Structure Reports

Online
ISSN 1600-5368

An orthorhombic polymorph of the ultraphosphate $\mathbf{Y P}_{5} \mathrm{O}_{14}$

Aïcha Mbarek, ${ }^{\text {a }}$ Abdelghani Oudahmane, ${ }^{\text {b }}$ Malika El-Ghozzi ${ }^{\text {c* }}$ and Daniel Avignant ${ }^{\text {c }}$
${ }^{\text {a }}$ Laboratoire de Chimie Industrielle, Département de Génie des Matériaux, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP W 3038, Sfax, Tunisia, ${ }^{\text {b }}$ Laboratoire de Chimie du Solide Minéral, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco, and ${ }^{\text {c }}$ Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière, France
Correspondence e-mail: malika.el-ghozzi@univ-bpclermont.fr

Received 6 February 2009; accepted 26 February 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.004 \AA$; R factor $=0.030 ; w R$ factor $=0.110$; data-to-parameter ratio $=12.3$.

Single crystals of yttrium pentaphosphate(V), $\mathrm{YP}_{5} \mathrm{O}_{14}$, were obtained by solid-state reaction. The orthorhombic title compound belongs to the family of ultraphosphates and is the second polymorph of this composition. It is isotypic with its Ho and Er analogues. The structure contains two bridging Q^{2}-type PO_{4} tetrahedra and one branching Q^{3}-type PO_{4} tetrahedron, leading to infinite ultraphosphate ribbons running along the a axis. The coordination polyhedron around the Y^{3+} cation may be described as distorted bicapped trigonal-prismatic. The YO_{8} polyhedra are isolated from each other. They are linked by corner-sharing to the O atoms of six Q^{2}-type and of two Q^{3}-type PO_{4} tetrahedra into a threedimensional framework.

Related literature

Besides crystals of the title compound, crystals of the monoclinic polymorph were also obtained (Mbarek et al., 2009). For isotypic structures, see: Durif (1972) for the Ho member; Katrusiak \& Kaczmarek (1995) and Dimitrova et al. (2004) for the Er member. For a review of the crystal chemistry of ultraphosphates, see: Durif (1995). For applications of rare earth ultraphosphates, see: Rao \& Devine (2000); Moine \& Bizarri (2006). For general background, see: Porai-Koshits \& Aslanov (1972).

Experimental

Crystal data
$\mathrm{YP}_{5} \mathrm{O}_{14}$
$M_{r}=467.76$

> Orthorhombic, Pnma
> $a=8.7128$ (2) \AA

$b=12.7218(4) \AA$	
$c=8.9377(3) \AA$	
$V=906$ radiation	
$Z=99.68(5) \AA^{3}$	$T=296 \mathrm{Km}$
$Z=4$	$0.22 \times 0.15 \times 0.11 \mathrm{~mm}$

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.330, T_{\text {max }}=0.460$
5338 measured reflections
1194 independent reflections
1136 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030 \quad 97$ parameters
$w R\left(F^{2}\right)=0.110$
$S=1.22$
1194 reflections
$\Delta \rho_{\max }=1.60$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.11 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Y} 1-\mathrm{O} 6$	$2.278(3)$	$\mathrm{P} 1-\mathrm{O} 5$	$1.553(3)$
$\mathrm{Y} 1-\mathrm{O} 6^{\mathrm{i}}$	$2.278(3)$	$\mathrm{P} 1-\mathrm{O} 7$	$1.567(3)$
$\mathrm{Y} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.341(3)$	$\mathrm{P} 2-\mathrm{O} 3^{\mathrm{iii}}$	$1.460(5)$
$\mathrm{Y} 1-\mathrm{O} 4$	$2.341(3)$	$\mathrm{P} 2-\mathrm{O} 1$	$1.479(5)$
$\mathrm{Y} 1-\mathrm{O} 8^{\mathrm{i}}$	$2.391(4)$	$\mathrm{P} 2-\mathrm{O} 2$	$1.623(4)$
$\mathrm{Y} 1-\mathrm{O} 8$	$2.391(4)$	$\mathrm{P} 2-\mathrm{O} 2^{\mathrm{i}}$	$1.623(4)$
$\mathrm{Y} 1-\mathrm{O} 1$	$2.455(5)$	$\mathrm{P} 3-\mathrm{O} 4$	$1.467(3)$
$\mathrm{Y} 1-\mathrm{O} 3$	$2.518(5)$	$\mathrm{P} 3-\mathrm{O} 6^{\mathrm{iv}}$	$1.468(3)$
$\mathrm{P} 1-\mathrm{O} 8^{\mathrm{ii}}$	$1.455(4)$	$\mathrm{P} 3-\mathrm{O} 7^{\mathrm{v}}$	$1.607(3)$
$\mathrm{P} 1-\mathrm{O} 2$	$1.549(4)$	$\mathrm{P} 3-\mathrm{O} 5^{\mathrm{vi}}$	$1.611(3)$

