B—C1B—C2B—C8B 0.1 (4) C1A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B 177.7 (2) C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B 177.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C3A—C4A—C5A—C6A -177.72 (18) C2B—C3B—C4B—C5B 179.45 (18) C3A—C4A—C5A—C6A -176.55 (16) C9B—C4B—C5B—C6B 1.79.45 (18) C3A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B -177.88 (C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -177.18 (C3A—C4A—C5A—C15A 179.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C2A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C1A—C9A—C10A -175.20 (17) <t< td=""><td>C6A—C1A—C2A—C3A</td><td>-1.9(3)</td><td>C6B—C1B—C2B—C3B</td><td>1.2 (3)</td></t<>	C6A—C1A—C2A—C3A	-1.9(3)	C6B—C1B—C2B—C3B	1.2 (3)
C6A—C1A—C2A—C8A 178.02 (19) C6B—C1B—C2B—C8B -177.7 (2) C7A—C1A—C2A—C8A -0.6 (3) C7B—C1B—C2B—C8B 0.1 (4) C1A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B -1.2 (3) C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B 17.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C9A -177.72 (18) C2B—C3B—C4B—C9B 179.45 (18) C3A—C4A—C5A—C6A -2.5 (3) C3B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B 1-77.80 (18) C9A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B 1-77.80 (17) C9A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (16) C9A—C4A—C5A—C15A 179.40 (18) C7B—C1B—C6B—C5B -15.6 (16) C9A—C4A—C5A—C15A 179.40 (18) C7B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -177.4 (2) C4A—C5A—C6A—C1A -175.20 (17) C15B—C6B—C1B -13.15 (2) C5A—C4A—C9A—C10A 131.8 (2)	C7A—C1A—C2A—C3A	` '	C7B—C1B—C2B—C3B	
C7A—C1A—C2A—C8A -0.6 (3) C7B—C1B—C2B—C8B 0.1 (4) C1A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B -1.2 (3) C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B 177.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C9A -177.72 (18) C2B—C3B—C4B—C9B 179.45 (18) C3A—C4A—C5A—C6A -2.5 (3) C3B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C6A -2.5 (3) C3B—C4B—C5B—C6B 1.77.88 (18) C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (3) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B -176.16 (3) C2A—C1A—C6A—C5A 0.7 (3) C2B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C1A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C1A—C5A—C6A—C1A -175.20 (17) C15B—C5B—C6B—C1B -2.0 (3) C1A—C4—C9A—C10A 49.2 (3) C3B—C4B—C9B—C14	C6A—C1A—C2A—C8A	` ′		* *
C1A—C2A—C3A—C4A 0.9 (3) C1B—C2B—C3B—C4B -1.2 (3) C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B 177.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C9A -177.72 (18) C2B—C3B—C4B—C9B 179.45 (18) C3A—C4A—C5A—C6A -2.5 (3) C3B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B -177.88 (18) C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (18) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B -176.16 (18) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B -176.16 (18) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B -176.16 (18) C9A—C1A—C6A—C5A 17.9 (4) (18) C7B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 1.79.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A 1.75.20 (17) C15B—C5B—C6B—C1B -2.0 (3) C15A—C4A—C9A—C10A 131.8 (2)		` '		, ,
C8A—C2A—C3A—C4A -179.04 (19) C8B—C2B—C3B—C4B 177.7 (2) C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C9A -177.72 (18) C2B—C3B—C4B—C9B 179.45 (18) C3A—C4A—C5A—C6A -2.5 (3) C3B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B -177.88 (18) C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (18) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B -176.16 (18) C2A—C1A—C6A—C5A 0.7 (3) C2B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B 176.11 (15) C3A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B 131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C10B -133.3 (2) C5A—C4A—C9A—C14A -49.1 (3)		` '		` '
C2A—C3A—C4A—C5A 1.3 (3) C2B—C3B—C4B—C5B -0.3 (3) C2A—C3A—C4A—C9A -177.72 (18) C2B—C3B—C4B—C9B 179.45 (18) C3A—C4A—C5A—C6A -2.5 (3) C3B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B -177.88 (6) C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (6) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B -1.76.16 (6) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B -176.16 (6) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B -176.16 (6) C9A—C1A—C6A—C5A 0.7 (3) C2B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A -175.20 (17) C15B—C5B—C6B—C1B 176.11 (19 C3A—C4A—C9A—C10A -131.8 (2) C5B—C4B—C9B—C14B 131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C10B 148.3 (3) C14A—C9A—C10A—C11A 179.7 (2		* /		` ′
C2A—C3A—C4A—C9A -177.72 (18) C2B—C3B—C4B—C9B 179.45 (18) C3A—C4A—C5A—C6A -2.5 (3) C3B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B -177.88 (3) C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (3) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B -1.76.16 (3) C2A—C1A—C6A—C5A 0.7 (3) C2B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B 0.5 (3) C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A -175.20 (17) C15B—C5B—C6B—C1B -176.11 (15 C3A—C4A—C9A—C10A -49.2 (3) C3B—C4B—C9B—C14B -131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B 48.3 (3) C14A—C9A—C10A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C4A—C9A—C10A—C11A 0.6 (3) <		` /		* *
