

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(Chloromethyl)benzimidazolium chloride

Gang Wang and Zhi-Rong Qu*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: quzr@seu.edu.cn

Received 17 April 2009; accepted 24 April 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.056; wR factor = 0.180; data-to-parameter ratio = 19.6.

The structure of title compound, $C_8H_8ClN_2^+ \cdot Cl^-$, comprises discrete ions which are interconnected by N-H···Cl hydrogen bonds, leading to a neutral one-dimensional network in [001]. This hydrogen bonding appears to complement π - π stacking interactions [centroid-centroid distances 3.768 (2) and 3.551 (2) Å] and helps to stabilize the structure further.

Related literature

For details of the preparation of imidazole compounds, see: Ikezaki & Nakamura (2002). For the chemistry of 2-(chloro-methyl)-1H-benzo[d]imidazolium chloride, see: Jian *et al.* (2003).

Experimental

Crystal data C₈H₈ClN₂⁺·Cl[−]

 $M_r = 203.06$

 Monoclinic, $P2_1/c$ Z = 4

 a = 7.1972 (14) Å
 Mo Kα radiation

 b = 9.4507 (19) Å
 $\mu = 0.64 \text{ mm}^{-1}$

 c = 14.046 (3) Å
 T = 293 K

 $\beta = 102.51$ (3)°
 $0.22 \times 0.20 \times 0.20 \text{ mm}$

 V = 932.7 (3) Å³
 A^3

Data collection

Rigaku SCXmini diffractometer	2141 independent reflections
Absorption correction: multi-scan	1212 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku, 2005)	$R_{\rm int} = 0.083$
$T_{\min} = 0.867, \ T_{\max} = 0.882$	Standard reflections: ?
9462 measured reflections	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.056 & 109 \text{ parameters} \\ wR(F^2) &= 0.180 & . \\ S &= 0.84 & \Delta\rho_{\max} &= 0.29 \text{ e } \text{\AA}^{-3} \\ 2141 \text{ reflections} & \Delta\rho_{\min} &= -0.31 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1A \cdots Cl1^{i}$ $N2 - H2A \cdots Cl1$	0.86 0.86	2.25 2.20	3.066 (2) 3.055 (2)	158 178
Summatry and (i) x				

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *PRPKAPPA* (Ferguson, 1999).

This work was supported by the Technical Fund Financing Projects (No. 9207042464 and 9207041482) from Southeast University to ZRQ.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2205).

References

Ferguson, G. (1999). *PRPKAPPA*. University of Guelph, Canada.
Ikezaki, A. & Nakamura, M. (2002). *Inorg. Chem.* 41, 6225–6236.
Jian, F. F., Yan, L., Xiao, H. L. & Sun, P. P. (2003). *J. Struct. Chem.* 22, 687–690.
Rigaku (2005). *CrystalClear*. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supporting information

Acta Cryst. (2009). E65, o1167 [doi:10.1107/S1600536809015359]

2-(Chloromethyl)benzimidazolium chloride

Gang Wang and Zhi-Rong Qu

S1. Comment

2-(4-bromophenyl)-1-phenyl-1*H*-benzimidazole used as bridging ligands in coordination and metallosupramolecular chemistry are representative. In recent years, benzimidazole also was used to link different alkyl or aromatic group, which can adopt different conformations according to the different geometric requirements of metal centers when forming metal complexes (Ikezaki, *et al.* 2002; Jian, *et al.* 2003). We report here the crystal structure of the title compound. The structure of title compound, $C_8H_8CIN_2.Cl^2$, comprises discrete ions which are interconnected by N1—H1A···Cl1ⁱ hydrogen bond, leading to a neutral one-dimensional network in [0 0 1] direction. These hydrogen bonds appear to complement π - π stacking interactions and help to stabilize the structure further (Table 2).

S2. Experimental

A mixture of 1,2-diaminobenzene (0.01 mol 1.08 g) and chloroacetic acid (0.01 mol 0.95 g) in HCl (4 ml) was refluxed for 12 h and the title compound was dissolved in ethanol and HCl, after slowly volatilizing over a period of 48 h, colorless crystals of the title compound suitable for diffraction were isolated.

