

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(3-pyridylmethyl)-1Hpyrazole-3-carboxamide

Xinhua He, Wu Zhong, Junhai Xiao, Zhibing Zheng* and Song Li

Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China

Correspondence e-mail: hexinhua01@126.com

Received 30 December 2008; accepted 10 April 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.085; data-to-parameter ratio = 17.2.

In the title compound, $C_{23}H_{17}Cl_3N_4O$, the benzene rings are oriented with respect to the pyrazole ring at dihedral angles of 39.9 (2) and 72.90 $(13)^{\circ}$ for the chlorophenyl and dichlorophenyl rings, respectively. Intermolecular $C-H \cdots N$ and C-H···Cl interactions are observed in the crystal packing.

Related literature

For general background to pyrazole derivatives and their biological activity, see: Srivastava et al. (2008); LoVerme et al. (2009); Rinaldi-Carmona et al. (1994). For the synthesis, see: Li et al. (2007).

Experimental

Crystal data
C23H17Cl3N4O
$M_r = 471.76$
Monoclinic, $P2_1/c$
a = 9.0032 (4) Å
b = 20.1001 (8) Å
c = 11.4664 (5) Å
$\beta = 92.003 \ (2)^{\circ}$

 $V = 2073.75 (15) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.47 \text{ mm}^{-1}$ T = 113 K $0.26 \times 0.20 \times 0.18 \; \mathrm{mm}$ 19184 measured reflections

 $R_{\rm int} = 0.034$

4914 independent reflections 4152 reflections with $I > 2\sigma(I)$

Data collection

Rigaku Saturn CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(CrystalClear; Rigaku/MSC,	
2005)	

 $T_{\min} = 0.888, T_{\max} = 0.921$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.085$	independent and constrained
S = 1.06	refinement
4914 reflections	$\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$
285 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C17 - H17 \cdots N4^{i}$ $C7 - H7 \cdots Cl2^{ii}$	0.95 0.95	2.56 2.84	3.272 (2) 3.5903 (15)	132 137
Summerstan onder (i) u	1	1. (2)		

Symmetry codes: (i) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and publCIF (Westrip, 2009).

We thank T. L. Liang for her fruitful help.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2158).

References

Li, S., Liu, M. J. & Zheng, Z. B. (2007). WO Patent WO2007079681.

- LoVerme, J., Duranti, A., Tontini, A., Spadoni, G., Mor, M., Rivara, S., Stella, N., Xu, C., Tarzia, G. & Piomelli, D. (2009). Bioorg. Med. Chem. Lett. 19, 639-643.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Rinaldi-Carmona, M., Barth, F., Héaulme, M., Shire, D., Calandra, B., Congy, C., Martinez, S., Maruani, J., Néliat, G., Caput, D., Ferrara, P., Soubrié, P., Breliére, J. C. & LeFur, G. (1994). FEBS Lett. 350, 240-244.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Srivastava, B. K., et al. (2008). Bioorg. Med. Chem. Lett. 18, 963-968.
- Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o1077 [doi:10.1107/S1600536809013609]

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-*N*-(3-pyridylmethyl)-1*H*-pyrazole-3-carboxamide

Xinhua He, Wu Zhong, Junhai Xiao, Zhibing Zheng and Song Li

S1. Comment

Pyrazole derivatives have been found to be a novel class of cannabinoid CB1 receptor antagonists (Srivastava *et al.*, 2008; LoVerme *et al.*, 2009; Rinaldi-Carmona M. *et al.*, 1994). The crystal structure of the title compound (IC50 =0.139nM at CB1) was analyzed by X-ray diffraction, for the purpose of studying its quantitative structure-activity relationship (QSAR).

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The benzene rings (C6—C11) and (C12—C17) are oriented at dihedral angles of $39.9 (2)^{\circ}$ and $72.90 (13)^{\circ}$, respectively, with respect to the pyrazole ring.

In the crystal structure, the molecules are linked by intermolecular C17—H17···N4 and C7—H7···Cl2 interactions (Fig. 2).

