Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,1'-Dimethyl-4,4'-bipyridinium bis(triiodide)

Tuoping Hu

Department of Chemistry, North University of China, Taiyuan, Shanxi 030051, People's Republic of China
Correspondence e-mail: hutuopingsx@yahoo.com.cn

Received 3 March 2009; accepted 23 April 2009

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.040 ; w R$ factor $=0.073$; data-to-parameter ratio $=28.8$.

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{I}_{3}{ }^{-}$, the 1, 1^{\prime}-dimethyl-4, $4^{\prime}-$ bipyridinium (DMBP) dication is charge balanced by two triiodide ions. The DMBP dication is planar within 0.010 (5) A. The asymmetric unit contains only half of the dication, the other half being generated by an inversion center. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions link the ions into sheets parallel to (121).

Related literature

For a dication with similar geometry, see: Russell \& Wallwork (1972). For anions with comparable geometry, see: Marsh (2004); Madsen et al. (1999).

Experimental

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{I}_{3}{ }^{-}$	$b=7.9541(6) \AA$
$M_{r}=947.65$	$c=9.3029(6) \AA$
Triclinic, $P \overline{1}$	$\alpha=90.306(5)^{\circ}$
$a=7.5457(4) \AA$	$\beta=94.192(4)^{\circ}$

$\gamma=102.332(5)^{\circ}$	$\mu=8.56 \mathrm{~mm}^{-1}$
$V=543.88(6) \AA^{3}$	$T=296 \mathrm{~K}$
$Z=1$	$0.22 \times 0.16 \times 0.08 \mathrm{~mm}$
Mo $K \alpha$ radiation	
Data collection	
Bruker SMART CCD area-detector	12956 measured reflections
\quad diffractometer	2683 independent reflections
Absorption correction: multi-scan	1468 reflections with $I>2 \sigma(I)$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$R_{\text {int }}=0.052$
$T_{\min }=0.211, T_{\max }=0.504$	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad 93$ parameters
$w R\left(F^{2}\right)=0.073$
$S=1.02$
2683 reflections
$\mu=8.56 \mathrm{~mm}^{-1}$
296 K
$0.22 \times 0.16 \times 0.08 \mathrm{~mm}$

12956 measured reflections
2683 independent reflections 1468 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.97 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.86 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{I} 1-\mathrm{I} 2$	$2.9341(8)$	$\mathrm{I} 2-\mathrm{I} 3$	$2.9061(8)$

$\mathrm{I} 3-\mathrm{I} 2-\mathrm{I} 1 \quad 177.49$ (2)

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{I} 3^{\mathrm{i}}$	0.93	3.05	$3.951(8)$	163
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{I} 1^{\mathrm{ii}}$	0.93	3.16	$4.066(8)$	164
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{I} 2^{\mathrm{i}}$	0.93	3.13	$3.839(7)$	135

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1,-y+1,-z+2$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author is grateful for funding support from the Natural Science Foundation of Shanxi Province (2007011033), the Program of Technological Industrialization at the University of Shanxi Province (20070308) and the start-up fund of North University of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2167).

References

Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Madsen, D., Burghammer, M., Fiedler, S. \& Müller, H. (1999). Acta Cryst. B55, 601-606.
Marsh, R. E. (2004). Acta Cryst. B60, 252-253.
Russell, J. H. \& Wallwork, S. C. (1972). Acta Cryst. B28, 1527-1533.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1162 [doi:10.1107/S1600536809015207]

1,1'-Dimethyl-4,4'-bipyridinium bis(triiodide)

Tuoping Hu

S1. Comment

The title compound, (I), was obtained by chance when we tried to prepare the salt of the $\mathrm{Pb}(\mathrm{II})$ cation and DMBP in MeOH . This paper provides the first crystal structure of the DMBP dication with two triiodide anions.

