Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Amino-5-methyl-5-(4-pyridyl)hydantoin

Hristo Varbanov, ${ }^{\text {a* }}$ Rossen Buyukliev, ${ }^{\text {b }}$ Adriana Bakalova ${ }^{\text {c }}$ and Alexander Roller ${ }^{\text {a }}$

${ }^{\text {a }}$ Institute of Inorganic Chemistry, University of Vienna, Waehringerstrasse 42, A-1090 Vienna, Austria, ${ }^{\text {b }}$ Department of Organic Chemistry, Faculty of Pharmacy, Medical University - Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria, and ${ }^{\text {c Department of }}$ Chemistry, Faculty of Pharmacy, Medical University - Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
Correspondence e-mail: hristo.varbanov@univie.ac.at

Received 23 March 2009; accepted 27 March 2009
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.046 ; w R$ factor $=0.127$; data-to-parameter ratio $=19.2$.

The title compound, 3-amino-5-methyl-5-(4-pyridyl)imidazol-idine-2,4-dione, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$, was obtained by reaction of 5-methyl-5-(4-pyridyl)hydantoin with hydrazine. It crystallizes as a racemate in the tetragonal space group $I 4_{1} / a$ with one molecule in the asymmetric unit. The dihedral angle between the pyridine ring and the five-membered hydantoin ring is 47.99 (3) ${ }^{\circ}$ In the crystal structure, molecules are joined in a three-dimensional hydrogen-bonded network by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ links.

Related literature

For the biological activity of hydantoin derivatives and their metal complexes, see: Rajic et al. (2006); Bazil et al. (1998); Bakalova et al. (2005, 2008, 2009). For crystal structures of other 3-amino substituted hydantoins and their metal complexes, see: Shivachev et al. (2005); Bakalova et al. (2007). For the synthesis of 5-methyl-5-(4-pyridyl)-hydantoin, see: Chu \& Teague (1958). For the preparation of 3-aminohydantoins, see: Davidson (1964).

Experimental

Crystal data

$$
\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \quad M_{r}=206.21
$$

Tetragonal, $I 4_{1} / a$
Mo $K \alpha$ radiation
$a=12.8282$ (5) A
$\mu=0.11 \mathrm{~mm}^{-1}$
$c=22.9016$ (17) \AA
$V=3768.8(3) \AA^{3}$
$Z=16$
$T=100 \mathrm{~K}$
$0.50 \times 0.50 \times 0.50 \mathrm{~mm}$

Data collection
Bruker X8 APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.948, T_{\text {max }}=0.948$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.127$
$S=1.03$
2765 reflections
144 parameters
independent and constrained refinement
$\Delta \rho_{\text {max }}=0.56 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N}^{\mathrm{i}}$	0.88	2.69	3.526	159
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.26	$2.9184(15)$	131
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.977(19)$	$2.139(19)$	$3.0676(16)$	158.07
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{iii}}$	$0.96(2)$	$2.17(2)$	$3.1003(16)$	162.23
Symmetry codes: $-y+\frac{5}{4}, x+\frac{1}{4},-z+\frac{1}{4}$.	(i) $\quad-y+\frac{5}{4}, x-\frac{1}{4}, z-\frac{1}{4} ;$	(ii)	$y-\frac{1}{4},-x+\frac{5}{4},-z+\frac{1}{4} ;$	(iii)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are indebted to Professor V. Arion of the Institute of Inorganic Chemistry of the University of Vienna for discussions about the X-ray data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2752).

References

Bakalova, A., Buyukliev, R., Momekov, G., Ivanov, D., Todorov, D., Konstantinov, S. \& Karaivanova, M. (2005). Eur. J. Med. Chem. 40, 590-596.
Bakalova, A., Petrova, R., Shivatchev, B. \& Varbanov, H. (2007). J. Coord. Chem. 60, 1701-1707.
Bakalova, A., Varbanov, H., Buyukliev, R., Momekov, G., Ferdinandov, D., Konstantinov, S. \& Ivanov, D. (2008). Eur. J. Med. Chem. 43, 958-965.
Bakalova, A., Varbanov, H., Buyukliev, R., Momekov, G. \& Ivanov, D. (2009). J. Therm. Anal. Calorim. 95, 241-246.

