Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-3-(9-Anthryl)-1-(4-chlorophenyl)-2-(4-nitro-1H-imidazol-1-yl)prop-2-en-1one

Guang-zhou Wang, Yi-hui Lu, Cheng-he Zhou* and Yi-yi Zhang

School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China Correspondence e-mail: zhouch@swu.edu.cn

Received 10 April 2009; accepted 20 April 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.113; data-to-parameter ratio = 13.6.

In the title compound, C₂₆H₁₆ClN₃O₃, the dihedral angle between the anthracene mean plane and imidazole ring is 64.75 (2)°. In the crystal, $\pi - \pi$ interactions between anthracene fragments lead to the formation of stacks of molecules propagating in [100]. The short distance between the carbonyl groups of symmetry-related molecules $[C \cdot \cdot \cdot O = 2.985 (2) \text{ Å}]$ indicates the existence of dipole-dipole interactions. The crystal packing also exhibits short intermolecular contacts between the nitro groups and Cl atoms $[Cl \cdot \cdot O = 3.181 (2) \text{ Å}].$

Related literature

For general background, see: Corrêa et al. (2001); Daskiewicz et al. (2005); Sivakumar et al. (2009); Vogel et al. (2008). The synthesis was described by Erhardt et al. (1985).

Experimental

Crystal data C26H16ClN3O3 $M_r = 453.87$

Triclinic, $P\overline{1}$ a = 8.0511 (9) Å

NO₂

•	
organic	compounds
~ a	•••••••

1 11 0 10 (10)	7 0
b = 11.0406 (12) A	Z = 2
c = 12.9274 (14) Å	Mo $K\alpha$ radiation
$\alpha = 76.065 \ (2)^{\circ}$	$\mu = 0.22 \text{ mm}^{-1}$
$\beta = 85.974 \ (2)^{\circ}$	$T = 292 { m K}$
$\gamma = 71.258 \ (2)^{\circ}$	$0.16 \times 0.12 \times 0.10 \text{ mm}$
V = 1056.1 (2) Å ³	

Data collection

Bruker SMART APEX CCD area-	6168 measured reflections
detector diffractometer	4070 independent reflections
Absorption correction: multi-scan	3354 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1997)	$R_{\rm int} = 0.014$
$T_{\min} = 0.956, \ T_{\max} = 0.979$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	299 parameters
$wR(F^2) = 0.113$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
4070 reflections	$\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected interatomic distances (Å).

$C17\cdots O1^{i}$	2.985 (2)	$\begin{array}{c} Cg1\cdots Cg2^{\mathrm{iii}}\\ Cg2\cdots Cg2^{\mathrm{iv}} \end{array}$	3.746 (7)
$C11\cdots O3^{ii}$	3.181 (3)		3.863 (8)

-x+1, -y+2, -z;Symmetry codes: (i) (ii) x + 1, y + 1, z: (iii) -x+1, -y+2, -z+1; (iv) -x, -y+2, -z+1. Cg1 and Cg2 are the centroids of atoms C1/C2/C14/C7-C9 and C2-C7, respectively.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

We thank Southwest University (grant Nos. SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (grant No. 2007BB5369) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2548).

References

- Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Corrêa, R., Pereira, M. A. S., Santos, L. D., Filho, V. C., Santos, A. R. S. & Nunes, R. J. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 332-334.
- Daskiewicz, J. B., Depeint, F., Viornery, L., Bayet, C., Sarrazin, G. C., Comte, G., Gee, J. M., Johnson, I. T., Ndjoko, K., Hostettmann, K. & Barron, D. (2005), J. Med. Chem. 48, 2790-2804.
- Erhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.
- Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sivakumar, P. M., Priya, S. & Doble, M. (2009). Chem. Biol. Drug Des. 73, 403-415.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vogel, S., Ohmayer, S., Brunner, G. & Heilmann, J. (2008). Bioorg. Med. Chem 16 4286-4293

supporting information

Acta Cryst. (2009). E65, o1113 [doi:10.1107/S1600536809014676]

(Z)-3-(9-Anthryl)-1-(4-chlorophenyl)-2-(4-nitro-1*H*-imidazol-1-yl)prop-2-en-1one

Guang-zhou Wang, Yi-hui Lu, Cheng-he Zhou and Yi-yi Zhang

S1. Comment

Chalcones or 1,3-diaryl-2-propen-1-ones are natural or synthetic compounds belonging to the flavonoid family (Corrêa *et al.*, 2001). They exhibit different kinds of biological activities, such as antimicrobial, anticancer, antiviral, ant-malarial, anti-inflammatory activities (Daskiewicz *et al.*, 2005; Vogel *et al.*, 2008; Sivakumar *et al.*, 2009). Hence, chalcones are considered as a class of important therapeutic potentials. The title compound, (I), is part of our effort in order to contribute this research, and we report its crystal structure here.

