Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-N'-(3,3-Diphenylallylidene)-p-toluenesulfonohydrazide

Hossein Mehrabi^a* and Reza Kia^b‡

^aDepartment of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan 77176, Iran, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: mehraby_h@yahoo.com

Received 6 April 2009; accepted 7 April 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.156; data-to-parameter ratio = 21.4.

In the title compound, $C_{22}H_{20}N_2O_2S$, the molecule adopts a twisted *E* configuration around the C—N bond. The two phenyl rings are twisted from each other, making a dihedral angle of 78.00 (12)°. The methyl-substituted benzene ring makes dihedral angles of 32.37 (14) and 69.70 (12)° with the two phenyl rings. In the crystal structure, molecules are linked into extended chains along the *b* axis through intermolecular N-H···O hydrogen bonds.

Related literature

For related compounds and their bioactivities, see; for example, Mehrabi *et al.* (2008); Tabatabaee *et al.* (2007); Ali *et al.* (2007); Tierney *et al.* 2006; Krygowski *et al.* (1998); Kayser *et al.* (2004). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $C_{22}H_{20}N_2O_2S$ $M_r = 376.46$ Monoclinic, $P2_1/n$

a = 14.785	(3) A
b = 6.2179	(12) Å
c = 22.519	(5) Å

 $\beta = 102.64 (3)^{\circ}$ $V = 2020.0 (7) \text{ Å}^{3}$ Z = 4Mo K α radiation

Data collection

Stoe IPDS-II diffractometer Absorption correction: numerical (X-RED32; Stoe & Cie, 2005) $T_{\min} = 0.940, T_{\max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.156$ S = 1.105327 reflections 249 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1N2\cdots O2^{i}$	0.82 (2)	2.11 (2)	2.927 (2)	173 (2)
Symmetry code: (i) -	$x + \frac{1}{2}, y - \frac{1}{2}, -z - z$	$+\frac{1}{2}$.		

 $\mu = 0.18 \text{ mm}^{-1}$

refinement

 $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

 $0.50 \times 0.28 \times 0.12 \ \mathrm{mm}$

5327 measured reflections

5327 independent reflections

4220 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 294 K

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HM thanks Vali-e-Asr University of Rafsanjan for the finacial support of this work. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2762).

References

- Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, 01617–01618.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.
- Krygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289–12292.
- Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, 01845.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. &
- Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099-o2100.
- Tierney, L. M., McPhee, S. J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed, pp. 1–50. New York: McGraw-Hill Medical.

‡ Additional corresponding author, e-mail: zsrkk@yahoo.com. Thomson Reuters ResearcherID: A-5471-2009.

supporting information

Acta Cryst. (2009). E65, o1056 [doi:10.1107/S1600536809013269]

(E)-N'-(3,3-Diphenylallylidene)-p-toluenesulfonohydrazide

Hossein Mehrabi and Reza Kia

S1. Comment

Sulfonamides were the first class of antimicrobial agents to be discovered. They inhibit dihydropteroate synthetase in the bacterial folic acid pathway. Although their clinical role has diminished, they are still useful in certain situations, because of its efficacy and low cost (Krygowski *et al.*, 1998). Sulfonamides (sulfanilamide, sulfamethoxazole, sulfafurazole) are structural analogs of *p*-aminobenzoic acid (PABA) and compete with PABA to block its conversion to dihydrofolic acid. These agents are generally used in combination with other drugs (usually sulfonamides) to prevent or treat a number of bacterial and parasitic infections (Tierney *et al.*, 2006). Some of the applications of sulfonamides are the anti-infective agents of choice, as follows: Bacteria as Human Pathogens, such as Antibiotic Treatment of Infections Caused by Gram-Positive Bacilli and Gram-negative Haemophilus ducreyi and Haemophilus aegyptius, Alternative Drug for treatment of Chlamydia related diseases (including C. trachomatis, Chlamydia psittaci, Chlamydia pneumonia), Anti-malarial Agents as Dihydropteroate synthetase inhibitors, alternative drugs in tuberculosis treatment, long term treatment of leprosy, treatment of ocular infections. In the latter treatment causative organisms must be identified, and it is preferable to use a drug that is not given systemically. Sulfonamides are also assumed as permitted antibiotics in Pregnancy (Kayser *et al.*, 2004).

