

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(guanidinium) tetraiodidomercurate(II)

Hiromitsu Terao,^a Thorsten M. Gesing,^b Hideta Ishihara,^c Yoshihiro Furukawa^d and B. Thimme Gowda^e*

^aFaculty of Integrated Arts and Sciences, Tokushima University,

Minamijosanjima-cho, Tokushima 770-8502, Japan, ^bFB05 Kristallographie, Universität Bremen, Klagenfurther Strasse, 28359 Bremen, Germany, ^cFaculty of Culture and Education, Saga University, Saga 840-8502, Japan, ^dGraduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan, and ^cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India

Correspondence e-mail: gowdabt@yahoo.com

Received 1 April 2009; accepted 4 April 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (N–C) = 0.02 Å; *R* factor = 0.059; *wR* factor = 0.135; data-to-parameter ratio = 23.2.

The Hg atom in the crystal structure of the title compound, $(CH_6N_3)_2[HgI_4]$, is tetrahedrally coordinated by four I atoms. The $[HgI_4]^{2-}$ ions are interconnected to the $[C(NH_2)_3]^+$ ions by N-H···I hydrogen bonds, forming a three-dimensional network. The four different observed Hg-I distances [2.760 (2), 2.7762 (15), 2.8098 (14) and 2.833 (2) Å] are consistent with four different ¹²⁷I NQR frequencies observed, showing the existence of four unique I atoms in the tetraiodidomercurate unit.

Related literature

For synthetic methods, see: Furukawa *et al.* (2005); For the ability of the guanidinium ion to make hydrogen bonds and its unique planar shape, see: Terao *et al.* (2000). Hg–halogen bonds are sensitive to intermolecular interactions such as hydrogen bonding (Ishihara *et al.*, 2002), as evidenced by the halogen NQR of Hg compounds in which the resonance frequencies are widely spread (Furukawa *et al.*, 2005). For background to this study, see: Terao *et al.* (2009).

Experimental

Crystal data (CH₆N₃)₂[HgI₄] $M_r = 828.37$

Triclinic, $P\overline{1}$ a = 8.981 (2) Å Mo $K\alpha$ radiation

 $0.42 \times 0.38 \times 0.32 \text{ mm}$

14500 measured reflections

3613 independent reflections 1846 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 17.13 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.118$

refinement $\Delta \rho_{\text{max}} = 3.08 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -2.71 \text{ e} \text{ Å}^{-3}$

Z = 2

b = 8.996 (2) Å c = 12.302 (3) Å $\alpha = 105.80 (3)^{\circ}$ $\beta = 95.79 (4)^{\circ}$ $\gamma = 118.46 (2)^{\circ}$ $V = 808.9 (5) \text{ Å}^{3}$

Data collection

Stoe IPDS-I diffractometer
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
$T_{\min} = 0.017, \ T_{\max} = 0.057$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.135$ S = 0.81 3613 reflections 156 parameters 32 restraints

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N11 - H11A \cdot \cdot \cdot I1^{i}$	0.87 (4)	3.00 (4)	3.78 (2)	151 (2)
$N12 - H12A \cdot \cdot \cdot I2$	0.87 (4)	3.46 (2)	3.83 (2)	123 (2)
$N13 - H13A \cdot \cdot \cdot I3^{ii}$	0.87 (4)	2.96 (4)	3.80 (2)	161 (2)
$N13-H13B\cdots I1^{i}$	0.87 (4)	2.88 (4)	3.69 (2)	156 (2)
$N21 - H21A \cdot \cdot \cdot I3^{iii}$	0.87 (4)	3.03 (4)	3.82 (2)	151 (2)
$N21 - H21B \cdot \cdot \cdot I2$	0.87(4)	2.91 (4)	3.74 (2)	162 (6)
$N22 - H22A \cdots I4^{iv}$	0.87 (9)	2.98 (4)	3.82 (2)	162 (2)
$N22 - H22B \cdot \cdot \cdot I3^{iii}$	0.87(10)	3.05 (4)	3.81 (2)	147 (2)
N23 $-H23A\cdots I4^{iv}$	0.87 (9)	2.91 (4)	3.71 (2)	153 (2)
N23-H23 B ···I2	0.87 (4)	2.99 (4)	3.82 (2)	161 (6)

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y - 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y, -z + 1.