S2. Experimental

The title compound was synthesized according to the procedure of Li *et al.*(2007). Colorless single crystals were obtained by slow evaporation of a solution in ehtyl acetate.

S3. Refinement

The H atoms linked to the C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98Å (methyl), 0.99 Å (methylene) with U_{iso} (H) =1.2–1.5Ueq(C). H atoms of the amino group were located in a difference Fourier map and refined freely.

Figure 1

The molecular structure of the title compound, with the atom-numbering scheme and ellipsoids at the 30 % probability level.

Figure 2

The crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines.

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(3-pyridylmethyl)- 1H-pyrazole-3-carboxamide

F(000) = 968

 $\theta = 1.8 - 27.9^{\circ}$

 $\mu = 0.47 \text{ mm}^{-1}$ T = 113 K

Block, colorless

 $0.26 \times 0.20 \times 0.18 \text{ mm}$

 $D_{\rm x} = 1.511 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71070$ Å

Cell parameters from 4274 reflections

Crystal data

 $C_{23}H_{17}Cl_3N_4O$ $M_r = 471.76$ Monoclinic, $P2_1/c$ a = 9.0032 (4) Å b = 20.1001 (8) Å c = 11.4664 (5) Å $\beta = 92.003$ (2)° V = 2073.75 (15) Å³ Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer	19184 measured reflections 4914 independent reflections
Radiation source: rotating anode	4152 reflections with $I > 2\sigma(I)$
Confocal monochromator	$R_{\rm int} = 0.034$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
ω and φ scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -26 \rightarrow 26$
(CrystalClear; Rigaku/MSC, 2005)	$l = -15 \rightarrow 15$
$T_{\min} = 0.888, \ T_{\max} = 0.921$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.085$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
4914 reflections	and constrained refinement
285 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 0.5347P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.75 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.01811 (4)	0.643967 (18)	0.56112 (3)	0.02233 (10)	
Cl2	0.52709 (4)	0.554267 (18)	0.22278 (3)	0.02014 (10)	
C13	0.15192 (4)	0.596113 (19)	-0.14473 (3)	0.02088 (10)	