Bazil, C. \& Pedley, T. (1998). Annu. Rev. Med. 49, 135-162.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chu, C.-C. \& Teague, P. C. (1958). J. Org. Chem. 23, 1578.
Davidson, J. (1964). J. Chem. Soc. pp. 4646-4656.
Rajic, Z., Zorc, B., Raic-Malic, S., Ester, K., Kralij, M., Pavelic, K., Balzarini, J., De Clercq, E. \& Mintas, M. (2006). Molecules, 11, 837-848.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shivachev, B., Petrova, R. \& Naydenova, E. (2005). Acta Cryst. C61, o5240526.

supporting information

Acta Cryst. (2009). E65, o953 [doi:10.1107/S1600536809011404]

3-Amino-5-methyl-5-(4-pyridyl)hydantoin

Hristo Varbanov, Rossen Buyukliev, Adriana Bakalova and Alexander Roller

S1. Comment

Some hydantoin derivatives are biologically active molecules with anticonvulsive, antiarythmic, antimicrobial, antiviral or cytostatic activitiy (Rajic et al., 2006; Bazil et al., 1998). 5-Methyl-5-(4-pyridyl)hydantoin was synthesized by Chu (Chu et al. 1958). This compound was used as starting material for preparation of new 3-amino-5-methyl-5-(4-pyridyl)hydantoin (AMPH). These hydantoin derivatives were utilized as carrier ligands for synthesis of new platinum and palladium complexes with potential cytotoxic activity. (Bakalova et al., 2008, 2009). In the recent work we synthesized AMPH (I) by the method of Davidson (Davidson, 1964) with some modifications. The new compound was characterized by elemental analysis, IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and molar conductivity. Suitable crystals of AMPH for X-ray diffraction analysis have been isolated and its structure was determined. The result of X-ray diffraction study of 3-amino-5-methyl-5-(4-pyridyl)hydantoin is shown in Fig. 1. The racemic compound crystallizes in the tetragonal space group $I 4_{1} / a$ with one molecule in the asymmetric unit. The presence of the $s p^{3}$-hybridized chiral carbon atom C 1 is responsible for the dihedral angle between the pyridine ring and five-membered $\mathrm{C}_{3} \mathrm{~N}_{2}$ ring of $c a 48^{\circ}$. The sum of the angles around N 4 is clearly smaller than $360^{\circ}\left(327.0^{\circ}\right)$, indicating its trigonal-pyramidal configuration. The lone-pair region at N 4 is directed towards adjacent atom O . The secondary amine nitrogen N 2 acts as a proton donor in an intermolecular bifurcated hydrogen bonding interactions with the nitrogen atom N 4 and oxygen atom O 2 of the neighbouring molecule of AMPH (Fig. 2) The hydrazinic atom N4 is involved in two intermolecular H bonds with the atoms $\mathrm{O}^{1 i}{ }^{\mathrm{ii}}$ and $\mathrm{O} 1{ }^{\mathrm{iii}}$ of the two different neighbouring molecules (Table 1).

S2. Experimental

3-Amino-5-methyl-5-(4-pyridyl)hydantoin was synthesized by dissolving 5-methyl-5(4-pyridyl)hydantoin (1.91 g, 10 $\mathrm{mmol})$ in $98 \% \mathrm{~N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ and refluxing the solution for 2 h . The reaction mixture was cooled to room temperature and water $\left(15 \mathrm{~cm}^{3}\right)$ was added. The solution was placed in refrigerator for 24 h . The white product was filtered off, recrystallized from ethanol and dried at 373 K for 5 h . The purity was checked by TLC. The substance is soluble in DMSO and weakly soluble in water and ethanol. Yield: $1.26 \mathrm{~g}, 61 \%$, m.p. $=523.2-524.7 \mathrm{~K}$. Crystals, suitable for X-ray data collection were grown by slow evaporation from ethanol solution at 277 K . Analysis calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$: C 52.42 , H 4.89 , N 27.17%. Found: C 52.23 , H 4.46 , N $26.83 \% . \lambda_{\mathrm{M}}=0.979 \mathrm{~S}^{2} \mathrm{~cm}^{2} \cdot \mathrm{~mol}^{-1} ; \mathrm{IR}($ pellets KBr$) / \mathrm{cm}^{-1}: 3314.0$, $3276.0,1766.9,1713.0,1597.2$ and 1411.1. ${ }^{1} \mathrm{H}$ NMR (250 MHz ; DMSO-d ${ }^{6}$): $8.95(1 \mathrm{H}, \mathrm{s}, \mathrm{N}(1)-\mathrm{H}), 8.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}$, $\mathrm{H}-2, \mathrm{H}-6), 7.50(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5), 4.80(2 \mathrm{H}, \mathrm{s}, \mathrm{NH} 2), 1.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.62.5 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}^{6}\right): 172.7$ $\left(\mathrm{C}=\mathrm{O}-4\right.$) $, 155.5\left(\mathrm{C}=\mathrm{O}-2^{`}\right), 150.0(\mathrm{C}-2, C-6), 148.4(\mathrm{C}-4), 120.6(\mathrm{C}-3, \mathrm{C}-5), 60.8\left(\mathrm{C}-5{ }^{\prime}\right), 24.7\left(\mathrm{CH}_{3}\right)$.