In the title compund, (Fig. 1), bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges and are comparable with the related structures (Mehrabi *et al.*, 2008; Ali *et al.* 2007). The molecule adopts a twisted *E* configuration around the C=N bond. The two outer phenyl rings twisted from each other making a dihedral angle of 78.00 (12)°. The methyl-substituted benzene ring makes dihedral angles of 32.37 (14) and 69.70 (12)° with the two outer benzene rings. In the crystal structure the molecule linked together into extended 1-D chains along the *b* axis through intermolecular N—H···O hydrogen bonds (Table 1, Fig. 2).

S2. Experimental

The synthesis is the same as the earlier report (Mehrabi *et al.*, 2008), except that penylcinnamaldehyde (3 mmol) was used. Single crystals suitable for X-ray analysis were obtained from ethanol solution at room temperature.

S3. Refinement

H atom bound to N1 was located from a difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically and refined as riding model with C—H = 0.93–0.96 and $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was used for the methyl group.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.

Figure 2

The crystal packing of the title compound, viewed down the *a*-axis, showing a 1-D extended chain along the *b*-axis. Intermolecular hydrogen bonds are shown as dashed lines.

(E)-N'-(3,3-Diphenylallylidene)-p-toluenesulfonohydrazide

Crystal data	
$C_{22}H_{20}N_2O_2S$	F(000) = 792
$M_r = 376.46$	$D_{\rm x} = 1.238 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2500 reflections
a = 14.785 (3) Å	$\theta = 2.3 - 29.2^{\circ}$
b = 6.2179 (12) Å	$\mu = 0.18 \; \mathrm{mm^{-1}}$
c = 22.519 (5) Å	T = 294 K
$\beta = 102.64 \ (3)^{\circ}$	Block, colourless
V = 2020.0 (7) Å ³	$0.50 \times 0.28 \times 0.12 \text{ mm}$
Z = 4	
Data collection	
Stoe IPDS-II	rotation method scans
diffractometer	Absorption correction: numerical
Radiation source: fine-focus sealed tube	(X-RED32; Stoe & Cie, 2005)
Graphite monochromator	$T_{\min} = 0.940, \ T_{\max} = 0.980$
Detector resolution: 0.15 pixels mm ⁻¹	5327 measured reflections

5327 independent reflections	
4220 reflections with $I > 2\sigma(I)$	
$R_{\rm int} = 0.000$	
$\theta_{\rm max} = 29.0^{\circ}, \theta_{\rm min} = 1.9^{\circ}$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.156$	neighbouring sites
S = 1.10	H atoms treated by a mixture of independent
5327 reflections	and constrained refinement
249 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0702P)^2 + 0.4245P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.21 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