In (I) (Fig. 1), the dihedral angle between the anthracene and imidazole rings is 64.75 (2)° and the nitroimidazole is slightly twisted away from the 4-chlorophenyl ring with a dihedral angle of 11.55 (2)°. In the crystal, the π - π interactions between the anthracene fragments (Table 1) lead to formation of stacks of the molecules propagated in direction [100]. The short distance between the carbonyl groups [C17···O1(1-x, 2-y, -z) 2.985 (2) Å] (Table 1) reveals an existence of dipole-dipole interactions. The crystal packing also exhibits short intermolecular contacts between the nitro groups and chlorine atoms [C1···O 3.181 (2) Å] (Table 1).

S2. Experimental

Compound (I) was synthesized according to the procedure of Erhardt *et al.* (1985). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of chloroform and acetone by slow evaporation at room temperature.

S3. Refinement

All the hydrogen atoms were placed at their geometrical positions with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

Z = 2

F(000) = 468

 $\theta = 1.4 - 25.3^{\circ}$

 $\mu = 0.22 \text{ mm}^{-1}$ T = 292 K

Block, orange

 $0.16 \times 0.12 \times 0.10 \text{ mm}$

 $D_{\rm x} = 1.427 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2837 reflections

(Z)-3-(9-Anthryl)-1-(4-chlorophenyl)-2-(4-nitro-1*H*- imidazol-1-yl)prop-2-en-1-one

Crystal data

 $C_{26}H_{16}CIN_{3}O_{3}$ $M_{r} = 453.87$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.0511 (9) Å b = 11.0406 (12) Å c = 12.9274 (14) Å $a = 76.065 (2)^{\circ}$ $\beta = 85.974 (2)^{\circ}$ $\gamma = 71.258 (2)^{\circ}$ $V = 1056.1 (2) Å^{3}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	6168 measured reflections 4070 independent reflections
Radiation source: fine focus sealed Siemens Mo	3354 reflections with $I > 2\sigma(I)$
tube	$R_{\rm int} = 0.014$
Graphite monochromator	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
0.3° wide ω exposures scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -13 \rightarrow 10$
(SADABS; Sheldrick, 1997)	$l = -15 \rightarrow 15$
$T_{\min} = 0.956, T_{\max} = 0.979$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 0.4068P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4070 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
299 parameters	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.138 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4503 (2)	0.91044 (16)	0.38505 (12)	0.0381 (4)	
C2	0.3150 (2)	0.99845 (18)	0.43057 (13)	0.0427 (4)	
C3	0.2324 (3)	1.13103 (19)	0.37653 (16)	0.0532 (5)	
H3	0.2673	1.1618	0.3078	0.064*	
C4	0.1039 (3)	1.2135 (2)	0.4233 (2)	0.0690 (6)	
H4	0.0521	1.2999	0.3863	0.083*	
C5	0.0482 (3)	1.1702 (3)	0.5267 (2)	0.0758 (7)	
H5	-0.0389	1.2284	0.5581	0.091*	
C6	0.1195 (3)	1.0455 (3)	0.58072 (18)	0.0671 (6)	
H6	0.0806	1.0181	0.6491	0.080*	
C7	0.2544 (2)	0.9537 (2)	0.53486 (14)	0.0507 (5)	
C8	0.3284 (3)	0.8240 (2)	0.58804 (14)	0.0570 (5)	
H8	0.2870	0.7948	0.6553	0.068*	
C9	0.4618 (3)	0.7360 (2)	0.54475 (14)	0.0528 (5)	
C10	0.5404 (4)	0.6035 (2)	0.60138 (18)	0.0751 (7)	
H10	0.4981	0.5739	0.6682	0.090*	
C11	0.6738 (4)	0.5211 (2)	0.5604 (2)	0.0864 (8)	
H11	0.7210	0.4345	0.5983	0.104*	
C12	0.7438 (4)	0.5643 (2)	0.45999 (19)	0.0730 (7)	
H12	0.8385	0.5065	0.4332	0.088*	
C13	0.6736 (3)	0.68926 (18)	0.40237 (15)	0.0516 (5)	
H13	0.7218	0.7164	0.3368	0.062*	
C14	0.5276 (2)	0.77936 (17)	0.44076 (13)	0.0428 (4)	