01	0.60926 (12)	0.24050 (6)	0.40372 (10)	0.0235 (3)
N1	0.65174 (14)	0.25624 (6)	0.21143 (12)	0.0177 (3)
H1	0.633 (2)	0.2770 (10)	0.1553 (17)	0.023 (5)*
N2	0.47501 (14)	0.36428 (6)	0.20324 (11)	0.0158 (3)
N3	0.38825 (14)	0.41730 (6)	0.22738 (11)	0.0149 (3)
N4	1.09010 (16)	0.18709 (7)	0.40063 (13)	0.0255 (3)
C1	0.59001 (16)	0.27258 (7)	0.31272 (14)	0.0160 (3)
C2	0.49452 (15)	0.33347 (7)	0.30626 (13)	0.0145 (3)
C3	0.41906 (16)	0.36537 (7)	0.39652 (13)	0.0142 (3)
C4	0.35219 (16)	0.42006 (7)	0.34305 (13)	0.0138 (3)
C5	0.40835 (18)	0.34400 (8)	0.52139 (13)	0.0203 (3)
H5A	0.4938	0.3614	0.5672	0.030*
H5B	0.4080	0.2953	0.5256	0.030*
H5C	0.3163	0.3614	0.5529	0.030*
C6	0.26488 (16)	0.47476 (7)	0.39330 (12)	0.0135 (3)
C7	0.30933 (16)	0.49932 (8)	0.50303 (13)	0.0159 (3)
H7	0.3927	0.4800	0.5432	0.019*
C8	0.23420 (17)	0.55137 (7)	0.55469 (13)	0.0169 (3)
H8	0.2662	0.5679	0.6290	0.020*
C9	0.11196 (16)	0.57867 (7)	0.49587 (13)	0.0155 (3)
C10	0.06310 (16)	0.55496 (7)	0.38774 (13)	0.0155 (3)
H10	-0.0215	0.5740	0.3488	0.019*
C11	0.13936 (16)	0.50292 (7)	0.33683 (13)	0.0144 (3)
H11	0.1060	0.4863	0.2629	0.017*
C12	0.33945 (16)	0.45989 (7)	0.13373 (12)	0.0143 (3)
C13	0.39214 (16)	0.52489 (7)	0.12519 (13)	0.0144 (3)
C14	0.33693 (16)	0.56739 (7)	0.03826 (13)	0.0154 (3)
H14	0.3721	0.6118	0.0325	0.019*
C15	0.22900 (16)	0.54305 (7)	-0.03979 (12)	0.0155 (3)
C16	0.17985 (17)	0.47747 (7)	-0.03588 (13)	0.0181 (3)
H16	0.1090	0.4613	-0.0923	0.022*
C17	0.23618 (17)	0.43610 (8)	0.05187 (13)	0.0172 (3)
H17	0.2037	0.3912	0.0557	0.021*
C18	0.74791 (16)	0.19856 (7)	0.19942 (14)	0.0185 (3)
H18A	0.7511	0.1867	0.1158	0.022*
H18B	0.7040	0.1605	0.2408	0.022*
C19	0.95085 (18)	0.18300 (8)	0.35444 (15)	0.0213 (3)
H19	0.8786	0.1607	0.3985	0.026*
C20	0.90543 (16)	0.20918 (7)	0.24668 (13)	0.0158 (3)
C21	1.01070 (18)	0.24347 (8)	0.18393 (14)	0.0200 (3)
H21	0.9844	0.2630	0.1106	0.024*
C22	1.15446 (18)	0.24873 (8)	0.23013 (15)	0.0237 (3)
H22	1.2281	0.2721	0.1892	0.028*
C23	1.18931 (18)	0.21935 (8)	0.33690 (16)	0.0254 (4)
H23	1.2889	0.2222	0.3666	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U ²³
C11	0.0286 (2)	0.01416 (17)	0.0247 (2)	0.00408 (14)	0.00882 (16)	-0.00229 (14)
