organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimethyl 1-(3-cyanobenzyl)-1Hpyrazole-3,5-dicarboxylate

Jie Xiao, Ji-Yuan Yao and Hong Zhao*

Ordered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: zhaohong@seu.edu.cn

Received 14 April 2009; accepted 22 April 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.147; data-to-parameter ratio = 16.6.

In the molecule of the title compound, $C_{15}H_{13}N_3O_4$, the dihedral angle between the pyrazole and benzene ring planes is $67.7 (1)^{\circ}$. The crystal structure is stabilized by an intramolecular C-H···O hydrogen bond and two weak intermolecular C-H···O interactions.

Related literature

For the biological activity of pyrazoles, see: Lee et al. (1989); Chambers et al. (1985). For the importance of nitrile derivatives in the synthesis of some heterocyclic molecules, see: Radl et al. (2000). For related structures, see: Fu & Zhao (2007); Xiao & Zhao (2008*a*,*b*,*c*).

Experimental

Crystal data

C ₁₅ H ₁₃ N ₃ O ₄	$\gamma = 82.13 \ (4)^{\circ}$
$M_r = 299.28$	V = 739.7 (5) Å ³
Triclinic, P1	Z = 2
a = 8.783 (3) Å	Mo $K\alpha$ radiation
b = 9.538 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 9.999 (4) Å	$T = 292 { m K}$
$\alpha = 68.42 \ (3)^{\circ}$	$0.40 \times 0.30 \times 0.20$ mm
$\beta = 71.79 \ (4)^{\circ}$	

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\rm min}=0.968,\;T_{\rm max}=0.979$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	201 parameters
$wR(F^2) = 0.147$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
3338 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

7555 measured reflections

 $R_{\rm int} = 0.031$

3338 independent reflections

2093 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C15−H15 <i>B</i> ····O1 ⁱ	0.96	2.43	3.363 (3)	163
C9−H9···O1 ⁱⁱ	0.93	2.53	3.348 (3)	147
C6−H6 <i>A</i> ····O4	0.97	2.41	2.979 (3)	117

Symmetry codes: (i) x, y - 1, z; (ii) -x, -y + 1, -z + 1.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC; molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

This work was supported financially by the Southeast University Fund for Young Researchers (4007041027).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2204).

References

- Chambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem. 50, 4736-4738.
- Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, 03206.
- Lee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem. 54, 428-431.
- Radl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xiao, J. & Zhao, H. (2008a). Acta Cryst. E64, 0965.
- Xiao, J. & Zhao, H. (2008b). Acta Cryst. E64, 0986.
- Xiao, J. & Zhao, H. (2008c). Acta Cryst. E64, 01436.

supporting information

Acta Cryst. (2009). E65, o1132 [doi:10.1107/S1600536809014895]

Dimethyl 1-(3-cyanobenzyl)-1*H*-pyrazole-3,5-dicarboxylate

Jie Xiao, Ji-Yuan Yao and Hong Zhao

S1. Comment

It is well known that many pyrazole-related molecules have received much attention due to their biological activities (Lee *et al.*, 1989; Chambers *et al.*, 1985). In addition, nitrile derivatives are important materials in the synthesis of some heterocyclic molecules (Radl *et al.*, 2000). Recently, we have reported a few benzonitrile compounds (Fu *et al.*, 2007; Xiao *et al.*, 2008*a*, 2008*b*, 2008*c*). As an extension of our work on the structural characterization of nitrile compounds, the structure of the title compound is reported here. In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the planes of the pyrazole and phenyl rings is 67.74 (14) °. The molecular conformation is stabilized by an intramolecular C—H…O hydrogen bond and weak intermolecular C—H…O interactions (Table 1)..

S2. Experimental

Dimethyl 1*H*-Pyrazole-3,5-dicarboxylate (0.185 mg,1 mmol) and 3-(bromomethyl)benzonitrile (0.196 mg,1 mmol) were dissolved in acetone in the presence of K_2CO_3 (0.138 mg,1 mmol) and heated under reflux for 1 d. After the mixture was cooled to room temperature, the solution was filtered and the solvent removed in vacuum to afford a white precipitate of the title compound. Colourless crystals suitable for X-ray diffraction were obtained from a solution of 100 mg in 15 ml diethylether by slow evaporation after 7 d.