Symmetry codes: (i) $x,-y+\frac{1}{2}, z$; (ii) $x+\frac{1}{2}, y,-z-\frac{1}{2}$; (iii) $x+\frac{1}{2}, y,-z+\frac{1}{2}$; (iv)
$x-\frac{1}{2}, y,-z+\frac{1}{2}$; (v) $-x,-y+1,-z$; (vi) $-x+\frac{1}{2},-y+1, z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CaRIne (Boudias \& Monceau, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2221).

References

Boudias, C. \& Monceau, D. (1998). CaRIne. CaRIne Crystallography, DIVERGENT S. A., Compiègne, France.
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dimitrova, O. V., Ksenofontov, D. A., Massa, W., Yakubovich, O. V. \& Dorokhova, G. I. (2004). Vestn. Moskovskogo Univ. Geol. 3, 48-55.
Durif, A. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 437-440.
Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.
Katrusiak, A. \& Kaczmarek, F. (1995). Cryst. Res. Technol. 30, 501-507.
Mbarek, A., Graia, M., Chadeyron, G., Zambon, D., Bouaziz, J. \& Fourati, M. (2009). J. Solid State Chem. 182, 509-516.

Moine, B. \& Bizarri, G. (2006). Opt. Mater. 28, 58-63.
Porai-Koshits, M. A. \& Aslanov, L. A. (1972). J. Struct. Chem. 13, 244-253.
Rao, R. P. \& Devine, D. J. (2000). J. Lumin. 87-89, 1260-1263.
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, i22 [doi:10.1107/S1600536809007193]

An orthorhombic polymorph of the ultraphosphate $\mathrm{YP}_{5} \mathrm{O}_{14}$

Aïcha Mbarek, Abdelghani Oudahmane, Malika El-Ghozzi and Daniel Avignant

S1. Comment

Rare earths ultraphosphates exhibit a growing attention because of their potential applications as optical materials, including lasers, phosphors, matrices for the energy up-conversion and more recently for plasma display panels (PDP) as they exhibit an absorption band overlapping the emission spectrum of a Xe-Ne plasma in the VUV region (Rao \& Devine, 2000; Moine \& Bizarri, 2006). The non-optically active matrix of $\mathrm{YP}_{5} \mathrm{O}_{14}$ can be used as host material for such applications and hence needs to be structurally well-characterized. This article deals with the crystal structure refinement of the orthorhombic polymorph that is isotypic with $\mathrm{HoP}_{5} \mathrm{O}_{14}$ (Durif, 1972) and $\mathrm{ErP}_{5} \mathrm{O}_{14}$ (Katrusiak \& Kaczmarek, 1995; Dimitrova et al. 2004).
Two PO_{4} tetrahedra are Q^{2} type bridging tetrahedra with typical two shorter and two longer $\mathrm{P}-\mathrm{O}$ bonds (Durif, 1995). The third PO_{4} tetrahedron is a branching Q^{3} type tetrahedron and exhibits also characteristic bond lengths ranging from 1.455 (4) to 1.567 (3) \AA. These PO_{4} groups form infinite ribbons with composition $\left(\mathrm{P}_{5} \mathrm{O}_{14}\right)^{3-}$ which can be considered as built of two infinite $\left(\mathrm{PO}_{3}\right)_{\mathrm{n}}$ chains running along the a axis and connected by alternating up and down capping PO_{4} tetrahedra (Figs. 1, 2). The repetition unit in these ribbons is $\mathrm{P}_{10} \mathrm{O}_{28}$.
The coordination polyhedron around the Y^{3+} cation is a distorted bicapped trigonal prism according to criteria defined by Porai-Koshits \& Aslanov (1972) with $\left(\delta_{1}=0^{\circ}, \delta_{2}=18.28^{\circ}, \delta_{3}=\delta_{4}=42.87^{\circ}\right.$; theoretical values $\delta_{1}=0^{\circ}, \delta_{2}=21.7^{\circ}, \delta_{3}=$ $\delta_{4}=48.2^{\circ}$). The YO_{8} polyhedra are isolated from each other. They are linked by corner-sharing to six Q^{2} type PO_{4} tetrahedra and to two Q^{3} type tetrahedra leading to the three-dimensional framework.