 $h = -20 \rightarrow 19$ $k = 0 \rightarrow 8$ $l = 0 \rightarrow 30$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.36602 (3)	0.58739 (7)	0.24598 (2)	0.05559 (15)	
01	0.39657 (11)	0.7837 (2)	0.22433 (7)	0.0741 (4)	
O2	0.30743 (11)	0.5917 (2)	0.28899 (6)	0.0719 (4)	
N1	0.35283 (10)	0.4163 (2)	0.14209 (6)	0.0542 (3)	
N2	0.30481 (11)	0.4572 (3)	0.18786 (7)	0.0544 (3)	
H1N2	0.2757 (15)	0.355 (4)	0.1974 (10)	0.065 (6)*	
C1	0.35959 (15)	-0.1126 (3)	-0.08028 (10)	0.0681 (5)	
H1	0.3228	-0.2220	-0.0702	0.082*	
C2	0.40308 (17)	-0.1410 (4)	-0.12878 (11)	0.0781 (6)	
H2	0.3953	-0.2693	-0.1505	0.094*	
C3	0.45712 (15)	0.0186 (4)	-0.14457 (9)	0.0722 (6)	
H3	0.4856	-0.0004	-0.1772	0.087*	
C4	0.46904 (15)	0.2069 (4)	-0.11195 (9)	0.0695 (5)	
H4	0.5062	0.3152	-0.1223	0.083*	
C5	0.42599 (14)	0.2365 (3)	-0.06367 (9)	0.0616 (4)	
H5	0.4344	0.3652	-0.0421	0.074*	
C6	0.37052 (12)	0.0769 (3)	-0.04690 (7)	0.0521 (4)	
C7	0.32394 (12)	0.1032 (3)	0.00479 (7)	0.0512 (4)	
C8	0.23773 (13)	-0.0247 (3)	0.00290 (8)	0.0544 (4)	
C9	0.15991 (16)	0.0142 (4)	-0.04264 (10)	0.0781 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9	0.1624	0.1197	-0.0715	0.094*
C10	0.07956 (19)	-0.0983 (5)	-0.04624 (15)	0.0994 (9)
H10	0.0282	-0.0704	-0.0774	0.119*
C11	0.0753 (2)	-0.2508 (5)	-0.0041 (2)	0.1177 (12)
H11	0.0205	-0.3268	-0.0061	0.141*
C12	0.1509 (3)	-0.2946 (5)	0.04175 (19)	0.1156 (11)
H12	0.1473	-0.4006	0.0703	0.139*
C13	0.23312 (18)	-0.1804 (4)	0.04555 (13)	0.0834 (7)
H13	0.2844	-0.2092	0.0766	0.100*
C14	0.35757 (13)	0.2367 (3)	0.05125 (8)	0.0569 (4)
H14	0.4129	0.3070	0.0508	0.068*
C15	0.31479 (13)	0.2803 (3)	0.10200 (8)	0.0538 (4)
H15	0.2605	0.2104	0.1053	0.065*
C16	0.46334 (13)	0.4280 (3)	0.27515 (8)	0.0570 (4)
C17	0.55009 (15)	0.4897 (5)	0.26802 (10)	0.0759 (6)
H17	0.5581	0.6184	0.2488	0.091*
C18	0.62509 (18)	0.3562 (6)	0.29011 (12)	0.0933 (8)
H18	0.6837	0.3981	0.2858	0.112*
C19	0.6153 (2)	0.1648 (5)	0.31798 (13)	0.0914 (8)
C22	0.6986 (2)	0.0211 (6)	0.3407 (2)	0.1415 (16)
H22A	0.7542	0.0967	0.3381	0.212*
H22B	0.6932	-0.1064	0.3162	0.212*
H22C	0.7010	-0.0179	0.3823	0.212*
C20	0.5286 (2)	0.1072 (4)	0.32492 (14)	0.0966 (9)
H20	0.5210	-0.0213	0.3444	0.116*
C21	0.45251 (17)	0.2363 (4)	0.30362 (12)	0.0786 (6)
H21	0.3942	0.1942	0.3084	0.094*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0643 (3)	0.0552 (2)	0.0519 (2)	-0.00057 (19)	0.02298 (19)	-0.01132 (18)
01	0.0889 (10)	0.0543 (7)	0.0837 (9)	-0.0098 (7)	0.0286 (8)	-0.0086 (7)
O2	0.0832 (9)	0.0781 (9)	0.0640 (8)	0.0105 (7)	0.0370 (7)	-0.0117 (7)
N1	0.0601 (8)	0.0606 (8)	0.0454 (7)	-0.0058 (7)	0.0190 (6)	-0.0035 (6)
N2	0.0594 (8)	0.0600 (9)	0.0480 (7)	-0.0072 (7)	0.0209 (6)	-0.0032 (6)
C1	0.0765 (13)	0.0665 (11)	0.0675 (11)	-0.0158 (10)	0.0293 (10)	-0.0145 (9)
C2	0.0904 (15)	0.0796 (14)	0.0729 (12)	-0.0118 (12)	0.0365 (11)	-0.0235 (11)
C3	0.0722 (12)	0.0916 (15)	0.0594 (10)	0.0002 (11)	0.0290 (9)	-0.0038 (11)
C4	0.0714 (12)	0.0818 (14)	0.0608 (10)	-0.0133 (10)	0.0265 (9)	0.0047 (10)
C5	0.0723 (11)	0.0609 (10)	0.0549 (9)	-0.0121 (9)	0.0208 (8)	-0.0040 (8)
C6	0.0554 (9)	0.0571 (9)	0.0451 (8)	-0.0038 (7)	0.0137 (7)	-0.0010 (7)
C7	0.0578 (9)	0.0527 (9)	0.0444 (7)	-0.0030 (7)	0.0141 (7)	0.0019 (7)
C8	0.0608 (10)	0.0531 (9)	0.0523 (8)	-0.0054 (8)	0.0191 (7)	-0.0029 (7)
C9	0.0677 (12)	0.0984 (16)	0.0666 (12)	-0.0119 (12)	0.0111 (10)	0.0101 (12)
C10	0.0685 (14)	0.119 (2)	0.107 (2)	-0.0174 (15)	0.0096 (14)	-0.0027 (18)
C11	0.0759 (18)	0.097 (2)	0.186 (4)	-0.0279 (16)	0.041 (2)	-0.009 (2)
C12	0.117 (2)	0.0794 (18)	0.161 (3)	-0.0208 (17)	0.053 (2)	0.0344 (19)