C3A—C4A—C5A—C6A -2.5 (3) C3B—C4B—C5B—C6B 1.9 (3) C9A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B -177.88 (3) C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (3) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B 4.1 (3) C2A—C1A—C6A—C5A 0.7 (3) C2B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A -175.20 (17) C15B—C5B—C6B—C1B 176.11 (19 C3A—C4A—C9A—C10A -49.2 (3) C3B—C4B—C9B—C14B -131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B 48.3 (3) C3A—C4A—C9A—C14A 129.9 (2) C3B—C4B—C9B—C10B 46.9 (2) C5A—C4A—C9A—C14A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B 0.2 (3) C14A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (1) C9A—C10A—C11A—C12A -0.8 (4)		` /		* *
C9A—C4A—C5A—C6A 176.55 (16) C9B—C4B—C5B—C6B -177.88 (16) C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (16) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B 4.1 (3) C2A—C1A—C6A—C5A 0.7 (3) C2B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A -175.20 (17) C15B—C5B—C6B—C1B 176.11 (18) C3A—C4A—C9A—C10A -49.2 (3) C3B—C4B—C9B—C14B -131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B -131.5 (2) C5A—C4A—C9A—C14A 129.9 (2) C3B—C4B—C9B—C10B 46.9 (2) C5A—C4A—C9A—C14A 129.9 (2) C3B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (1) C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C11A—C12A—C13A 0.9 (4) </td <td></td> <td>* *</td> <td></td> <td>` ,</td>		* *		` ,
C3A—C4A—C5A—C15A 174.07 (17) C3B—C4B—C5B—C15B -176.16 (1) C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B 4.1 (3) C2A—C1A—C6A—C5A 0.7 (3) C2B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A -175.20 (17) C15B—C5B—C6B—C1B 176.11 (19 C3A—C4A—C9A—C10A -49.2 (3) C3B—C4B—C9B—C14B -131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B 48.3 (3) C14A—C9A—C14A -29.9 (2) C3B—C4B—C9B—C10B 46.9 (2) C5A—C4A—C9A—C14A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B 0.2 (3) C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3)		` '		* *
C9A—C4A—C5A—C15A -6.9 (3) C9B—C4B—C5B—C15B 4.1 (3) C2A—C1A—C6A—C5A 0.7 (3) C2B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A -175.20 (17) C15B—C5B—C6B—C1B 176.11 (19 C3A—C4A—C9A—C10A -49.2 (3) C3B—C4B—C9B—C14B -131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B 48.3 (3) C3A—C4A—C9A—C14A 129.9 (2) C3B—C4B—C9B—C10B 46.9 (2) C5A—C4A—C9A—C14A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C14A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B 0.2 (3) C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B 0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C13A -0.5 (3)		` /		` /
C2A—C1A—C6A—C5A 0.7 (3) C2B—C1B—C6B—C5B 0.5 (3) C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A -175.20 (17) C15B—C5B—C6B—C1B 176.11 (19 C3A—C4A—C9A—C10A -49.2 (3) C3B—C4B—C9B—C14B -131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B 48.3 (3) C3A—C4A—C9A—C10A 129.9 (2) C3B—C4B—C9B—C10B 46.9 (2) C5A—C4A—C9A—C14A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (2) C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B 0.5 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C12A—C13A—C14A—C13A -17.64 (17)		` '		
C7A—C1A—C6A—C5A 179.40 (18) C7B—C1B—C6B—C5B -177.4 (2) C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A -175.20 (17) C15B—C5B—C6B—C1B 176.11 (19 C3A—C4A—C9A—C10A -49.2 (3) C3B—C4B—C9B—C14B -131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B 48.3 (3) C3A—C4A—C9A—C14A 129.9 (2) C3B—C4B—C9B—C10B 46.9 (2) C5A—C4A—C9A—C14A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C14A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (2) C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A		` '		* *
C4A—C5A—C6A—C1A 1.5 (3) C4B—C5B—C6B—C1B -2.0 (3) C15A—C5A—C6A—C1A -175.20 (17) C15B—C5B—C6B—C1B 176.11 (19 C3A—C4A—C9A—C10A -49.2 (3) C3B—C4B—C9B—C14B -131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B 48.3 (3) C3A—C4A—C9A—C14A 129.9 (2) C3B—C4B—C9B—C10B 46.9 (2) C5A—C4A—C9A—C14A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (3) C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A		* *		
C15A—C5A—C6A—C1A		` ′		* *
C3A—C4A—C9A—C10A -49.2 (3) C3B—C4B—C9B—C14B -131.5 (2) C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B 48.3 (3) C3A—C4A—C9A—C14A 129.9 (2) C3B—C4B—C9B—C10B 46.9 (2) C5A—C4A—C9A—C14A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (2) C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C16A 123.8 (2) C4B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A		* *		
