

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-Dithioditerephthalic acid

Ling Zhang

Department of Chemistry, Lishui University, 323000 Lishui, ZheJiang, People's Republic of China Correspondence e-mail: zhangling2005@126.com

Received 5 April 2009; accepted 10 April 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.140; data-to-parameter ratio = 12.7.

In the title molecule, $C_{16}H_{10}O_8S_2$, the two aromatic rings form a dihedral angle of 87.97 (12)°. In the crystal structure, intermolecular $O-H\cdots O$ hydrogen bonds $[O\cdots O =$ 2.623 (3)–2.639 (3) Å] link the molecules into layers parallel to the *ab* plane.

Related literature

For complexes of disulfide derivatives, see Li et al. (2008).

Experimental

Crystal data

$C_{16}H_{10}O_8S_2$
$M_r = 394.36$
Monoclinic, C2/c
a = 16.396 (3) Å
b = 9.8462 (15) Å
c = 20.363 (3) Å
$\beta = 98.840 \ (2)^{\circ}$

 $V = 3248.2 (9) \text{ Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.37 \text{ mm}^{-1}$ T = 298 K $0.48 \times 0.21 \times 0.03 \text{ mm}$ 11095 measured reflections

 $R_{\rm int} = 0.039$

3027 independent reflections

1992 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII area-detector

diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{min} = 0.831, T_{max} = 0.988$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	239 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.53 \text{ e} \text{ Å}^{-3}$
3027 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O8-H8D\cdots O5^{i}$	0.82	1.81	2.632 (3)	174
$O6-H6D\cdots O7^{ii}$	0.82	1.83	2.633 (3)	166
$O3 - H3D \cdots O1^{iii}$	0.82	1.81	2.623 (3)	174
$O2 - H2D \cdots O4^{iv}$	0.82	1.82	2.639 (3)	174

Symmetry codes: (i) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (ii) $x - \frac{1}{2}, y + \frac{1}{2}, z$; (iii) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (iv) $x + \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The author gratefully acknowledges financial support by the Youth Foundation of Lishui University, China (grant No. QN05002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2546).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Li, F., Xu, L., Bi, B., Liu, X. Z. & Fan, L. H. (2008). CrystEngComm, 10, 693–698.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1095 [doi:10.1107/S1600536809013622]

2,2'-Dithioditerephthalic acid

Ling Zhang

S1. Comment

The disulfide derivatives of the nicotinate - dithiodinicotinates - adopt usually a twisted structure with the C—S—S—C torsion of ca 90° in the solid state, that provides a possibility to show the axial chirality with M- and P-forms of the enantiomers (Li *et al.*, 2008). Herewith we present the crystal structure of the title compound (Fig. 1), where torsion angle C—S—S—C is 91.80 (15)°.

In the crystal, intermolecular O—H…O hydrogen bonds (Table 1) link the molecules into layers parallel to *ab* plane.

S2. Experimental

2,2'-Disulfanediylditerephthalic acid (0.40 mg, 0.1 mmol), Mn(CH3COO)2 (0.28 mg, 0.11 mmol), NaOH (25 mg, 0.06 mmol) were added in methanol. The mixture was heated and stirred for six hours under reflux. The resultant was then filtered off to give a pure solution which was treated by diethyl ether in a closed vessel. One week later, single crystals were obtained.

S3. Refinement

All H atoms attached to C atoms or O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or O—H = 0.82 Å (hydroxyl group) with $U_{iso}(H) = 1.2U_{eq}$.

Figure 1

Molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

2,2'-Dithioditerephthalic acid

Crystal data

C₁₆H₁₀O₈S₂ $M_r = 394.36$ Monoclinic, C2/c Hall symbol: -C 2yc a = 16.396 (3) Å b = 9.8462 (15) Å c = 20.363 (3) Å $\beta = 98.840$ (2)° V = 3248.2 (9) Å³ Z = 8

Data collection

Bruker APEXII area-detector	11095 measured reflections
diffractometer	3027 independent reflections
Radiation source: fine-focus sealed tube	1992 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
φ and ω scans	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(SADABS; Sheldrick, 2004)	$k = -11 \rightarrow 11$
$T_{\min} = 0.831, \ T_{\max} = 0.988$	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.140$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
3027 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0679P)^2 + 4.4093P]$
239 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.53 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1616

 $\theta = 2.4 - 25.6^{\circ}$

 $\mu = 0.37 \text{ mm}^{-1}$ T = 298 K

Block. colourless

 $0.48 \times 0.21 \times 0.03 \text{ mm}$

 $D_{\rm x} = 1.613 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1947 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.26721 (5)	1.00797 (9)	0.25924 (4)	0.0312 (2)	
S2	0.15066 (5)	1.01218 (9)	0.20597 (4)	0.0324 (2)	
01	0.41835 (14)	1.0121 (3)	0.32740 (12)	0.0477 (7)	
O2	0.46882 (15)	0.9002 (3)	0.41908 (14)	0.0578 (8)	