S3. Refinement

H atoms were placed at calculated positions $[\mathrm{N}-\mathrm{H}=0.88 \AA, \mathrm{C}-\mathrm{H}=0.95$ and $0.98 \AA]$ and refined as riding atoms in the subsequent least squares model refinements, except two hydrogen atoms at N 4 which were localized from difference
map. The isotropic thermal parameters of hydrogen atoms in the positions of which were calculated were estimated to be 1.2 or 1.5 times the values of the equivalent isotropic thermal parameters of the atoms to which H atoms were bonded.

O1

Figure 1

View of the molecule of AMPH with atom labeling scheme; the thermal ellipsoids are drawn at 50% probability level.

Figure 2
Fragment of the crystal structure of AMPH showing the intermolecular hydrogen bonding interactions. [Symmetry codes:
(i) $-\mathrm{y}+1.25, \mathrm{x}-0.25, \mathrm{z}-0.25$; (ii) $\mathrm{y}-0.25,-\mathrm{x}+1.25,-\mathrm{z}+0.25$; (iii) $-\mathrm{y}+1.25, \mathrm{x}+0.25,-\mathrm{z}+0.25]$.

3-amino-5-methyl-5-(4-pyridyl)imidazolidene-2,4-dione

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
Tetragonal, $I 4_{1} / a$
$M_{r}=206.21$
Hall symbol: -I 4ad
$a=12.8282(5) \AA$
$c=22.9016(17) \AA$
$V=3768.8(3) \AA^{3}$
$Z=16$
$F(000)=1728$
$D_{\mathrm{x}}=1.454 \mathrm{Mg} \mathrm{m}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

Data collection

Bruker X8 APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.948, T_{\text {max }}=0.948$

Cell parameters from 847 reflections
$\theta=2.9-29.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.50 \times 0.50 \times 0.50 \mathrm{~mm}$

51879 measured reflections
2765 independent reflections
2179 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.076$
$\theta_{\text {max }}=30.1^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-18 \rightarrow 18$
$k=-18 \rightarrow 18$
$l=-32 \rightarrow 32$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0631 P)^{2}+3.9566 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.56 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{\wedge} 2^{\wedge}$ against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on $F^{\wedge} 2^{\wedge}$, conventional R-factors R are based on F, with F set to zero for negative $F^{\wedge} 2^{\wedge}$. The threshold expression of $F^{\wedge} 2^{\wedge}>$ $\sigma\left(F^{\wedge} 2^{\wedge}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R factors based on $F^{\wedge} 2^{\wedge}$ are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
O1	$0.59104(8)$	$0.59567(7)$	$0.06315(4)$	$0.0171(2)$
O2	$0.68145(8)$	$0.42948(8)$	$0.23252(4)$	$0.0203(2)$
N1	$0.58287(9)$	$0.06249(9)$	$0.13055(5)$	$0.0176(2)$
N2	$0.67304(9)$	$0.43740(9)$	$0.07949(5)$	$0.0150(2)$
H2	0.6820	0.4172	0.0431	0.018^{*}
N3	$0.62479(8)$	$0.53105(8)$	$0.15592(5)$	$0.0128(2)$
N4	$0.57993(10)$	$0.61113(9)$	$0.18907(5)$	$0.0181(2)$
H4A	$0.5062(15)$	$0.6163(15)$	$0.1787(8)$	$0.027(5)^{*}$