S3. Refinement

All H atoms were detected in a difference Fourier map but were placed in calculated positions and refined using a riding motion approximation, with C_{aryl} —H, C_{methyl} —H = 0.93, 097 and 0.96 Å. $U_{iso}(H_{aryl})=1.2U_{eq}(C_{aryl})$; $U_{iso}(H_{methyl})=1.2U_{eq}(C_{methyl})$; $U_{iso}(H_{methyl})=1.5U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Dimethyl 1-(3-cyanobenzyl)-1H-pyrazole-3,5-dicarboxylate

Crystal data

C₁₅H₁₃N₃O₄ $M_r = 299.28$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.783 (3) Å b = 9.538 (4) Å c = 9.999 (4) Å a = 68.42 (3)° $\beta = 71.79$ (4)° $\gamma = 82.13$ (4)° V = 739.7 (5) Å³

Data collection

Rigaku SCXmini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\min} = 0.968, T_{\max} = 0.979$ Z = 2 F(000) = 312 $D_x = 1.344 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1442 reflections $\theta = 2.4-27.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 292 K Block, colorless $0.40 \times 0.30 \times 0.20 \text{ mm}$

7555 measured reflections 3338 independent reflections 2093 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 27.4^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -12 \rightarrow 12$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.147$	neighbouring sites
S = 1.05	H-atom parameters constrained
3338 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0636P)^2 + 0.0696P]$
201 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.16 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
C1	0.2466 (2)	0.1608 (2)	0.4437 (2)	0.0473 (5)
C2	0.2324 (2)	0.0151 (2)	0.4487 (2)	0.0485 (5)
H2	0.2544	-0.0753	0.5185	0.058*
C3	0.1787 (2)	0.0343 (2)	0.3276 (2)	0.0453 (5)
C4	0.2972 (2)	0.2120 (3)	0.5461 (2)	0.0530 (5)
C5	0.1399 (2)	-0.0794 (2)	0.2763 (2)	0.0516 (5)
C6	0.1126 (2)	0.2702 (2)	0.1210 (2)	0.0513 (5)
H6A	0.1388	0.2105	0.0561	0.062*
H6B	0.1713	0.3630	0.0669	0.062*
C7	-0.0655 (2)	0.3076 (2)	0.1568 (2)	0.0441 (5)
C8	-0.1362 (3)	0.3905 (2)	0.2511 (2)	0.0548 (5)
H8	-0.0735	0.4208	0.2948	0.066*
C9	-0.2976 (3)	0.4282 (3)	0.2806 (3)	0.0618 (6)
Н9	-0.3429	0.4818	0.3453	0.074*
C10	-0.3928 (3)	0.3868 (2)	0.2143 (2)	0.0564 (6)
H10	-0.5012	0.4135	0.2327	0.068*
C11	-0.3234 (2)	0.3050 (2)	0.1206 (2)	0.0501 (5)
C12	-0.1607 (2)	0.2639 (2)	0.0923 (2)	0.0476 (5)
H12	-0.1163	0.2074	0.0303	0.057*
C13	-0.4218 (3)	0.2621 (3)	0.0498 (3)	0.0625 (6)
C14	0.3840 (4)	0.1361 (3)	0.7627 (3)	0.0947 (10)
H14A	0.4685	0.2077	0.7128	0.142*
H14B	0.4199	0.0470	0.8309	0.142*
H14C	0.2922	0.1797	0.8174	0.142*
C15	0.1386 (3)	-0.3432 (3)	0.3310 (3)	0.0756 (7)