C13	0.0860 (15)	0.0677 (13)	0.0986 (17)	-0.0073 (12)	0.0246 (13)	0.0253 (12)
C14	0.0610 (10)	0.0638 (10)	0.0482 (8)	-0.0086 (8)	0.0173 (7)	-0.0043 (7)
C15	0.0587 (9)	0.0567 (9)	0.0482 (8)	-0.0067 (8)	0.0164 (7)	-0.0020 (7)
C16	0.0616 (10)	0.0639 (10)	0.0457 (8)	-0.0021 (8)	0.0125 (7)	-0.0168 (8)
C17	0.0684 (12)	0.0996 (16)	0.0632 (11)	-0.0024 (12)	0.0217 (10)	-0.0067 (11)
C18	0.0626 (13)	0.138 (3)	0.0785 (15)	0.0057 (15)	0.0146 (11)	-0.0242 (17)
C19	0.0841 (16)	0.0917 (18)	0.0844 (16)	0.0213 (14)	-0.0124 (13)	-0.0338 (14)
C22	0.106 (2)	0.132 (3)	0.160 (3)	0.047 (2)	-0.027 (2)	-0.040 (3)
C20	0.0978 (19)	0.0686 (14)	0.107 (2)	0.0050 (13)	-0.0122 (16)	-0.0069 (13)
C21	0.0753 (13)	0.0665 (13)	0.0893 (15)	-0.0043 (11)	0.0075 (11)	-0.0036 (11)

Geometric parameters (Å, °)