C5A—C4A—C9A—C10A 131.8 (2) C5B—C4B—C9B—C14B 48.3 (3) C3A—C4A—C9A—C14A 129.9 (2) C3B—C4B—C9B—C10B 46.9 (2) C5A—C4A—C9A—C14A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (3) C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C16B 50.9 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C16B—C17B 130.5 (2) C20A—C15A—C16A—C17A		* *		* *
C3A—C4A—C9A—C14A 129.9 (2) C3B—C4B—C9B—C10B 46.9 (2) C5A—C4A—C9A—C14A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (3) C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C4A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A		* *		
C5A—C4A—C9A—C14A -49.1 (3) C5B—C4B—C9B—C10B -133.3 (2) C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (2) C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C16A 123.8 (2) C4B—C5B—C15B—C16B 50.9 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C16B—C17B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B -0.3 (3)		` '		` '
C14A—C9A—C10A—C11A 0.6 (3) C14B—C9B—C10B—C11B 0.2 (3) C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (2) C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C4A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 179.38 (18) C5A—C15A—C16A—C17A -178.7 (2) C5B—C16B—C17B -0.3 (3)		* *		
C4A—C9A—C10A—C11A 179.7 (2) C4B—C9B—C10B—C11B -178.27 (2) C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C4A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C16B—C17B 0.8 (3) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 179.38 (18) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B -0.3 (3)				* *
C9A—C10A—C11A—C12A -0.8 (4) C9B—C10B—C11B—C12B -0.6 (3) C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C4A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18) C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)		* /		* *
C10A—C11A—C12A—C13A 0.9 (4) C10B—C11B—C12B—C13B 0.4 (3) C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C6A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18) C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)		* *		-178.27(18)
C11A—C12A—C13A—C14A -0.8 (3) C11B—C12B—C13B—C14B 0.3 (3) C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C6A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18) C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)		* *		` '
C12A—C13A—C14A—C9A 0.6 (3) C12B—C13B—C14B—C9B -0.8 (3) C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C6A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18) C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)	C10A—C11A—C12A—C13A	0.9 (4)	C10B—C11B—C12B—C13B	0.4(3)
C10A—C9A—C14A—C13A -0.5 (3) C10B—C9B—C14B—C13B 0.5 (3) C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C6A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18) C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)	C11A—C12A—C13A—C14A	-0.8(3)	C11B—C12B—C13B—C14B	0.3 (3)
C4A—C9A—C14A—C13A -179.64 (17) C4B—C9B—C14B—C13B 178.92 (17) C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C6A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18) C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)	C12A—C13A—C14A—C9A	0.6 (3)	C12B—C13B—C14B—C9B	-0.8(3)
C6A—C5A—C15A—C20A -54.4 (2) C6B—C5B—C15B—C16B -127.1 (2) C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C6A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18 C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)	C10A—C9A—C14A—C13A	-0.5(3)	C10B—C9B—C14B—C13B	0.5 (3)
C4A—C5A—C15A—C20A 129.1 (2) C4B—C5B—C15B—C16B 50.9 (3) C6A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18 C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)	C4A—C9A—C14A—C13A	-179.64 (17)	C4B—C9B—C14B—C13B	178.92 (17)
C6A—C5A—C15A—C16A 123.8 (2) C6B—C5B—C15B—C20B 51.4 (3) C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18 C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)	C6A—C5A—C15A—C20A	-54.4 (2)	C6B—C5B—C15B—C16B	-127.1(2)
C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18 C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)	C4A—C5A—C15A—C20A	129.1 (2)	C4B—C5B—C15B—C16B	50.9 (3)
C4A—C5A—C15A—C16A -52.7 (3) C4B—C5B—C15B—C20B -130.5 (2) C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18 C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)	C6A—C5A—C15A—C16A	123.8 (2)	C6B—C5B—C15B—C20B	51.4 (3)
C20A—C15A—C16A—C17A -0.5 (3) C20B—C15B—C16B—C17B 0.8 (3) C5A—C15A—C16A—C17A -178.7 (2) C5B—C15B—C16B—C17B 179.38 (18 C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)	C4A—C5A—C15A—C16A		C4B—C5B—C15B—C20B	-130.5(2)
C5A—C15A—C16A—C17A		* *		` '
C15A—C16A—C17A—C18A 0.5 (4) C15B—C16B—C17B—C18B -0.3 (3)				179.38 (18)
		* *		` '
C16A—C17A—C18A—C19A -0.5 (4) C16B—C17B—C18B—C19B -0.2 (4)	C16A—C17A—C18A—C19A	-0.5 (4)		-0.2 (4)
C17A—C18A—C19A—C20A 0.5 (4) C17B—C18B—C19B—C20B 0.0 (4)		3 2		` '
C18A—C19A—C20A—C15A				* *
	01011 01711 02011 01371	3.5 (1)	C10D C17D C20D C17D	0.0 (1)

C16A—C15A—C20A—C19A	0.5 (3)	C16B—C15B—C20B—C19B	-1.0 (3)
C5A—C15A—C20A—C19A	178.7 (2)	C5B—C15B—C20B—C19B	-179.6 (2)