Only half of the dication of DMBP is contained in the asymmetric unit, while the other half is generated by the inversion center at ($1 / 2,1 / 2,1 / 2$) (Fig 1.). The N, N^{\prime}-dimethyl-4, 4^{\prime} bipyridylium(II) dication has an essentially planar conformation, the maximum deviation of the C 1 atom (the methyl group) from its mean plane being 0.010 (5) \AA. The geometry of the dication is similar to the one observed in Russell \& Wallwork (1972). Meanwhile, the geometry of the anion is comparable to that described in Marsh (2004) and Madsen et al. (1999).
Weak C3-H3 $\cdots \mathrm{I} 3$ interactions link two I_{3} anions to each dication. A weaker $\mathrm{C} 2-\mathrm{I} 2 \cdots \mathrm{H} 1$ interaction links each anion to a further DMBP cation, to form sheets parallel to (121). Adjacent sheets are packed into a three-dimensional motif (Fig. $2)$.

S2. Experimental

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} .4 \mathrm{Cl}(0.5 \mathrm{mmol}, 128 \mathrm{mg})$ and $\mathrm{KI}(10 \mathrm{mmol}, 1660 \mathrm{mg})$ were added to 50 ml of $\mathrm{CH}_{3} \mathrm{CN}$. After stirring and refluxing for 12 h , the mixture was filtered, and the clear solution was allowed to evaporate slowly under inert atmosphere. Prismatic crystals of the title compound were obtained after 5 days. The crystals were filtered, washed by cool EtOH and dried in air.

S3. Refinement

All of the H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.930 \AA$ and $0.96 \AA$, with $U_{\mathrm{iso}}(\mathrm{H})=1.2$ and 1.5 times $U_{\mathrm{eq}}(\mathrm{C})$, for aromatic and methyl hydrogens, respectively.

Figure 1

Molecular structure showing 50% probability displacement ellipsoids. The atoms marked with A are derived from the reference atoms by means of the ($1-x, 1-y, 1-z$) symmetry transformation..

Figure 2
Packing diagram viewed down the a axis. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions are shown as dotted lines.

1,1'-Dimethyl-4,4'-bipyridinium bis(triiodide)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{I}_{3}$
$M_{r}=947.65$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.5457$ (4) \AA
$b=7.9541$ (6) \AA

$$
\begin{aligned}
& c=9.3029(6) \AA \\
& \alpha=90.306(5)^{\circ} \\
& \beta=94.192(4)^{\circ} \\
& \gamma=102.332(5)^{\circ} \\
& V=543.88(6) \AA^{3} \\
& Z=1
\end{aligned}
$$

$F(000)=418$
$D_{\mathrm{x}}=2.893 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4412 reflections
$\theta=2.6-27.6^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.211, T_{\text {max }}=0.504$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.073$
$S=1.02$
2683 reflections
93 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& \mu=8.56 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Prism, black } \\
& 0.22 \times 0.16 \times 0.08 \mathrm{~mm} \\
& \\
& \\
& 12956 \text { measured reflections } \\
& 2683 \text { independent reflections } \\
& 1468 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.052 \\
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=3.9^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-10 \rightarrow 10 \\
& l=-11 \rightarrow 12
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hydrogen site location: inferred from } \\
& \quad \text { neighbouring sites } \\
& \mathrm{H}-\text { atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.005 P)^{2}+2.2853 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.97 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.86 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97(\text { Sheldrick, } \\
& \quad \text { 2008), } \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4} \\
& \text { Extinction coefficient: } 0.0028(3)
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
I1	$0.11371(7)$	$0.64766(7)$	$0.84204(6)$	$0.0705(2)$
I2	$0.19121(6)$	$0.80427(6)$	$0.56237(6)$	$0.05927(17)$
I3	$0.25337(8)$	$0.96496(8)$	$0.28546(6)$	$0.0816(2)$
N1	$0.3773(9)$	$0.2800(7)$	$0.8128(7)$	$0.0588(16)$
C1	$0.3276(13)$	$0.1852(11)$	$0.9438(9)$	$0.085(3)$
H1A	0.4248	0.2166	1.0179	0.128^{*}
H1B	0.3064	0.0638	0.9235	0.128^{*}
H1C	0.2190	0.2131	0.9758	0.128^{*}
C2	$0.5358(12)$	$0.3875(11)$	$0.8116(9)$	$0.074(2)$
H2	0.6149	0.4034	0.8944	0.088^{*}