S3. Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, with C—H = 0.93 to 0.97 Å, $U_{iso}(H) = 1.2 U_{eq}(C)$, N—H = 0.86 Å, $U_{iso}(H) = 1.2 U_{eq}(N)$.

Figure 1

The molecular structure of (I), with the displacement ellipsoids were drawn at the 30% probability level.

2-(Chloromethyl)benzimidazolium chloride

Crystal data

 $C_{8}H_{8}ClN_{2}^{+}\cdot Cl^{-}$ $M_{r} = 203.06$ Monoclinic, $P2_{1}/c$ Hall symbol: -p 2ybc a = 7.1972 (14) Å b = 9.4507 (19) Å c = 14.046 (3) Å $\beta = 102.51$ (3)° V = 932.7 (3) Å³ Z = 4

Data collection

Rigaku SCXmini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator CCD_Profile_fitting scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\min} = 0.867, T_{\max} = 0.882$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.180$ S = 0.842141 reflections F(000) = 416 $D_x = 1.446 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1979 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.22 \times 0.20 \times 0.20 \text{ mm}$

9462 measured reflections 2141 independent reflections 1212 reflections with $I > 2\sigma(I)$ $R_{int} = 0.083$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.6^{\circ}$ $h = -9 \rightarrow 9$ $k = -12 \rightarrow 12$ $l = -18 \rightarrow 18$

109 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.1077P)^2 + 0.4199P]$	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.34571 (17)	0.59201 (10)	1.15934 (7)	0.0608 (4)	
C12	0.11234 (16)	0.56643 (10)	0.83757 (8)	0.0654 (4)	
N2	0.2890 (4)	0.8248 (3)	1.00495 (19)	0.0449 (7)	
H2A	0.3032	0.7611	1.0496	0.054*	
N1	0.2626 (4)	0.9234 (3)	0.86427 (19)	0.0446 (7)	
H1A	0.2575	0.9338	0.8029	0.053*	
C6	0.2574 (4)	0.9674 (4)	1.0180 (2)	0.0385 (8)	
C1	0.2393 (5)	1.0306 (3)	0.9280 (2)	0.0388 (8)	
C7	0.2936 (5)	0.8027 (4)	0.9125 (3)	0.0438 (8)	
C5	0.2467 (5)	1.0453 (4)	1.1012 (3)	0.0528 (10)	
H5A	0.2596	1.0028	1.1620	0.063*	
C2	0.2079 (5)	1.1754 (4)	0.9153 (3)	0.0528 (10)	
H2B	0.1957	1.2183	0.8546	0.063*	
C4	0.2163 (6)	1.1877 (4)	1.0883 (3)	0.0588 (11)	
H4A	0.2090	1.2435	1.1419	0.071*	
C3	0.1961 (6)	1.2515 (4)	0.9973 (3)	0.0615 (11)	
H3A	0.1738	1.3484	0.9917	0.074*	
C8	0.3276 (6)	0.6648 (4)	0.8695 (3)	0.0628 (11)	
H8A	0.4205	0.6114	0.9162	0.075*	
H8B	0.3787	0.6801	0.8119	0.075*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0894 (8)	0.0515 (6)	0.0475 (6)	0.0166 (5)	0.0280 (5)	0.0084 (4)
Cl2	0.0670 (7)	0.0524 (6)	0.0753 (7)	-0.0038 (5)	0.0119 (5)	-0.0149 (5)
N2	0.0488 (18)	0.0411 (16)	0.0452 (17)	0.0062 (14)	0.0111 (14)	0.0093 (12)
N1	0.0527 (19)	0.0459 (17)	0.0377 (15)	0.0017 (14)	0.0154 (14)	0.0019 (13)
C6	0.0319 (18)	0.0439 (18)	0.0407 (18)	0.0021 (15)	0.0104 (14)	0.0029 (14)
C1	0.0361 (18)	0.0403 (17)	0.0409 (18)	-0.0009 (15)	0.0105 (15)	-0.0002 (15)
C7	0.0383 (19)	0.0436 (19)	0.052 (2)	0.0025 (16)	0.0157 (16)	-0.0010 (16)
C5	0.050 (2)	0.071 (3)	0.0383 (19)	0.002 (2)	0.0099 (16)	-0.0059 (17)