Data collection: *EXPOSE* (Stoe & Cie, 1999); cell refinement: *CELL* (Stoe & Cie, 1999); data reduction: *XPREP* (Bruker, 2003); program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL93* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Crystal Impact, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL93*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2201).

References

Bruker (2003). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

- Crystal Impact (2008). *DIAMOND*. Crystal Impact GmbH, Bonn, Germany. Furukawa, Y., Terao, H., Ishihara, H., Gesing, T. M. & Buhl, J.-C. (2005). *Hyperfine Interact.* **159**, 143–148.
- Ishihara, H., Hatano, N., Horiuchi, K. & Terao, H. (2002). Z. Naturforsch. Teil A, 57, 343–347.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie. (1999). *EXPOSE*, *CELL* and *X-SHAPE*. Stoe & Cie GmbH, Darmstadt, Germany.
- Terao, H., Gesing, T. M., Ishihara, H., Furukawa, Y. & Gowda, B. T. (2009). Acta Cryst. E65, m323.
- Terao, H., Hashimoto, M., Hashimoto, A. & Furukawa, Y. (2000). Z. Naturforsch. Teil A, 55, 230–236.

supporting information

Acta Cryst. (2009). E65, m503 [doi:10.1107/S160053680901280X]

Bis(guanidinium) tetraiodidomercurate(II)

Hiromitsu Terao, Thorsten M. Gesing, Hideta Ishihara, Yoshihiro Furukawa and B. Thimme Gowda

S1. Comment

The ability of guanidium ion, $[C(NH_2)_3]^+$ in making hydrogen bonds and its unique planar shape has been recognized (Terao *et al.*, 2000). Further, the guanidium ions tend to undergo reorientation motions about their (pseudo) C₃ axes in the crystals. Due to the soft nature, Hg atoms are amenable to polarization and thus the Hg-halogen bonds are sensitive to the intermolecular interactions such as hydrogen bonding (Ishihara *et al.*, 2002). This was evident in the halogen NQR of the Hg compounds in which the resonance frequencies are widely spread (Furukawa *et al.*, 2005). Thus the study of the structure and bonding of this class of compounds is interesting. As a part of our investigations in this direction (Terao *et al.*, 2009), we report herein the crystal structure of Guanidinium tetraiodomercurate(II) (I). In the structure, the mercury atom is tetrahedrally coordinated by four iodine atoms and the resulting HgI₄ tetrahedra are interconnected to the $[C(NH_2)_3]^+$ ions by iodine-hydrogen bonds forming a three-dimensional network (Fig. 1). Four different Hg—I distances were observed which are consistent with four different I-127 NQR frequencies observed (Furukawa *et al.*, 2005), establishing the existence of four inequivalent I atoms in the tetraiodomercurate unit. The packing diagram of the crystal structure, as viewed in the direction of *c* axis is shown in Fig. 3.

S2. Experimental

Guanidinium tetraiodomercurate(II) was prepared by slow concentration of methanolic solution containing mercuric iodide (0.01 mol, 4.54 g) and guanidium iodide (0.024 mol, 4.48 g) in slightly more than 1:2 molar ratio. The purity of the compound was checked by elemental analysis and characterized by its NMR and NQR spectra (Furukawa *et al.*, 2005). The single crystals used in X-ray diffraction studies were grown in methanolic solution by a slow evaporation at room temperature.

S3. Refinement

The N—H distances were restrained to 0.87–0.88 Å and the coordinates of the H atoms were refined with isotropic displacement parameters set to 1.2 times of the U_{eq} of the parent atom.