H15A	0.0277	-0.3388	0.3343	0.113*	
H15B	0.1612	-0.4358	0.4042	0.113*	
H15C	0.2046	-0.3388	0.2329	0.113*	
N1	0.2055 (2)	0.26560 (19)	0.32636 (19)	0.0517 (4)	
N2	0.16398 (19)	0.18644 (18)	0.25641 (17)	0.0460 (4)	
N3	-0.4990 (3)	0.2293 (3)	-0.0067 (3)	0.0878 (7)	
01	0.2979 (2)	0.34090 (19)	0.5354 (2)	0.0816 (6)	
O2	0.3407 (2)	0.09684 (17)	0.65206 (18)	0.0724 (5)	
O3	0.1723 (2)	-0.21721 (16)	0.36374 (17)	0.0659 (5)	
O4	0.0863 (2)	-0.05489 (18)	0.1728 (2)	0.0769 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0473 (12)	0.0513 (12)	0.0480 (12)	-0.0011 (9)	-0.0202 (9)	-0.0170 (9)
C2	0.0510 (12)	0.0492 (12)	0.0461 (12)	-0.0012 (9)	-0.0194 (9)	-0.0126 (9)
C3	0.0429 (11)	0.0480 (11)	0.0461 (11)	-0.0024 (8)	-0.0145 (9)	-0.0153 (9)
C4	0.0528 (13)	0.0599 (14)	0.0562 (13)	0.0044 (10)	-0.0243 (10)	-0.0258 (11)
C5	0.0471 (12)	0.0576 (13)	0.0532 (13)	-0.0022 (9)	-0.0164 (10)	-0.0206 (10)
C6	0.0494 (12)	0.0601 (13)	0.0435 (12)	-0.0053 (9)	-0.0207 (9)	-0.0094 (9)
C7	0.0505 (12)	0.0415 (11)	0.0400 (11)	-0.0054 (8)	-0.0182 (9)	-0.0078 (8)
C8	0.0627 (14)	0.0541 (13)	0.0594 (13)	-0.0035 (10)	-0.0279 (11)	-0.0232 (10)
C9	0.0677 (15)	0.0597 (14)	0.0658 (15)	0.0024 (11)	-0.0194 (12)	-0.0314 (12)
C10	0.0512 (13)	0.0570 (13)	0.0634 (14)	0.0023 (10)	-0.0194 (11)	-0.0219 (11)
C11	0.0499 (12)	0.0522 (12)	0.0526 (12)	-0.0029 (9)	-0.0233 (10)	-0.0151 (9)
C12	0.0529 (12)	0.0511 (12)	0.0459 (11)	-0.0005 (9)	-0.0206 (9)	-0.0195 (9)
C13	0.0509 (13)	0.0758 (16)	0.0698 (16)	0.0021 (11)	-0.0254 (12)	-0.0295 (12)
C14	0.140 (3)	0.098 (2)	0.0809 (19)	0.0188 (18)	-0.075 (2)	-0.0427 (16)
C15	0.097 (2)	0.0552 (15)	0.0804 (18)	-0.0088 (13)	-0.0245 (15)	-0.0280 (13)
N1	0.0544 (10)	0.0532 (10)	0.0552 (11)	-0.0020 (8)	-0.0259 (8)	-0.0185 (8)
N2	0.0464 (9)	0.0503 (10)	0.0446 (9)	-0.0034 (7)	-0.0205 (7)	-0.0131 (7)
N3	0.0656 (14)	0.124 (2)	0.1012 (18)	0.0028 (13)	-0.0437 (13)	-0.0557 (16)
01	0.1237 (16)	0.0589 (11)	0.0919 (13)	0.0097 (10)	-0.0644 (12)	-0.0358 (9)
O2	0.1047 (14)	0.0650 (10)	0.0687 (11)	0.0110 (9)	-0.0542 (10)	-0.0268 (8)
O3	0.0894 (12)	0.0511 (9)	0.0636 (10)	-0.0076 (8)	-0.0321 (9)	-0.0164 (7)
O4	0.1025 (14)	0.0705 (11)	0.0837 (12)	0.0033 (9)	-0.0579 (11)	-0.0317 (9)

Geometric parameters (Å, °)

C1—N1	1.345 (2)	С8—Н8	0.9300	
C1—C2	1.393 (3)	C9—C10	1.387 (3)	
C1—C4	1.482 (3)	С9—Н9	0.9300	
C2—C3	1.375 (2)	C10—C11	1.381 (3)	
С2—Н2	0.9300	C10—H10	0.9300	
C3—N2	1.369 (2)	C11—C12	1.397 (3)	
C3—C5	1.475 (3)	C11—C13	1.452 (3)	
C4—O1	1.195 (2)	C12—H12	0.9300	
C4—O2	1.325 (2)	C13—N3	1.143 (3)	