supporting information

C2	0.058 (2)	0.046 (2)	0.054 (2)	0.0001 (18)	0.0104 (19)	0.0072 (17)
C4	0.054 (2)	0.064 (3)	0.057 (2)	0.005 (2)	0.011 (2)	-0.022(2)
C3	0.061 (3)	0.042 (2)	0.082 (3)	0.005 (2)	0.015 (2)	-0.013 (2)
C8	0.053 (2)	0.051 (2)	0.087 (3)	0.002 (2)	0.021 (2)	-0.016 (2)

Geometric parameters (Å, °)

C1—C6	1.381 (4)	C5—H5A	0.9300	
C1—C2	1.389 (4)	C6—N2	1.385 (4)	
C1—N1	1.391 (3)	C7—N2	1.320 (3)	
C2—C3	1.372 (4)	C7—N1	1.322 (3)	
C2—H2B	0.9300	С7—С8	1.477 (4)	
C3—C4	1.395 (4)	C8—C12	1.781 (3)	
С3—НЗА	0.9300	C8—H8A	0.9700	
C4—C5	1.367 (4)	C8—H8B	0.9700	
C4—H4A	0.9300	N1—H1A	0.8600	
C5—C6	1.392 (4)	N2—H2A	0.8600	
C6—C1—C2	121.8 (3)	N2—C6—C5	132.0 (3)	
C6C1N1	106.0 (2)	N2—C7—N1	109.3 (2)	
C2	132.2 (3)	N2—C7—C8	125.5 (3)	
C3—C2—C1	116.4 (3)	N1—C7—C8	125.2 (3)	
C3—C2—H2B	121.8	C7—C8—Cl2	110.6 (2)	
C1—C2—H2B	121.8	C7—C8—H8A	109.5	
C2—C3—C4	121.8 (3)	Cl2—C8—H8A	109.5	
С2—С3—НЗА	119.1	C7—C8—H8B	109.5	
С4—С3—Н3А	119.1	Cl2—C8—H8B	109.5	
C5—C4—C3	121.9 (3)	H8A—C8—H8B	108.1	
С5—С4—Н4А	119.1	C7—N1—C1	109.1 (2)	
C3—C4—H4A	119.1	C7—N1—H1A	125.5	
C4—C5—C6	116.5 (3)	C1—N1—H1A	125.5	
С4—С5—Н5А	121.7	C7—N2—C6	109.2 (2)	
С6—С5—Н5А	121.7	C7—N2—H2A	125.4	
C1-C6-N2	106.4 (2)	C6—N2—H2A	125.4	
C1—C6—C5	121.5 (3)			
C6—C1—C2—C3	0.1 (5)	N2—C7—C8—C12	84.1 (4)	
N1-C1-C2-C3	-178.5 (3)	N1	-95.6 (3)	
C1—C2—C3—C4	0.6 (5)	N2	1.1 (3)	
C2—C3—C4—C5	-0.7 (5)	C8—C7—N1—C1	-179.1 (3)	
C3—C4—C5—C6	0.1 (5)	C6—C1—N1—C7	-0.3 (3)	
C2-C1-C6-N2	-179.4 (3)	C2—C1—N1—C7	178.4 (3)	
N1-C1-C6-N2	-0.5 (3)	N1C7N2C6	-1.5 (3)	
C2-C1-C6-C5	-0.7 (4)	C8—C7—N2—C6	178.8 (3)	
N1-C1-C6-C5	178.2 (3)	C1—C6—N2—C7	1.2 (3)	
C4—C5—C6—C1	0.6 (4)	C5—C6—N2—C7	-177.3 (3)	
C4—C5—C6—N2	178.9 (3)			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A···Cl1 ⁱ	0.86	2.25	3.066 (2)	158
N2—H2A…Cl1	0.86	2.20	3.055 (2)	178

Symmetry code: (i) x, -y+3/2, z-1/2.