C15	0.5225 (2)	0.96316 (15)	0.28220 (12)	0.0370 (4)
H15	0.5605	1.0348	0.2804	0.044*
C16	0.5410(2)	0.92308 (15)	0.19171 (12)	0.0351 (4)
C17	0.6425 (2)	0.97302 (15)	0.10011 (12)	0.0364 (4)
C18	0.6982 (2)	1.08892 (16)	0.10310 (12)	0.0372 (4)
C19	0.5813 (2)	1.21059 (17)	0.10958 (14)	0.0442 (4)
H19	0.4615	1.2227	0.1122	0.053*
C20	0.6414 (3)	1.31410 (18)	0.11219 (15)	0.0503 (5)
H20	0.5631	1.3961	0.1153	0.060*
C21	0.8197 (3)	1.29305 (19)	0.11011 (15)	0.0532 (5)
C22	0.9379 (3)	1.1743 (2)	0.10195 (16)	0.0563 (5)
H22	1.0576	1.1626	0.0995	0.068*
C23	0.8762 (2)	1.07254 (18)	0.09746 (15)	0.0474 (4)
H23	0.9550	0.9922	0.0906	0.057*
C24	0.5604 (3)	0.70649 (17)	0.15237 (15)	0.0488 (4)
H24	0.6791	0.6812	0.1360	0.059*
C25	0.2993 (3)	0.70981 (18)	0.17933 (14)	0.0480 (4)
C26	0.3024 (2)	0.82478 (17)	0.19785 (13)	0.0425 (4)
H26	0.2098	0.8902	0.2183	0.051*
Cl1	0.90255 (10)	1.41713 (6)	0.11994 (6)	0.0886 (3)
N1	0.47212 (18)	0.82266 (13)	0.17975 (10)	0.0378 (3)
N2	0.4588 (2)	0.63534 (15)	0.15188 (13)	0.0554 (4)
N3	0.1473 (3)	0.6670 (2)	0.18554 (14)	0.0685 (5)
01	0.68863 (17)	0.91581 (12)	0.02841 (10)	0.0486 (3)
O2	0.0083 (3)	0.7406 (2)	0.21193 (17)	0.0925 (6)
03	0.1648 (3)	0.5612 (2)	0.16539 (18)	0.1061 (7)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0429 (9)	0.0474 (9)	0.0326 (8)	-0.0239 (7)	-0.0008 (7)	-0.0116 (7)
C2	0.0408 (9)	0.0578 (11)	0.0399 (9)	-0.0234 (8)	0.0005 (7)	-0.0200 (8)
C3	0.0511 (11)	0.0579 (12)	0.0554 (11)	-0.0168 (9)	-0.0008 (9)	-0.0223 (9)
C4	0.0561 (13)	0.0703 (14)	0.0842 (16)	-0.0094 (11)	-0.0040 (11)	-0.0377 (13)
C5	0.0495 (13)	0.108 (2)	0.0832 (17)	-0.0176 (13)	0.0071 (11)	-0.0576 (16)
C6	0.0482 (12)	0.119 (2)	0.0535 (12)	-0.0369 (13)	0.0112 (9)	-0.0440 (13)
C7	0.0441 (10)	0.0823 (14)	0.0407 (9)	-0.0335 (10)	0.0028 (8)	-0.0241 (10)
C8	0.0605 (12)	0.0901 (16)	0.0345 (9)	-0.0445 (12)	0.0046 (8)	-0.0135 (10)
C9	0.0681 (13)	0.0633 (12)	0.0366 (9)	-0.0377 (10)	-0.0063 (8)	-0.0040 (8)
C10	0.113 (2)	0.0690 (15)	0.0459 (12)	-0.0430 (15)	-0.0093 (12)	0.0035 (11)
C11	0.137 (3)	0.0527 (13)	0.0578 (14)	-0.0232 (15)	-0.0204 (15)	0.0063 (11)
C12	0.0934 (18)	0.0528 (12)	0.0627 (14)	-0.0081 (12)	-0.0162 (12)	-0.0099 (10)
C13	0.0619 (12)	0.0490 (10)	0.0441 (10)	-0.0177 (9)	-0.0071 (9)	-0.0085 (8)
C14	0.0505 (10)	0.0486 (10)	0.0365 (9)	-0.0249 (8)	-0.0043 (7)	-0.0089 (7)
C15	0.0408 (9)	0.0366 (8)	0.0385 (8)	-0.0177 (7)	-0.0019 (7)	-0.0091 (7)
C16	0.0384 (9)	0.0322 (8)	0.0376 (8)	-0.0142 (6)	-0.0030 (6)	-0.0083 (6)
C17	0.0361 (8)	0.0373 (8)	0.0358 (8)	-0.0104 (7)	-0.0018 (6)	-0.0092 (7)
C18	0.0439 (9)	0.0390 (8)	0.0318 (8)	-0.0178 (7)	0.0038 (6)	-0.0080 (6)