H2D	0.5089	0.9490	0.4171	0.087*
O3	0.05065 (14)	0.6603 (3)	0.32417 (13)	0.0496 (7)
H3D	0.0114	0.6090	0.3250	0.074*
O4	0.10411 (15)	0.5422 (3)	0.41363 (13)	0.0520 (7)
O5	0.00331 (15)	1.0344 (3)	0.13061 (14)	0.0539 (8)
O6	-0.05464 (15)	0.9000 (3)	0.04927 (14)	0.0506 (7)
H6D	-0.0924	0.9549	0.0482	0.076*
O7	0.30978 (15)	0.5421 (3)	0.05144 (13)	0.0442 (7)
O8	0.36843 (15)	0.6784 (3)	0.13228 (15)	0.0591 (8)
H8D	0.4087	0.6302	0.1299	0.089*
C1	0.33165 (18)	0.8542 (3)	0.37059 (15)	0.0254 (7)
C2	0.26309 (18)	0.8786 (3)	0.32073 (15)	0.0256 (7)
C3	0.19173 (18)	0.8031 (3)	0.32198 (15)	0.0267 (7)
H3A	0.1462	0.8166	0.2893	0.032*
C4	0.18767 (18)	0.7073 (3)	0.37180 (15)	0.0267 (7)
C5	0.25458 (19)	0.6852 (3)	0.42111 (15)	0.0292 (7)
Н5	0.2514	0.6215	0.4544	0.035*
C6	0.32567 (19)	0.7586 (3)	0.42018 (15)	0.0305 (8)
H6	0.3707	0.7443	0.4532	0.037*
C7	0.41062 (19)	0.9292 (3)	0.37033 (17)	0.0331 (8)
C8	0.11000 (19)	0.6282 (3)	0.37180 (16)	0.0306 (7)
C9	0.15409 (19)	0.8884 (3)	0.14229 (16)	0.0289 (7)
C10	0.08448 (18)	0.8614 (3)	0.09422 (15)	0.0292 (7)
C11	0.0880 (2)	0.7598 (3)	0.04614 (17)	0.0365 (8)
H11	0.0416	0.7418	0.0150	0.044*
C12	0.1597 (2)	0.6863 (3)	0.04463 (17)	0.0344 (8)
H12	0.1616	0.6190	0.0129	0.041*
C13	0.22814 (19)	0.7144 (3)	0.09087 (16)	0.0301 (7)
C14	0.22585 (18)	0.8129 (3)	0.13977 (16)	0.0300 (7)
H14	0.2725	0.8287	0.1710	0.036*
C15	0.0074 (2)	0.9392 (3)	0.09224 (17)	0.0331 (8)
C16	0.30639 (19)	0.6367 (3)	0.08988 (16)	0.0319 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0270 (4)	0.0334 (5)	0.0317 (5)	-0.0071 (3)	-0.0001 (3)	0.0045 (3)
S2	0.0282 (4)	0.0332 (5)	0.0347 (5)	0.0045 (4)	0.0013 (3)	-0.0017 (4)
01	0.0276 (13)	0.0655 (18)	0.0462 (15)	-0.0226 (12)	-0.0062 (11)	0.0224 (14)
O2	0.0245 (14)	0.075 (2)	0.0660 (18)	-0.0225 (13)	-0.0174 (13)	0.0367 (15)
O3	0.0268 (14)	0.0661 (19)	0.0513 (16)	-0.0234 (12)	-0.0079 (12)	0.0185 (13)
O4	0.0292 (14)	0.0607 (17)	0.0616 (18)	-0.0227 (12)	-0.0072 (12)	0.0274 (14)
O5	0.0308 (14)	0.0606 (18)	0.0651 (18)	0.0206 (13)	-0.0094 (12)	-0.0262 (15)
O6	0.0270 (14)	0.0599 (18)	0.0594 (17)	0.0170 (12)	-0.0105 (12)	-0.0205 (14)
O7	0.0339 (14)	0.0468 (15)	0.0514 (16)	0.0141 (11)	0.0055 (12)	-0.0084 (12)
08	0.0292 (15)	0.069 (2)	0.075 (2)	0.0203 (13)	-0.0069 (14)	-0.0258 (16)
C1	0.0186 (16)	0.0304 (17)	0.0271 (16)	-0.0088 (13)	0.0029 (12)	-0.0036 (13)
C2	0.0240 (16)	0.0262 (16)	0.0275 (17)	-0.0054 (13)	0.0066 (13)	-0.0019 (13)