S1—01	1.4240 (15)	C10—C11	1.353 (5)	
S1—O2	1.4341 (14)	C10—H10	0.9300	
S1—N2	1.6336 (17)	C11—C12	1.372 (5)	
S1—C16	1.752 (2)	C11—H11	0.9300	
N1-C15	1.274 (2)	C12—C13	1.394 (4)	
N1—N2	1.3969 (19)	C12—H12	0.9300	
N2—H1N2	0.82 (2)	C13—H13	0.9300	
C1—C6	1.388 (3)	C14—C15	1.448 (2)	
C1—C2	1.395 (3)	C14—H14	0.9300	
C1—H1	0.9300	C15—H15	0.9300	
С2—С3	1.369 (3)	C16—C21	1.380 (3)	
С2—Н2	0.9300	C16—C17	1.381 (3)	
C3—C4	1.373 (3)	C17—C18	1.387 (4)	
С3—Н3	0.9300	C17—H17	0.9300	
C4—C5	1.387 (3)	C18—C19	1.368 (4)	
C4—H4	0.9300	C18—H18	0.9300	
С5—С6	1.391 (2)	C19—C20	1.373 (4)	
С5—Н5	0.9300	C19—C22	1.516 (4)	
С6—С7	1.486 (2)	C22—H22A	0.9600	
C7—C14	1.343 (2)	C22—H22B	0.9600	
С7—С8	1.495 (2)	C22—H22C	0.9600	
C8—C13	1.376 (3)	C20—C21	1.380 (4)	
С8—С9	1.385 (3)	C20—H20	0.9300	
C9—C10	1.366 (3)	C21—H21	0.9300	
С9—Н9	0.9300			
01—S1—O2	119.94 (9)	C10—C11—C12	120.8 (3)	
01—S1—N2	108.18 (9)	C10-C11-H11	119.6	
O2—S1—N2	103.87 (9)	C12—C11—H11	119.6	
O1—S1—C16	108.48 (10)	C11—C12—C13	120.0 (3)	
O2—S1—C16	108.97 (9)	C11—C12—H12	120.0	
N2-S1-C16	106.60 (8)	C13—C12—H12	120.0	
C15—N1—N2	115.26 (15)	C8—C13—C12	119.4 (3)	
N1—N2—S1	113.54 (12)	C8—C13—H13	120.3	
N1—N2—H1N2	115.6 (15)	C12—C13—H13	120.3	

S1—N2—H1N2	113.8 (15)	C7—C14—C15	125.42 (17)
C6—C1—C2	120.84 (19)	C7—C14—H14	117.3
C6—C1—H1	119.6	C15—C14—H14	117.3
C2—C1—H1	119.6	N1—C15—C14	118.83 (16)
C3—C2—C1	120.5 (2)	N1—C15—H15	120.6
С3—С2—Н2	119.8	C14—C15—H15	120.6
C1—C2—H2	119.8	C21—C16—C17	120.0 (2)
C2—C3—C4	119.55 (18)	C21—C16—S1	119.57 (16)
С2—С3—Н3	120.2	C17—C16—S1	120.44 (18)
С4—С3—Н3	120.2	C16—C17—C18	118.8 (3)
C3—C4—C5	120.34 (19)	С16—С17—Н17	120.6
C3—C4—H4	119.8	C18—C17—H17	120.6
С5—С4—Н4	119.8	C19—C18—C17	121.9 (3)
C4—C5—C6	121.15 (18)	C19—C18—H18	119.0
С4—С5—Н5	119.4	C17—C18—H18	119.0
С6—С5—Н5	119.4	C18—C19—C20	118.3 (2)
C1—C6—C5	117.65 (16)	C18—C19—C22	120.6 (3)
C1—C6—C7	119.93 (16)	C20—C19—C22	121.1 (3)
C5—C6—C7	122.42 (16)	C19—C22—H22A	109.5
C14—C7—C6	121.50 (16)	C19—C22—H22B	109.5
C14—C7—C8	121.27 (15)	H22A—C22—H22B	109.5
C6—C7—C8	117.23 (14)	C19—C22—H22C	109.5
С13—С8—С9	118.7 (2)	H22A—C22—H22C	109.5
C13—C8—C7	121.79 (19)	H22B—C22—H22C	109.5
C9—C8—C7	119.53 (17)	C19—C20—C21	121.3 (3)
С10—С9—С8	121.7 (2)	С19—С20—Н20	119.3
С10—С9—Н9	119.2	C21—C20—H20	119.3
С8—С9—Н9	119.2	C16—C21—C20	119.7 (2)
С11—С10—С9	119.4 (3)	C16—C21—H21	120.1
C11—C10—H10	120.3	C20—C21—H21	120.1
C9—C10—H10	120.3		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
$N2-H1N2\cdotsO2^{i}$	0.82 (2)	2.11 (2)	2.927 (2)	173 (2)

Symmetry code: (i) -x+1/2, y-1/2, -z+1/2.