C3	$0.2652(11)$	$0.2566(10)$	$0.6956(10)$	$0.072(2)$
H3	0.1526	0.1813	0.6969	0.086^{*}
C4	$0.5864(9)$	$0.4764(10)$	$0.6903(8)$	$0.061(2)$
H4	0.6984	0.5532	0.6924	0.074^{*}
C5	$0.3120(10)$	$0.3414(10)$	$0.5722(8)$	$0.066(2)$
H5	0.2309	0.3216	0.4906	0.079^{*}
C6	$0.4743(8)$	$0.4540(7)$	$0.5658(7)$	$0.0396(14)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.0689(4)$	$0.0899(4)$	$0.0576(3)$	$0.0291(3)$	$0.0010(3)$	$0.0076(3)$
I2	$0.0503(3)$	$0.0648(3)$	$0.0672(3)$	$0.0224(2)$	$0.0040(2)$	$0.0045(2)$
I3	$0.0838(4)$	$0.0895(4)$	$0.0816(4)$	$0.0335(3)$	$0.0267(3)$	$0.0292(3)$
N1	$0.066(4)$	$0.051(4)$	$0.063(4)$	$0.016(3)$	$0.016(4)$	$0.010(3)$
C1	$0.106(7)$	$0.076(6)$	$0.075(6)$	$0.017(5)$	$0.017(5)$	$0.015(5)$
C2	$0.071(6)$	$0.088(6)$	$0.061(5)$	$0.020(5)$	$-0.011(4)$	$0.015(5)$
C3	$0.062(5)$	$0.066(5)$	$0.078(6)$	$-0.010(4)$	$0.011(5)$	$-0.003(5)$
C4	$0.039(4)$	$0.077(5)$	$0.058(5)$	$-0.004(4)$	$-0.016(3)$	$0.006(4)$
C5	$0.052(5)$	$0.080(6)$	$0.054(5)$	$-0.007(4)$	$-0.003(4)$	$-0.001(4)$
C6	$0.031(3)$	$0.032(3)$	$0.054(4)$	$0.005(3)$	$-0.002(3)$	$-0.003(3)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

I1-I2	2.9341 (8)	C2-H2	0.9300
I2-I3	2.9061 (8)	C3-C5	1.364 (10)
N1-C2	1.314 (9)	C3-H3	0.9300
N1-C3	1.317 (9)	C4-C6	1.371 (8)
N1-C1	1.467 (9)	C4-H4	0.9300
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9600	C5-C6	1.359 (9)
C1-H1B	0.9600	C5-H5	0.9300
C1-H1C	0.9600	C6- $\mathrm{C}^{\text {i }}$	1.464 (12)
C2-C4	1.370 (10)		
I3-I2-I1	177.49 (2)	N1-C3-C5	120.9 (7)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	119.7 (7)	N1-C3-H3	119.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	119.8 (7)	$\mathrm{C} 5-\mathrm{C} 3-\mathrm{H} 3$	119.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	120.5 (7)	C2-C4-C6	121.0 (6)
N1-C1-H1A	109.5	C2-C4-H4	119.5
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C6-C4-H4	119.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C6-C5-C3	121.6 (7)
N1-C1-H1C	109.5	C6-C5-H5	119.2
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C3-C5-H5	119.2
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C5-C6-C4	115.9 (6)
N1-C2-C4	121.0 (7)	C5-C6- $\mathrm{C}^{\text {i }}$	122.1 (7)
N1-C2-H2	119.5	C4-C6-C6 ${ }^{\text {i }}$	122.1 (7)
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{H} 2$	119.5		

$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 4$	$0.3(12)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 5-\mathrm{C} 6$	$-0.7(13)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 4$	$179.4(7)$	$\mathrm{C} 3-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 4$	$0.0(11)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 5$	$0.6(12)$	$\mathrm{C} 3-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 6{ }^{\mathrm{i}}$	$-179.8(8)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 5$	$-178.5(7)$	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 5$	$0.9(11)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 6$	$-1.0(12)$	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 6^{\mathrm{i}}$	$-179.3(8)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{I} 3^{\mathrm{ii}}$	0.93	3.05	$3.951(8)$	163
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{I} 1^{\mathrm{iii}}$	0.93	3.16	$4.066(8)$	164
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{I} 2^{\mathrm{ii}}$	0.93	3.13	$3.839(7)$	135

Symmetry codes: (ii) $-x,-y+1,-z+1$; (iii) $-x+1,-y+1,-z+2$.