C12	0.01844 (19)	0.02230 (19)	0.01936 (19)	-0.00254 (14)	-0.00415 (14)	-0.00143 (14)
C13	0.0230 (2)	0.02238 (19)	0.01701 (19)	0.00224 (15)	-0.00231 (14)	0.00519 (14)
01	0.0245 (6)	0.0209 (6)	0.0252 (6)	0.0074 (5)	0.0007 (5)	0.0043 (5)
N1	0.0171 (6)	0.0151 (6)	0.0208 (7)	0.0055 (5)	-0.0006 (5)	0.0016 (5)
N2	0.0145 (6)	0.0130 (6)	0.0199 (7)	0.0034 (5)	0.0021 (5)	-0.0005 (5)
N3	0.0163 (6)	0.0135 (6)	0.0151 (6)	0.0048 (5)	0.0021 (5)	0.0009 (5)
N4	0.0232 (7)	0.0239 (7)	0.0290 (8)	0.0020 (6)	-0.0049 (6)	0.0042 (6)
C1	0.0110 (7)	0.0131 (7)	0.0239 (8)	-0.0007 (5)	-0.0010 (6)	-0.0006 (6)
C2	0.0108 (7)	0.0132 (6)	0.0194 (7)	-0.0009 (5)	-0.0002 (5)	0.0004 (6)
C3	0.0113 (7)	0.0139 (7)	0.0172 (7)	-0.0002 (5)	-0.0016 (5)	0.0003 (5)
C4	0.0127 (7)	0.0150 (7)	0.0136 (7)	-0.0003 (5)	0.0001 (5)	-0.0006 (5)
C5	0.0229 (8)	0.0208 (8)	0.0170 (8)	0.0047 (6)	-0.0015 (6)	0.0028 (6)
C6	0.0126 (7)	0.0136 (7)	0.0144 (7)	-0.0001 (5)	0.0024 (5)	0.0010 (5)
C7	0.0124 (7)	0.0202 (7)	0.0151 (7)	-0.0006 (6)	0.0000 (5)	0.0007 (6)
C8	0.0166 (7)	0.0186 (7)	0.0154 (7)	-0.0036 (6)	0.0016 (6)	-0.0025 (6)
C9	0.0165 (7)	0.0103 (6)	0.0201 (8)	-0.0010 (5)	0.0075 (6)	-0.0006 (5)
C10	0.0137 (7)	0.0139 (7)	0.0190 (7)	0.0010 (5)	0.0020 (6)	0.0033 (6)
C11	0.0148 (7)	0.0146 (7)	0.0139 (7)	-0.0006 (5)	0.0004 (5)	0.0004 (5)
C12	0.0156 (7)	0.0149 (7)	0.0128 (7)	0.0050 (5)	0.0037 (6)	0.0011 (5)
C13	0.0123 (7)	0.0173 (7)	0.0138 (7)	0.0017 (5)	0.0017 (5)	-0.0028 (5)
C14	0.0170 (7)	0.0142 (7)	0.0153 (7)	0.0006 (5)	0.0034 (6)	0.0002 (6)
C15	0.0168 (7)	0.0171 (7)	0.0127 (7)	0.0039 (6)	0.0024 (6)	0.0017 (6)
C16	0.0188 (7)	0.0198 (7)	0.0157 (7)	-0.0001 (6)	-0.0011 (6)	-0.0019 (6)
C17	0.0188 (7)	0.0142 (7)	0.0188 (8)	0.0004 (6)	0.0023 (6)	-0.0020 (6)
C18	0.0152 (7)	0.0142 (7)	0.0262 (8)	0.0031 (6)	-0.0004 (6)	-0.0041 (6)
C19	0.0194 (8)	0.0181 (7)	0.0265 (8)	-0.0005 (6)	0.0015 (6)	0.0041 (6)
C20	0.0154 (7)	0.0110 (6)	0.0212 (8)	0.0033 (5)	0.0012 (6)	-0.0037 (6)
C21	0.0238 (8)	0.0174 (7)	0.0190 (8)	0.0003 (6)	0.0029 (6)	-0.0015 (6)
C22	0.0198 (8)	0.0235 (8)	0.0284 (9)	-0.0049 (6)	0.0073 (7)	-0.0030 (7)
C23	0.0168 (8)	0.0247 (8)	0.0344 (10)	0.0002 (6)	-0.0033 (7)	-0.0044 (7)