H4B	$0.6100(16)$	$0.6781(17)$	$0.1806(9)$	$0.036(5)^{*}$
C1	$0.70691(10)$	$0.37686(10)$	$0.12997(5)$	$0.0136(3)$
C2	$0.65758(10)$	$0.26869(10)$	$0.13127(5)$	$0.0131(2)$
C3	$0.63039(11)$	$0.21921(10)$	$0.07925(6)$	$0.0165(3)$
H3	0.6365	0.2547	0.0430	0.020^{*}
C4	$0.59419(11)$	$0.11717(11)$	$0.08121(6)$	$0.0178(3)$
H4	0.5764	0.0843	0.0454	0.021^{*}
C5	$0.60863(11)$	$0.11133(11)$	$0.18034(6)$	$0.0179(3)$
H5	0.6008	0.0742	0.2160	0.021^{*}
C6	$0.64606(11)$	$0.21278(10)$	$0.18292(6)$	$0.0165(3)$
H6	0.6635	0.2435	0.2194	0.020^{*}
C7	$0.82617(11)$	$0.36654(11)$	$0.13212(7)$	$0.0201(3)$
H7A	0.8578	0.4360	0.1312	0.030^{*}
H7B	0.8502	0.3262	0.0984	0.030^{*}
H7C	0.8466	0.3308	0.1682	0.030^{*}
C8	$0.67014(10)$	$0.44623(10)$	$0.18059(6)$	$0.0139(3)$
C9	$0.62667(10)$	$0.52740(10)$	$0.09462(5)$	$0.0132(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0197(5)$	$0.0162(5)$	$0.0154(5)$	$0.0016(4)$	$-0.0004(3)$	$0.0034(3)$
O2	$0.0299(6)$	$0.0178(5)$	$0.0131(5)$	$0.0007(4)$	$-0.0040(4)$	$0.0002(4)$
N1	$0.0152(5)$	$0.0153(5)$	$0.0223(6)$	$-0.0003(4)$	$0.0004(4)$	$0.0004(4)$
N2	$0.0195(5)$	$0.0145(5)$	$0.0109(5)$	$0.0020(4)$	$0.0019(4)$	$0.0013(4)$
N3	$0.0136(5)$	$0.0132(5)$	$0.0117(5)$	$0.0002(4)$	$0.0011(4)$	$-0.0005(4)$
N4	$0.0194(6)$	$0.0169(6)$	$0.0180(6)$	$0.0016(4)$	$0.0023(4)$	$-0.0030(4)$
C1	$0.0153(6)$	$0.0130(6)$	$0.0126(6)$	$0.0006(4)$	$0.0000(4)$	$0.0010(4)$
C2	$0.0114(5)$	$0.0127(6)$	$0.0151(6)$	$0.0014(4)$	$0.0006(4)$	$0.0005(4)$
C3	$0.0177(6)$	$0.0172(6)$	$0.0146(6)$	$0.0010(5)$	$-0.0012(5)$	$0.0008(5)$
C4	$0.0178(6)$	$0.0172(6)$	$0.0183(6)$	$0.0000(5)$	$-0.0019(5)$	$-0.0027(5)$
C5	$0.0193(6)$	$0.0162(6)$	$0.0182(6)$	$-0.0008(5)$	$0.0013(5)$	$0.0031(5)$
C6	$0.0189(6)$	$0.0160(6)$	$0.0145(6)$	$-0.0008(5)$	$0.0005(5)$	$0.0006(5)$
C7	$0.0140(6)$	$0.0175(6)$	$0.0286(7)$	$-0.0002(5)$	$0.0006(5)$	$0.0027(5)$
C8	$0.0140(6)$	$0.0134(6)$	$0.0143(6)$	$-0.0025(4)$	$-0.0013(4)$	$-0.0001(4)$
C9	$0.0120(6)$	$0.0151(6)$	$0.0126(6)$	$-0.0019(5)$	$0.0011(4)$	$0.0004(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 9$	$1.2229(16)$	$\mathrm{C} 1-\mathrm{C} 8$	$1.5355(18)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.2174(16)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.5364(19)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.3378(18)$	$\mathrm{C} 2-\mathrm{C} 6$	$1.3913(18)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.3425(18)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.3942(18)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.3442(17)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3897(19)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.4589(16)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
N2—H2	0.8800	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{~N} 3-\mathrm{C} 8$	$1.3571(17)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.3884(19)$
$\mathrm{N} 3-\mathrm{N} 4$	$1.4010(16)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500