C3	0.0200 (16)	0.0313 (17)	0.0277 (17)	-0.0069 (13)	-0.0001 (13)	-0.0014 (13)	
C4	0.0213 (16)	0.0305 (17)	0.0289 (17)	-0.0072 (13)	0.0052 (13)	-0.0002 (13)	
C5	0.0263 (17)	0.0335 (18)	0.0280 (17)	-0.0079 (14)	0.0050 (13)	0.0047 (13)	
C6	0.0203 (17)	0.040(2)	0.0294 (17)	-0.0068 (14)	-0.0039 (13)	0.0047 (14)	
C7	0.0228 (17)	0.039 (2)	0.0361 (19)	-0.0104 (15)	0.0010 (14)	0.0021 (15)	
C8	0.0226 (17)	0.0327 (19)	0.0366 (19)	-0.0100 (14)	0.0045 (14)	0.0016 (15)	
C9	0.0255 (17)	0.0286 (17)	0.0328 (18)	0.0003 (13)	0.0051 (14)	0.0031 (14)	
C10	0.0210 (17)	0.0333 (18)	0.0329 (18)	0.0030 (14)	0.0032 (13)	0.0008 (14)	
C11	0.0252 (18)	0.044 (2)	0.038 (2)	0.0059 (15)	-0.0012 (15)	-0.0051 (16)	
C12	0.0288 (18)	0.0374 (19)	0.0362 (19)	0.0068 (15)	0.0024 (15)	-0.0066 (15)	
C13	0.0262 (18)	0.0309 (18)	0.0333 (18)	0.0062 (14)	0.0048 (14)	0.0025 (14)	
C14	0.0186 (16)	0.0340 (18)	0.0361 (18)	0.0037 (13)	-0.0001 (14)	0.0028 (14)	
C15	0.0248 (18)	0.0357 (19)	0.0377 (19)	0.0070 (14)	0.0012 (15)	-0.0027 (15)	
C16	0.0242 (18)	0.0365 (19)	0.0348 (19)	0.0049 (14)	0.0042 (14)	0.0011 (15)	

Geometric parameters (Å, °)

S1—C2	1.795 (3)	C3—C4	1.394 (4)	
S1—S2	2.0476 (11)	С3—НЗА	0.9300	
S2—C9	1.787 (3)	C4—C5	1.386 (4)	
O1—C7	1.217 (4)	C4—C8	1.493 (4)	
O2—C7	1.299 (4)	C5—C6	1.374 (4)	
O2—H2D	0.8200	С5—Н5	0.9300	
O3—C8	1.303 (4)	С6—Н6	0.9300	
O3—H3D	0.8200	C9—C14	1.399 (4)	
O4—C8	1.216 (4)	C9—C10	1.410 (4)	
O5—C15	1.229 (4)	C10-C11	1.407 (4)	
O6—C15	1.295 (4)	C10—C15	1.473 (4)	
O6—H6D	0.8200	C11—C12	1.384 (4)	
O7—C16	1.223 (4)	C11—H11	0.9300	
O8—C16	1.296 (4)	C12—C13	1.378 (4)	
O8—H8D	0.8200	C12—H12	0.9300	
C1—C6	1.395 (4)	C13—C14	1.395 (4)	
C1—C2	1.415 (4)	C13—C16	1.497 (4)	
C1—C7	1.491 (4)	C14—H14	0.9300	
C2—C3	1.390 (4)			
C2—S1—S2	104.58 (10)	O4—C8—O3	124.0 (3)	
C9—S2—S1	103.87 (11)	O4—C8—C4	121.5 (3)	
C7—O2—H2D	109.5	O3—C8—C4	114.4 (3)	
C8—O3—H3D	109.5	C14—C9—C10	118.0 (3)	
C15—O6—H6D	109.5	C14—C9—S2	120.6 (2)	
C16-08-H8D	109.5	C10—C9—S2	121.3 (2)	
C6—C1—C2	119.9 (3)	C11—C10—C9	120.1 (3)	
C6—C1—C7	119.6 (3)	C11—C10—C15	118.5 (3)	
C2—C1—C7	120.5 (3)	C9—C10—C15	121.4 (3)	
C3—C2—C1	118.3 (3)	C12—C11—C10	120.8 (3)	
C3—C2—S1	121.0 (2)	C12—C11—H11	119.6	