Geometric parameters (Å, °)

Cl1—C9	1.7437 (15)	C8—H8	0.9500
Cl2—C13	1.7268 (15)	C9—C10	1.386 (2)
Cl3—C15	1.7346 (15)	C10—C11	1.391 (2)
01—C1	1.2336 (19)	C10—H10	0.9500
N1-C1	1.346 (2)	C11—H11	0.9500
N1-C18	1.4565 (18)	C12—C17	1.383 (2)
N1—H1	0.78 (2)	C12—C13	1.395 (2)
N2-C2	1.3399 (19)	C13—C14	1.391 (2)
N2—N3	1.3556 (16)	C14—C15	1.387 (2)
N3—C4	1.3776 (19)	C14—H14	0.9500
N3—C12	1.4303 (18)	C15—C16	1.392 (2)

N4—C23	1.341 (2)	C16—C17	1.388 (2)
N4—C19	1.346 (2)	C16—H16	0.9500
C1—C2	1.496 (2)	C17—H17	0.9500
C2—C3	1.412 (2)	C18—C20	1.515 (2)
C3—C4	1.386 (2)	C18—H18A	0.9900
C3—C5	1.501 (2)	C18—H18B	0.9900
C4—C6	1.480 (2)	C19—C20	1.391 (2)
C5—H5A	0.9800	C19—H19	0.9500
C5—H5B	0.9800	C_{20} C_{21}	1 392 (2)
C5—H5C	0.9800	C_{21} C_{22}	1.392(2) 1 385(2)
C6C7	1.397(2)	C21_H21	0.9500
C6-C11	1.397(2) 1 4019(19)	C^{22}	1.385(2)
C7 C8	1.4019(19) 1.300(2)	C22—C23	1.565 (2)
C7_H7	1.390(2)	C22—1122 C22—1122	0.9500
C^{2}	1.294(2)	C25—H25	0.9300
(8	1.384 (2)		
C1-N1-C18	122 73 (14)	C10_C11_H11	119.6
C1N1H1	122.73(14) 1199(14)	C6-C11-H11	119.6
C18 N1 H1	117.9(14) 117.3(14)	C_{17} C_{12} C_{13}	119.0 110.80(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117.3(14) 104.00(12)	C17 C12 N2	119.09(13)
C_2 N_2 N_3 N_2 C_4	104.00(12) 112.65(12)	C12 - C12 - N2	110.90(13)
$N_2 = N_3 = C_4$	112.03(12) 118.77(12)	C13 - C12 - N3	121.14(13) 120.77(12)
$N_2 = N_3 = C_{12}$	110.77(12)	C14 - C13 - C12	120.77(13)
C4 - N3 - C12	128.47 (12)	C14-C13-C12	118.68 (11)
C23—N4—C19	116.36 (15)		120.55 (11)
OI—CI—NI	123.54 (14)	C15—C14—C13	118.06 (13)
01	122.20 (14)	C15—C14—H14	121.0
N1—C1—C2	114.26 (13)	C13—C14—H14	121.0
N2—C2—C3	112.63 (13)	C14—C15—C16	121.99 (13)
N2—C2—C1	118.63 (13)	C14—C15—Cl3	119.01 (11)
C3—C2—C1	128.74 (13)	C16—C15—Cl3	119.00 (12)
C4—C3—C2	104.40 (13)	C17—C16—C15	118.84 (14)
C4—C3—C5	127.40 (13)	C17—C16—H16	120.6
C2—C3—C5	128.16 (13)	C15—C16—H16	120.6
N3—C4—C3	106.29 (13)	C12—C17—C16	120.33 (14)
N3—C4—C6	123.44 (13)	С12—С17—Н17	119.8
C3—C4—C6	130.20 (13)	С16—С17—Н17	119.8
С3—С5—Н5А	109.5	N1-C18-C20	113.96 (12)
C3—C5—H5B	109.5	N1-C18-H18A	108.8
H5A—C5—H5B	109.5	C20—C18—H18A	108.8
C3—C5—H5C	109.5	N1-C18-H18B	108.8
H5A—C5—H5C	109.5	C20-C18-H18B	108.8
H5B—C5—H5C	109.5	H18A—C18—H18B	107.7
C7—C6—C11	118.31 (13)	N4—C19—C20	124.54 (15)
C7—C6—C4	118.28 (13)	N4—C19—H19	117.7
C11—C6—C4	123.41 (13)	C20—C19—H19	117.7
C8-C7-C6	121 43 (14)	$C_{19} - C_{20} - C_{21}$	117 51 (14)
C8—C7—H7	1193	$C_{19} - C_{20} - C_{18}$	120.44(14)
C6—C7—H7	119.3	C_{21} C_{20} C_{18}	122.03 (14)