C19	0.0456 (10)	0.0416 (9)	0.0458 (9)	-0.0154 (8)	0.0034 (7)	-0.0092 (7)	
C20	0.0647 (12)	0.0386 (9)	0.0493 (10)	-0.0194 (8)	0.0072 (9)	-0.0107 (8)	
C21	0.0713 (13)	0.0516 (11)	0.0508 (11)	-0.0378 (10)	0.0146 (9)	-0.0169 (9)	
C22	0.0508 (11)	0.0676 (13)	0.0648 (12)	-0.0333 (10)	0.0149 (9)	-0.0256 (10)	
C23	0.0452 (10)	0.0499 (10)	0.0526 (10)	-0.0186 (8)	0.0091 (8)	-0.0195 (8)	
C24	0.0616 (12)	0.0385 (9)	0.0507 (10)	-0.0185 (8)	0.0026 (8)	-0.0152 (8)	
C25	0.0647 (12)	0.0497 (10)	0.0391 (9)	-0.0343 (9)	-0.0065 (8)	-0.0038 (8)	
C26	0.0461 (10)	0.0467 (9)	0.0402 (9)	-0.0221 (8)	-0.0022 (7)	-0.0089 (7)	
Cl1	0.1041 (5)	0.0745 (4)	0.1183 (6)	-0.0626 (4)	0.0236 (4)	-0.0392 (4)	
N1	0.0449 (8)	0.0364 (7)	0.0372 (7)	-0.0181 (6)	-0.0005 (6)	-0.0107 (6)	
N2	0.0803 (12)	0.0435 (9)	0.0524 (9)	-0.0313 (8)	-0.0009 (8)	-0.0133 (7)	
N3	0.0902 (15)	0.0785 (13)	0.0566 (10)	-0.0601 (12)	-0.0108 (10)	-0.0030 (9)	
O1	0.0552 (8)	0.0524 (7)	0.0465 (7)	-0.0217 (6)	0.0111 (6)	-0.0232 (6)	
O2	0.0715 (12)	0.1073 (15)	0.1141 (15)	-0.0560 (11)	0.0001 (11)	-0.0155 (12)	
O3	0.1425 (18)	0.1018 (14)	0.1193 (16)	-0.0927 (14)	-0.0026 (13)	-0.0342 (12)	

Geometric parameters (Å, °)

C1—C2	1.408 (2)	С15—Н15	0.9300
C1—C14	1.408 (2)	C16—N1	1.4318 (19)
C1—C15	1.477 (2)	C16—C17	1.488 (2)
C2—C3	1.421 (3)	C17—O1	1.2162 (19)
С2—С7	1.429 (2)	C17—C18	1.495 (2)
C3—C4	1.355 (3)	C18—C23	1.384 (2)
С3—Н3	0.9300	C18—C19	1.389 (2)
C4—C5	1.402 (4)	C19—C20	1.384 (2)
C4—H4	0.9300	C19—H19	0.9300
С5—С6	1.341 (4)	C20—C21	1.378 (3)
С5—Н5	0.9300	C20—H20	0.9300
С6—С7	1.432 (3)	C21—C22	1.374 (3)
С6—Н6	0.9300	C21—Cl1	1.7382 (18)
С7—С8	1.384 (3)	C22—C23	1.380 (3)
С8—С9	1.385 (3)	C22—H22	0.9300
С8—Н8	0.9300	C23—H23	0.9300
C9—C10	1.425 (3)	C24—N2	1.305 (2)
C9—C14	1.439 (2)	C24—N1	1.369 (2)
C10-C11	1.336 (4)	C24—H24	0.9300
C10—H10	0.9300	C25—C26	1.355 (2)
C11—C12	1.415 (4)	C25—N2	1.360 (3)
C11—H11	0.9300	C25—N3	1.437 (3)
C12—C13	1.357 (3)	C26—N1	1.364 (2)
C12—H12	0.9300	C26—H26	0.9300
C13—C14	1.422 (3)	N3—O3	1.219 (3)
С13—Н13	0.9300	N3—O2	1.235 (3)
C15—C16	1.330 (2)		
C17…O1 ⁱ	2.985 (2)	Cg1···Cg2 ⁱⁱⁱ	3.746 (7)
Cl1…O3 ⁱⁱ	3.181 (3)	Cg2····Cg2 ^{iv}	3.863 (8)