C5—O4	1.201 (2)	C14—O2	1.455 (3)
C5—O3	1.334 (3)	C14—H14A	0.9600
C6—N2	1.471 (2)	C14—H14B	0.9600
C6—C7	1 514 (3)	C14—H14C	0 9600
С6—Н6А	0.9700	C_{15}	1444(3)
	0.9700	C15_U15A	0.000
	0.9700		0.9600
	1.385 (2)	CI3—HISB	0.9600
С7—С8	1.395 (3)	C15—H15C	0.9600
C8—C9	1.380 (3)	N1—N2	1.347 (2)
N1—C1—C2	111.68 (17)	С10—С9—Н9	119.8
N1—C1—C4	118.44 (18)	C11—C10—C9	118.7 (2)
C2-C1-C4	129.88 (18)	C11—C10—H10	120.6
$C_{3}-C_{2}-C_{1}$	104 90 (17)	C9-C10-H10	120.6
$C_3 C_2 H_2$	127.6	C_{10} C_{11} C_{12}	121.23 (18)
$C_{1} = C_{2} = H_{2}$	127.0	$C_{10} = C_{11} = C_{12}$	121.23(10)
C1 - C2 - H2	127.0		119.1 (2)
N2—C3—C2	107.05 (17)		119.63 (19)
N2—C3—C5	123.21 (17)	C7—C12—C11	119.83 (19)
C2—C3—C5	129.74 (18)	C7—C12—H12	120.1
O1—C4—O2	124.09 (19)	C11—C12—H12	120.1
O1—C4—C1	124.3 (2)	N3—C13—C11	179.5 (3)
O2—C4—C1	111.57 (19)	O2-C14-H14A	109.5
O4—C5—O3	124.0 (2)	O2—C14—H14B	109.5
04 - C5 - C3	1264(2)	H14A—C14—H14B	109 5
03-05-03	109.59(18)	Ω^2 — $C14$ — $H14C$	109.5
N2 C6 C7	112.47(16)		109.5
	112.47 (10)		109.5
	109.1	HI4B—CI4—HI4C	109.5
С/—С6—Н6А	109.1	03—C15—H15A	109.5
N2—C6—H6B	109.1	O3—C15—H15B	109.5
С7—С6—Н6В	109.1	H15A—C15—H15B	109.5
H6A—C6—H6B	107.8	O3—C15—H15C	109.5
С12—С7—С8	118.64 (19)	H15A—C15—H15C	109.5
С12—С7—С6	120.28 (18)	H15B—C15—H15C	109.5
C8—C7—C6	121.05 (17)	C1—N1—N2	104.90 (16)
C9—C8—C7	121.12 (19)	N1 - N2 - C3	111.47 (15)
C9-C8-H8	119.4	N1—N2—C6	118 28 (16)
C7 C8 H8	110 /	$C_3 N_2 C_6$	130.24(16)
C^{8} C^{0} C^{10}	119.4	$C_{3} = C_{1} = C_{0}$	130.24(10)
C_{0}	120.4 (2)	$C_{4} = 0_{2} = C_{14}$	113.33 (19)
С8—С9—Н9	119.8	03-03-015	117.10(18)
N1—C1—C2—C3	-0.4(2)	C9—C10—C11—C13	-179.5 (2)
C4—C1—C2—C3	179.1 (2)	C8—C7—C12—C11	0.9 (3)
C1—C2—C3—N2	0.3 (2)	C6—C7—C12—C11	-177.04 (18)
C1—C2—C3—C5	-179.23 (19)	C10-C11-C12-C7	-1.1 (3)
N1-C1-C4-01	3.2 (3)	C13—C11—C12—C7	178.51 (18)
C2-C1-C4-01	-176.3 (2)	C2-C1-N1-N2	0.3 (2)
N1-C1-C4-O2	-177.21 (18)	C4—C1—N1—N2	-179.24 (16)
$C_2 - C_1 - C_4 - O_2$	3.3 (3)	C1 - N1 - N2 - C3	-0.1(2)
	(-)		··· (=)

N2-C3-C5-O4	-3.1 (3)	C1—N1—N2—C6	-179.84 (16)
C2—C3—C5—O4	176.4 (2)	C2—C3—N2—N1	-0.1 (2)
N2-C3-C5-O3	177.39 (18)	C5—C3—N2—N1	179.45 (17)
C2—C3—C5—O3	-3.1 (3)	C2—C3—N2—C6	179.55 (18)
N2-C6-C7-C12	-124.57 (19)	C5—C3—N2—C6	-0.9 (3)
N2-C6-C7-C8	57.5 (2)	C7—C6—N2—N1	-87.7 (2)
C12—C7—C8—C9	0.2 (3)	C7—C6—N2—C3	92.6 (2)
C6—C7—C8—C9	178.21 (19)	O1—C4—O2—C14	2.8 (4)
C7—C8—C9—C10	-1.3 (3)	C1-C4-O2-C14	-176.8 (2)
C8—C9—C10—C11	1.1 (3)	O4—C5—O3—C15	-0.6 (3)
C9—C10—C11—C12	0.1 (3)	C3—C5—O3—C15	178.93 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
C15—H15B…O1 ⁱ	0.96	2.43	3.363 (3)	163	
С9—Н9…О1 ^{іі}	0.93	2.53	3.348 (3)	147	
С6—Н6А…О4	0.97	2.41	2.979 (3)	117	

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*, –*y*+1, –*z*+1.