N3-C9	1.4047 (17)
N4-H4A	0.978 (19)
N4-H4B	0.96 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.5254 (18)
C4-N1-C5	116.49 (12)
C9-N2- ${ }^{\text {C1 }}$	112.63 (11)
C9—-N2-H2	123.7
C1-N2-H2	123.7
C8-N3-N4	122.57 (11)
C8-N3-C9	112.46 (10)
N4-N3-C9	124.96 (11)
N3-N4-H4A	108.4 (11)
N3-N4-H4B	112.4 (12)
H4A-N4-H4B	106.2 (17)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	112.09 (10)
N2-C1-C8	101.43 (10)
C2-C1-C8	112.65 (10)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 7$	111.58 (11)
C2-C1-C7	109.52 (11)
C8- $\mathrm{C} 1-\mathrm{C} 7$	109.37 (11)
C6-C2-C3	117.73 (12)
C6-C2-C1	121.97 (11)
C3-C2-C1	120.09 (11)
C4-C3-C2	119.00 (12)
C4-C3-H3	120.5
C2-C3-H3	120.5
C9-N2-C1-C2	121.59 (12)
C9-N2-C1-C8	1.19 (14)
C9-N2-C1-C7	-115.16 (12)
N2- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	-155.89 (12)
C8-C1-C2-C6	-42.24 (17)
C7- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	79.71 (15)
N2-C1-C2-C3	29.50 (16)
C8-C1-C2-C3	143.15 (12)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-94.90 (14)
C6-C2-C3-C4	-0.49 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	174.35 (12)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	0.0 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	0.4 (2)
C4-N1-C5-C6	-0.4 (2)
N1-C5-C6-C2	0.4 (2)
C3-C2-C6-C5	0.1 (2)
C1-C2-C6-C5	-174.61 (12)

$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9800
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9800
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 3$	
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 4$	$123.89(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	118.1
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 6$	118.1
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{H} 5$	$123.97(13)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	118.0
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 2$	118.0
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	$118.94(12)$
$\mathrm{C} 2-\mathrm{C} 6-\mathrm{H} 6$	120.5
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	120.5
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{H} 7 \mathrm{~B}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
O2-C8-N3	109.5
O2-C8-C1	$126.83(12)$
N3-C8-C1	$126.77(12)$
O1-C9-N2	$106.38(11)$
O1-C9-N3	$128.95(12)$
N2-C9-N3	$123.97(12)$
	$107.08(11)$

$\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 8-\mathrm{O} 2$	$-2.7(2)$
$\mathrm{C} 9-\mathrm{N} 3-\mathrm{C} 8-\mathrm{O} 2$	$178.47(13)$
$\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 1$	$178.74(11)$
$\mathrm{C} 9-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 1$	$-0.11(14)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{O} 2$	$-179.19(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{O} 2$	$60.81(17)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 8-\mathrm{O} 2$	$-61.23(17)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 3$	$-0.61(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 3$	$-120.62(11)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 3$	$117.35(12)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{O} 1$	$179.01(13)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{N} 3$	$-1.30(14)$
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 9-\mathrm{O} 1$	$-179.43(12)$
$\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 9-\mathrm{O} 1$	$1.8(2)$
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 9-\mathrm{N} 2$	$0.86(14)$
$\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 9-\mathrm{N} 2$	$-177.95(11)$

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.88	2.26	$2.9184(15)$	131
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 4{ }^{\mathrm{i}}$	0.88	2.69	3.526	159
$\mathrm{~N} 4 — \mathrm{H} 4 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.977(19)$	$2.139(19)$	$3.0676(16)$	158.07
$\mathrm{~N} 4 — \mathrm{H} 4 B \cdots 1^{\text {iii }}$	$0.96(2)$	$2.17(2)$	$3.1003(16)$	162.23

Symmetry codes: (i) $-y+5 / 4, x-1 / 4, z-1 / 4$; (ii) $y-1 / 4,-x+5 / 4,-z+1 / 4$; (iii) $-y+5 / 4, x+1 / 4,-z+1 / 4$.