C2—C1—C14	121.15 (15)	C16—C15—H15	115.3
C2—C1—C15	117.97 (15)	C1—C15—H15	115.3
C14—C1—C15	120.54 (15)	C15—C16—N1	121.23 (14)
C1—C2—C3	122.84 (16)	C15—C16—C17	122.54 (14)
C1—C2—C7	119.41 (17)	N1—C16—C17	116.12 (13)
C3—C2—C7	117.74 (17)	O1—C17—C16	120.77 (14)
C4—C3—C2	121.3 (2)	O1—C17—C18	120.97 (14)
С4—С3—Н3	119.4	C16—C17—C18	118.09 (13)
С2—С3—Н3	119.4	C23—C18—C19	119.23 (15)
C3—C4—C5	120.8 (2)	C23—C18—C17	117.30 (15)
C3—C4—H4	119.6	C19—C18—C17	123.47 (15)
C5—C4—H4	119.6	C20—C19—C18	120.67 (17)
C6—C5—C4	120.4 (2)	C20—C19—H19	119.7
C6—C5—H5	119.8	C18—C19—H19	119.7
C4—C5—H5	119.8	C_{21} C_{20} C_{19} C_{19}	118.55 (17)
C5-C6-C7	121.2 (2)	$C_{21} = C_{20} = H_{20}$	120.7
C5—C6—H6	119.4	C19 - C20 - H20	120.7
C7—C6—H6	119.4	$C_{22} = C_{21} = C_{20}$	121.89 (17)
$C_{8} - C_{7} - C_{2}$	119.04 (17)	$C_{22} = C_{21} = C_{11}$	117.65(16)
$C_{8} - C_{7} - C_{6}$	122 40 (19)	$C_{22} = C_{21} = C_{11}$	120.45(15)
$C_{2} - C_{7} - C_{6}$	1122.10(1)	C_{21} C_{22} C_{23}	118 98 (18)
C_{2}^{-} C_{3}^{-} C_{3}^{-} C_{3}^{-}	122 41 (17)	$C_{21} = C_{22} = H_{22}$	120.5
C7 - C8 - H8	118.8	C_{23} C_{22} H_{22}	120.5
C9-C8-H8	118.8	$C_{23} = C_{23} = C_{122}$	120.5 120.63(17)
C_{8} C_{9} C_{10}	121.97 (19)	$C_{22} = C_{23} = H_{23}$	119.7
C8-C9-C14	119 60 (18)	C18 - C23 - H23	119.7
C10-C9-C14	119.00(10) 118.4(2)	N2_C24_N1	112.7
$C_{11} - C_{10} - C_{9}$	121 4 (2)	$N_2 = C_2 + H_1$	12.21 (10)
$C_{11} = C_{10} = H_{10}$	119.3	N1_C24_H24	123.9
C9-C10-H10	119.3	C_{26} C_{25} N2	112.81 (16)
C_{10} C_{11} C_{12}	120.6 (2)	$C_{20} = C_{23} = N_2$	112.01(10) 125.7(2)
C10-C11-H11	119.7	N_{2} C_{25} N_{3}	123.7(2) 121.48(18)
C_{12} C_{11} H_{11}	119.7	C_{25} C_{26} N_{1}	104.26(16)
$C_{12} = C_{12} = C_{11}$	120.5(2)	$C_{25} = C_{26} = H_{26}$	127.9
C13 - C12 - H12	119.7	N1 - C26 - H26	127.9
$C_{11} - C_{12} - H_{12}$	119.7	$C_{26} = N_{1} = C_{24}$	106.95(14)
C_{12} C_{13} C_{14}	1210(2)	$C_{26} = N_1 = C_{16}$	125 02 (14)
C_{12} C_{13} H_{13}	119.5	C_{24} N1—C16	123.02(14) 128.00(15)
$C_{12} = C_{13} = H_{13}$	119.5	$C_{24} = N_{14} = C_{15}$	123.00(15) 103.77(15)
C1 - C14 - C13	123 55 (16)	03_N3_02	103.77(13) 124.9(2)
C1 - C14 - C9	118 36 (17)	03-N3-C25	124.9(2) 1181(2)
C_{13} C_{14} C_{9}	118.00 (17)	02 - N3 - C25	116.1(2)
C16-C15-C1	129 36 (14)	02 113 023	110.75 (17)
010 -015-01	127.30 (17)		
C14—C1—C2—C3	-179.34 (15)	C1-C15-C16-C17	-169.86 (16)
C15—C1—C2—C3	7.3 (2)	C15—C16—C17—O1	164.24 (16)
C14—C1—C2—C7	-0.4 (2)	N1-C16-C17-O1	-12.1 (2)