Figure 1

Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Figure 2

Two distinct guanidinium ions in the crystal structure of (I) along with the numbering of the atoms.

Figure 3

Packing diagram of (I) as viewed in the direction of c axis.

Bis(guanidinium) tetraiodidomercurate(II)

Crystal data

 $\begin{array}{l} ({\rm CH_6N_3})_2[{\rm HgI_4}] \\ M_r = 828.37 \\ {\rm Triclinic}, P1 \\ {\rm Hall \ symbol: -P1} \\ a = 8.981 \ (2) \ {\rm \AA} \\ b = 8.996 \ (2) \ {\rm \AA} \\ c = 12.302 \ (3) \ {\rm \AA} \\ a = 105.80 \ (3)^{\circ} \\ \beta = 95.79 \ (4)^{\circ} \\ \gamma = 118.46 \ (2)^{\circ} \\ V = 808.9 \ (5) \ {\rm \AA}^3 \end{array}$

Data collection

Stoe IPDS-I diffractometer Radiation source: fine-focus sealed tube Graphite monochromator imaging plate dynamic profile intergration scans Z = 2 F(000) = 716 D_x = 3.401 Mg m⁻³ Mo K α radiation, λ = 0.71073 Å Cell parameters from 2000 reflections θ = 2.7–28.0° μ = 17.13 mm⁻¹ T = 298 K Cylindric, yellow 0.42 × 0.38 × 0.32 mm