C9 - C8 - C7	118 78 (14)	C22 - C21 - C20	118 94 (15)
C9-C8-H8	120.6	C^{22} C^{21} C^{21} H^{21}	120.5
C7—C8—H8	120.6	C_{20} C_{21} H_{21}	120.5
C8-C9-C10	121.46 (13)	C_{21} C_{22} C_{23}	119.02(15)
C8-C9-C11	118 58 (12)	$C_{21} = C_{22} = 0.23$	120.5
C10-C9-C11	110.06 (12)	C_{23} C_{22} H_{22}	120.5
$C_{0} - C_{10} - C_{11}$	119.23 (13)	N4_C23_C22	120.5
C_{2} C_{10} H_{10}	120.4	N4 C23 C22	118.2
$C_{11} = C_{10} = H_{10}$	120.4	$R_{1} = C_{23} = H_{23}$	118.2
C_{10} C_{11} C_{6}	120.4 120.77(13)	022-025-1125	110.2
010-011-00	120.77 (13)		
C2—N2—N3—C4	-0.44 (16)	Cl1—C9—C10—C11	179.90 (11)
C2—N2—N3—C12	-177.01 (12)	C9—C10—C11—C6	-0.4 (2)
C18—N1—C1—O1	0.1 (2)	C7—C6—C11—C10	1.4 (2)
C18—N1—C1—C2	-179.79 (13)	C4—C6—C11—C10	-179.03 (14)
N3—N2—C2—C3	1.05 (16)	N2—N3—C12—C17	69.79 (18)
N3—N2—C2—C1	-178.45 (12)	C4—N3—C12—C17	-106.16 (17)
O1—C1—C2—N2	-177.73 (14)	N2—N3—C12—C13	-111.38 (15)
N1—C1—C2—N2	2.13 (19)	C4—N3—C12—C13	72.7 (2)
O1—C1—C2—C3	2.9 (2)	C17—C12—C13—C14	3.0 (2)
N1—C1—C2—C3	-177.28 (14)	N3—C12—C13—C14	-175.77 (13)
N2—C2—C3—C4	-1.25 (16)	C17—C12—C13—Cl2	-177.12 (11)
C1—C2—C3—C4	178.18 (14)	N3—C12—C13—Cl2	4.06 (19)
N2—C2—C3—C5	176.76 (14)	C12—C13—C14—C15	-0.4(2)
C1—C2—C3—C5	-3.8(2)	Cl2—C13—C14—C15	179.75 (11)
N2—N3—C4—C3	-0.31 (16)	C13—C14—C15—C16	-2.5(2)
C12 - N3 - C4 - C3	175.84 (14)	C13—C14—C15—Cl3	176.98 (11)
N2—N3—C4—C6	176.89 (13)	C14—C15—C16—C17	2.8 (2)
C12—N3—C4—C6	-7.0 (2)	Cl3—C15—C16—C17	-176.73 (11)
C2—C3—C4—N3	0.89 (15)	C13—C12—C17—C16	-2.8(2)
C5-C3-C4-N3	-177.14 (14)	N3—C12—C17—C16	176.05 (13)
C2—C3—C4—C6	-176.05 (14)	C15—C16—C17—C12	-0.1 (2)
C5—C3—C4—C6	5.9 (3)	C1—N1—C18—C20	-78.52 (18)
N3—C4—C6—C7	-138.52(15)	C23—N4—C19—C20	0.6 (2)
C3—C4—C6—C7	38.0 (2)	N4—C19—C20—C21	-1.8(2)
N3—C4—C6—C11	41.9 (2)	N4—C19—C20—C18	176.56 (15)
C3—C4—C6—C11	-141.62 (16)	N1—C18—C20—C19	102.36 (17)
C11—C6—C7—C8	-1.5 (2)	N1-C18-C20-C21	-79.37 (18)
C4—C6—C7—C8	178.89 (13)	C19—C20—C21—C22	1.2 (2)
C6—C7—C8—C9	0.6 (2)	C18—C20—C21—C22	-177.11 (14)
C7—C8—C9—C10	0.4 (2)	C20—C21—C22—C23	0.4 (2)
C7—C8—C9—C11	180.00 (11)	C19—N4—C23—C22	1.3 (3)
C8—C9—C10—C11	-0.5 (2)	C21—C22—C23—N4	-1.8(3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C17—H17…N4 ⁱ	0.95	2.56	3.272 (2)	132

			supporting	supporting information		
С7—Н7…С12 ^{ії}	0.95	2.84	3.5903 (15)	137		
Symmetry codes: (i) $x-1$, $-y+1/2$, $z-1/2$	z; (ii) $-x+1, -y+1, -z+1.$					