C15—C1—C2—C7	-173.69 (14)	C15—C16—C17—C18	-11.0(2)
C1—C2—C3—C4	-179.21 (18)	N1-C16-C17-C18	172.64 (13)
C7—C2—C3—C4	1.8 (3)	O1—C17—C18—C23	-54.0 (2)
C2—C3—C4—C5	-0.1 (3)	C16—C17—C18—C23	121.27 (17)
C3—C4—C5—C6	-1.0 (3)	O1—C17—C18—C19	125.09 (18)
C4—C5—C6—C7	0.4 (3)	C16-C17-C18-C19	-59.7 (2)
C1—C2—C7—C8	-1.1 (2)	C23—C18—C19—C20	-1.1 (3)
C3—C2—C7—C8	177.93 (16)	C17—C18—C19—C20	179.92 (15)
C1—C2—C7—C6	178.61 (15)	C18—C19—C20—C21	-1.1 (3)
C3—C2—C7—C6	-2.3 (2)	C19—C20—C21—C22	2.2 (3)
C5—C6—C7—C8	-178.96 (19)	C19—C20—C21—Cl1	-176.77 (14)
C5—C6—C7—C2	1.3 (3)	C20—C21—C22—C23	-1.1 (3)
C2—C7—C8—C9	1.3 (3)	Cl1—C21—C22—C23	177.95 (15)
C6—C7—C8—C9	-178.43 (17)	C21—C22—C23—C18	-1.2 (3)
C7—C8—C9—C10	178.23 (19)	C19—C18—C23—C22	2.2 (3)
C7—C8—C9—C14	0.0 (3)	C17—C18—C23—C22	-178.67 (16)
C8—C9—C10—C11	-177.3 (2)	N2-C25-C26-N1	0.8 (2)
C14—C9—C10—C11	0.9 (3)	N3-C25-C26-N1	-178.49 (16)
C9—C10—C11—C12	1.5 (4)	C25-C26-N1-C24	-0.45 (18)
C10-C11-C12-C13	-1.7 (4)	C25-C26-N1-C16	-178.48 (14)
C11—C12—C13—C14	-0.6 (3)	N2-C24-N1-C26	0.0 (2)
C2-C1-C14-C13	-174.85 (16)	N2-C24-N1-C16	177.96 (15)
C15—C1—C14—C13	-1.7 (2)	C15-C16-N1-C26	53.9 (2)
C2-C1-C14-C9	1.6 (2)	C17—C16—N1—C26	-129.70 (16)
C15—C1—C14—C9	174.79 (14)	C15-C16-N1-C24	-123.73 (19)
C12-C13-C14-C1	179.44 (18)	C17-C16-N1-C24	52.7 (2)
C12—C13—C14—C9	3.0 (3)	N1—C24—N2—C25	0.4 (2)
C8—C9—C14—C1	-1.5 (2)	C26—C25—N2—C24	-0.8(2)
C10-C9-C14-C1	-179.75 (17)	N3—C25—N2—C24	178.53 (16)
C8—C9—C14—C13	175.20 (17)	C26—C25—N3—O3	179.18 (19)
C10-C9-C14-C13	-3.1 (3)	N2—C25—N3—O3	0.0 (3)
C2-C1-C15-C16	-126.63 (19)	C26—C25—N3—O2	-1.4 (3)
C14—C1—C15—C16	60.0 (2)	N2—C25—N3—O2	179.44 (19)
C1-C15-C16-N1	6.3 (3)		

Symmetry codes: (i) -x+1, -y+2, -z; (ii) x+1, y+1, z; (iii) -x+1, -y+2, -z+1; (iv) -x, -y+2, -z+1.