Absorption correction: numerical (*X-SHAPE*; Stoe & Cie, 1999) $T_{\min} = 0.017, T_{\max} = 0.057$ 14500 measured reflections 3613 independent reflections 1846 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.118$	$k = -11 \rightarrow 11$
$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$	$l = -16 \rightarrow 16$
$h = -11 \rightarrow 11$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of independent
$wR(F^2) = 0.135$	and constrained refinement
S = 0.81	$w = 1/[\sigma^2(F_o^2) + (0.0353P)^2]$
3613 reflections	where $P = (F_o^2 + 2F_c^2)/3$
156 parameters	$(\Delta/\sigma)_{ m max} < 0.001$
32 restraints	$\Delta \rho_{\rm max} = 3.08 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -2.71 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL93 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.00075 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Hg1	0.34641 (9)	0.61562 (10)	0.73508 (6)	0.0667 (3)	
I1	0.0809 (2)	0.5696 (2)	0.84518 (10)	0.0650 (3)	
I2	0.53156 (14)	0.4740 (2)	0.82071 (9)	0.0607 (3)	
I3	0.58185 (14)	0.9944 (2)	0.80058 (10)	0.0627 (3)	
I4	0.22651 (14)	0.4550 (2)	0.49342 (9)	0.0673 (3)	
C1	0.0864 (17)	0.0540 (15)	0.8824 (8)	0.051 (3)	
N11	0.2387 (17)	0.0661 (18)	0.9149 (13)	0.072 (4)	
H11A	0.246 (12)	-0.030(7)	0.902 (4)	0.12 (3)*	
H11B	0.333 (7)	0.174 (5)	0.9499 (19)	0.12 (3)*	
N12	0.0824 (14)	0.2000 (14)	0.9034 (11)	0.066 (4)	
H12A	0.179 (2)	0.3056 (13)	0.9387 (16)	0.12 (3)*	
H12B	-0.0169 (19)	0.193 (2)	0.8825 (17)	0.12 (3)*	
N13	-0.0542 (16)	-0.1065 (19)	0.8300 (14)	0.080 (4)	
H13A	-0.152 (4)	-0.111 (8)	0.810 (3)	0.12 (3)*	
H13B	-0.054 (9)	-0.207 (5)	0.815 (3)	0.12 (3)*	
C2	0.2590 (18)	-0.012 (2)	0.5152 (16)	0.067 (4)	
N21	0.4067 (18)	0.136 (2)	0.5198 (14)	0.086 (5)	
H21A	0.453 (8)	0.138 (11)	0.461 (4)	0.12 (3)*	
H21B	0.457 (8)	0.232 (6)	0.584 (3)	0.12 (3)*	
N22	0.1800 (17)	-0.158 (2)	0.4211 (13)	0.092 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H22A	0.085 (3)	-0.246 (11)	0.427 (11)	0.12 (3)*
H22B	0.212 (14)	-0.173 (18)	0.357 (5)	0.12 (3)*
N23	0.193 (2)	-0.009 (3)	0.6078 (14)	0.110 (7)
H23A	0.098 (3)	-0.100 (11)	0.610 (12)	0.12 (3)*
H23B	0.252 (13)	0.093 (8)	0.668 (7)	0.12 (3)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.0686 (4)	0.0651 (5)	0.0641 (4)	0.0319 (4)	0.0196 (3)	0.0262 (4)
I1	0.0802 (7)	0.0566 (7)	0.0743 (7)	0.0413 (6)	0.0367 (6)	0.0307 (6)
I2	0.0632 (6)	0.0535 (7)	0.0608 (6)	0.0271 (6)	0.0115 (5)	0.0233 (5)
I3	0.0605 (6)	0.0547 (7)	0.0725 (7)	0.0284 (6)	0.0193 (5)	0.0259 (6)
I4	0.0606 (6)	0.0668 (8)	0.0540 (6)	0.0182 (6)	0.0137 (5)	0.0237 (6)
C1	0.060 (9)	0.039 (10)	0.050 (8)	0.023 (8)	0.014 (7)	0.017 (8)
N11	0.063 (9)	0.069 (11)	0.111 (12)	0.045 (8)	0.032 (9)	0.047 (10)
N12	0.063 (8)	0.039 (9)	0.077 (9)	0.022 (7)	-0.004 (7)	0.009 (8)
N13	0.068 (9)	0.053 (11)	0.113 (13)	0.033 (9)	0.004 (9)	0.027 (10)
C2	0.053 (9)	0.047 (12)	0.076 (12)	0.014 (9)	0.003 (9)	0.016 (10)
N21	0.079 (10)	0.048 (11)	0.088 (11)	0.005 (9)	0.033 (9)	0.013 (9)
N22	0.076 (10)	0.054 (12)	0.060 (9)	-0.012 (9)	0.006 (8)	-0.006 (8)
N23	0.074 (11)	0.096 (15)	0.077 (11)	-0.007 (10)	0.032 (10)	0.010 (11)

Geometric parameters (Å, °)

Hg1—I4	2.760 (2)	N11—H11A	0.88 (8)
Hg1—I1	2.7762 (15)	N11—H11B	0.87 (5)
Hg1—I2	2.8098 (14)	N12—H12A	0.87 (2)
Hg1—I3	2.833 (2)	N12—H12B	0.87 (2)
I1—H13B ⁱ	2.87 (7)	N13—H13A	0.87 (5)
I1—H11A ⁱ	3.00 (4)	N13—H13B	0.88 (6)
I2—H21B	2.91 (3)	C2—N22	1.30 (2)
I2—H23B	2.99 (5)	C2—N21	1.34 (2)
I3—H13A ⁱⁱ	2.97 (5)	C2—N23	1.34 (2)
I3—H22B ⁱⁱⁱ	3.05 (7)	N21—H21B	0.87 (4)
I3—H21A ⁱⁱⁱ	3.03 (4)	N21—H21A	0.87 (7)
I3—H12B ⁱⁱ	3.057 (19)	N22—H22B	0.87 (9)
C1—N13	1.29 (2)	N22—H22A	0.87 (9)
C1—N12	1.29 (2)	N23—H23A	0.87 (9)
C1—N11	1.32 (2)	N23—H23B	0.87 (8)
I4—Hg1—I1	113.75 (5)	H13A—N13—H13B	120 (6)
I4—Hg1—I2	109.54 (5)	H13A—N13—C1	117 (4)
I1—Hg1—I2	108.81 (4)	H13B—N13—C1	123 (4)
I4—Hg1—I3	109.38 (6)	N22—C2—N21	120.3 (17)
I1—Hg1—I3	107.26 (5)	N22—C2—N23	119.8 (15)
I2—Hg1—I3	107.93 (5)	N21—C2—N23	119.9 (17)
N13—C1—N12	121.1 (14)	H21B—N21—H21A	120 (7)