C_1 C_2 C_1	120 7 (2)	C10 C11 U11	110 (
	120.7(2)		119.6
$C_2 = C_3 = C_4$	120.6 (3)		119.0 (3)
С2—С3—НЗА	119.7	C13—C12—H12	120.5
C4—C3—H3A	119.7	C11—C12—H12	120.5
C5—C4—C3	120.8 (3)	C12—C13—C14	121.2 (3)
C5—C4—C8	119.9 (3)	C12—C13—C16	119.9 (3)
C3—C4—C8	119.3 (3)	C14—C13—C16	118.8 (3)
C6—C5—C4	119.1 (3)	C13—C14—C9	120.7 (3)
С6—С5—Н5	120.5	C13—C14—H14	119.7
C4—C5—H5	120.5	C9—C14—H14	119.7
C5—C6—C1	121.3 (3)	O5—C15—O6	122.9 (3)
С5—С6—Н6	119.4	O5-C15-C10	120.7 (3)
С1—С6—Н6	119.4	O6—C15—C10	116.4 (3)
O1—C7—O2	123.5 (3)	O7—C16—O8	124.0 (3)
O1—C7—C1	121.4 (3)	O7—C16—C13	121.4 (3)
O2—C7—C1	115.1 (3)	O8—C16—C13	114.6 (3)
C2—S1—S2—C9	-88.20(15)	S1—S2—C9—C14	1.9 (3)
C6-C1-C2-C3	-1.5 (4)	S1—S2—C9—C10	-179.6 (2)
C7-C1-C2-C3	178.1 (3)	C14—C9—C10—C11	0.9 (5)
C6-C1-C2-S1	176.3 (2)	S2-C9-C10-C11	-177.6(3)
C7-C1-C2-S1	-4.1(4)	C14-C9-C10-C15	-178.1(3)
82 - 81 - C2 - C3	29(3)	82-09-010-015	3 4 (4)
$S_2 = S_1 = C_2 = C_1$	-1749(2)	C9-C10-C11-C12	-0.9(5)
$C_1 - C_2 - C_3 - C_4$	10(5)	C_{15} C_{10} C_{11} C_{12}	178.2(3)
$S_1 = C_2 = C_3 = C_4$	-176.9(2)	C_{10} C_{11} C_{12} C_{13}	-0.3(5)
$C_2 C_3 C_4 C_5$	1/0.9(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14(5)
$C_2 = C_3 = C_4 = C_5$	0.0(3)	$C_{11} = C_{12} = C_{13} = C_{14}$	-1707(3)
$C_2 - C_3 - C_4 - C_8$	-0.4(5)	$C_{11} = C_{12} = C_{13} = C_{10}$	-14(5)
$C_{3}^{*} = C_{4}^{*} = C_{5}^{*} = C_{6}^{*}$	0.4(3)	$C_{12} = C_{13} = C_{14} = C_{9}$	1.4(3)
$C_{0} = C_{1} = C_{0}$	1/9.0(3)	$C_{10} = C_{13} = C_{14} = C_{3}$	1/9.7(3)
$C_{4} = C_{5} = C_{6} = C_{1}$	-0.2(3)	C10 - C9 - C14 - C13	0.2(3)
$C_2 = C_1 = C_0 = C_3$	1.2(3)	52-09-014-015	176.0(2)
C/-CI-CO-CS	-1/8.4(3)	C11 - C10 - C15 - 05	-1/5.4(3)
	179.1 (3)	C9_C10_C15_O5	3.6 (5)
C2-C1-C7-01	-0.5 (5)	C11—C10—C15—O6	5.8 (5)
C6—C1—C7—O2	-1.5 (5)	C9—C10—C15—O6	-175.2 (3)
C2—C1—C7—O2	178.9 (3)	C12—C13—C16—O7	-4.7 (5)
C5—C4—C8—O4	-1.4 (5)	C14—C13—C16—O7	174.2 (3)
C3—C4—C8—O4	178.8 (3)	C12—C13—C16—O8	175.0 (3)
C5—C4—C8—O3	178.2 (3)	C14—C13—C16—O8	-6.1 (5)
C3—C4—C8—O3	-1.6 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
08—H8 <i>D</i> ····O5 ⁱ	0.82	1.81	2.632 (3)	174
06—H6D…O7 ⁱⁱ	0.82	1.83	2.633 (3)	166

			supporting information		
O3—H3 <i>D</i> ···O1 ⁱⁱⁱ	0.82	1.81	2.623 (3)	174	
O2—H2 <i>D</i> ···O4 ^{iv}	0.82	1.82	2.639 (3)	174	

Symmetry codes: (i) *x*+1/2, *y*-1/2, *z*; (ii) *x*-1/2, *y*+1/2, *z*; (iii) *x*-1/2, *y*-1/2, *z*; (iv) *x*+1/2, *y*+1/2, *z*.