N13—C1—N11 N12—C1—N11 H11A—N11—H11B H11A—N11—C1 H11B—N11—C1 H12A—N12—H12B H12A—N12—C1	119.7 (14) 119.2 (14) 120 (7) 120 (11) 118 (6) 120 (2) 119.9 (19)	H21B—N21—C2 H21A—N21—C2 H22B—N22—H22A H22B—N22—C2 H22A—N22—C2 H23A—N23—H23B H23A—N23—C2	119 (6) 121 (6) 120 (11) 127 (9) 114 (9) 120 (11) 125 (10)
H12B—N12—C1	120.0 (18)	H23B—N23—C2	115 (10)
N13—C1—N11—H11A	0.0 (6)	N22—C2—N21—H21B	180.0 (5)
N12—C1—N11—H11A	-180.0 (5)	N23—C2—N21—H21B	-0.1 (6)
N13—C1—N11—H11B	180.0 (6)	N22—C2—N21—H21A	0.0 (5)
N12—C1—N11—H11B	0.0 (5)	N23—C2—N21—H21A	179.9 (6)
N13—C1—N12—H12A	-180.0 (6)	N21—C2—N22—H22B	0.1 (6)
N11—C1—N12—H12A	0.0 (4)	N23—C2—N22—H22B	-179.9 (6)
N13—C1—N12—H12B	0.1 (9)	N21—C2—N22—H22A	180.0 (5)
N11—C1—N12—H12B	-180.0 (8)	N23—C2—N22—H22A	0.1 (6)
N12—C1—N13—H13A	-0.1 (10)	N22—C2—N23—H23A	-0.2 (11)
N11—C1—N13—H13A	179.9 (7)	N21—C2—N23—H23A	179.9 (8)
N12—C1—N13—H13B	-179.9 (7)	N22—C2—N23—H23B	-179.9 (7)
N11—C1—N13—H13B	0.1 (10)	N21—C2—N23—H23B	0.1 (9)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*+1, *y*+1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	$D \cdots A$	D—H··· A
N11—H11A…I1 ^{iv}	0.87 (4)	3.00 (4)	3.78 (2)	151 (2)
N12—H12A…I2	0.87 (4)	3.46 (2)	3.83 (2)	123 (2)
N13—H13 <i>A</i> ···I3 ^v	0.87 (4)	2.96 (4)	3.80 (2)	161 (2)
N13—H13 <i>B</i> …I1 ^{iv}	0.87 (4)	2.88 (4)	3.69 (2)	156 (2)
N21—H21A…I3 ⁱⁱⁱ	0.87 (4)	3.03 (4)	3.82 (2)	151 (2)
N21—H21 <i>B</i> …I2	0.87 (4)	2.91 (4)	3.74 (2)	162 (6)
N22—H22 A ···I4 ^{vi}	0.87 (9)	2.98 (4)	3.82 (2)	162 (2)
N22—H22 <i>B</i> ···I3 ⁱⁱⁱ	0.87 (10)	3.05 (4)	3.81 (2)	147 (2)
N23—H23 A ···I4 ^{vi}	0.87 (9)	2.91 (4)	3.71 (2)	153 (2)
N23—H23 <i>B</i> ···I2	0.87 (4)	2.99 (4)	3.82 (2)	161 (6)

Symmetry codes: (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*, *y*-1, *z*; (v) *x*-1, *y*-1, *z*; (vi) -*x*, -*y*, -*z*+1.