S2. Experimental

Crystals of the title compounds were synthesized by reacting $\mathrm{Y}_{2} \mathrm{O}_{3}$ with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ in a graphite crucible. A mixture of these reagents in the molar ratio 1:9 was used for the synthesis. The mixture was first heated at 473 K for 12 h . Then the temperature was raised up to 673 K and was held for 2 days before cooling to room temperature at a rate of $10 \mathrm{~K} / \mathrm{h}$.
Single-crystals were extracted from the batch by washing with hot water. Besides crystals of the title compound, crystals of the monoclinic polymorph were also obtained (Mbarek et al., 2009).

S3. Refinement

The highest residual peak in the final difference Fourier maps was located $0.26 \AA$ from atom Y1 and the deepest hole was located $0.44 \AA$ from atom P2.

Figure 1
Projection along [100] of the structure of $\mathrm{YP}_{5} \mathrm{O}_{14}$ showing the isolated ${ }_{\infty}\left(\mathrm{P}_{5} \mathrm{O}_{14}\right)^{3-}$ ribbons.

Figure 2
Details of the ${ }_{\infty}\left(\mathrm{P}_{5} \mathrm{O}_{14}\right)^{3-}$ ribbon in a projection along [001], symmetry codes: (i) $\mathrm{x},-\mathrm{y}+1 / 2$, z ; (iii) $\mathrm{x}+1 / 2, \mathrm{y},-\mathrm{z}+1 / 2$; (ix) $x+1 / 2,1 / 2-y+1 / 2,1 / 2-z$.

yttrium pentaphosphate(V)

Crystal data

$\mathrm{YP}_{5} \mathrm{O}_{14}$
$M_{r}=467.76$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=8.7128$ (2) Å
$b=12.7218$ (4) \AA
$c=8.9377$ (3) \AA
$V=990.68(5) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\min }=0.330, T_{\max }=0.460$

Refinement

Refinement on F^{2}
Least-squares matrix: full $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$F(000)=904$
$D_{\mathrm{x}}=3.136 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3391 reflections
$\theta=3.6-27.5^{\circ}$
$\mu=6.79 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Platelet, colourless
$0.22 \times 0.15 \times 0.11 \mathrm{~mm}$

5338 measured reflections
1194 independent reflections
1136 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=27.6^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-7 \rightarrow 11$
$k=-16 \rightarrow 16$
$l=-11 \rightarrow 7$
$w R\left(F^{2}\right)=0.110$
$S=1.22$
1194 reflections

97 parameters
0 restraints
0 constraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
map
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0553 P)^{2}+6.1916 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.60 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.11 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Y1	$0.01824(6)$	0.2500	$0.05695(6)$	$0.0042(2)$
P1	$0.49261(13)$	$0.41750(10)$	$-0.20198(13)$	$0.0101(3)$
P2	$0.4300(2)$	0.2500	$0.00645(18)$	$0.0117(4)$
P3	$-0.24466(12)$	$0.43269(9)$	$0.22692(13)$	$0.0104(3)$
O1	$0.2739(6)$	0.2500	$-0.0586(5)$	$0.0164(10)$
O2	$0.5265(4)$	$0.3470(3)$	$-0.0646(4)$	$0.0148(7)$
O3	$-0.0382(6)$	0.2500	$0.3332(6)$	$0.0193(11)$
O4	$-0.1756(4)$	$0.3732(3)$	$0.1035(4)$	$0.0166(7)$
O5	$0.6146(4)$	$0.5051(3)$	$-0.1804(4)$	$0.0146(7)$
O6	$0.1567(4)$	$0.3836(3)$	$0.1598(4)$	$0.0172(7)$
O7	$0.3374(4)$	$0.4704(3)$	$-0.1552(4)$	$0.0150(7)$
O8	$-0.0066(4)$	$0.3649(3)$	$-0.1534(4)$	$0.0191(8)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Y1	$0.0044(3)$	$0.0036(3)$	$0.0045(3)$	0.000	$-0.00084(18)$	0.000
P1	$0.0105(6)$	$0.0099(6)$	$0.0101(5)$	$-0.0001(4)$	$0.0002(4)$	$0.0000(4)$
P2	$0.0129(8)$	$0.0116(8)$	$0.0107(8)$	0.000	$0.0003(6)$	0.000
P3	$0.0089(5)$	$0.0100(5)$	$0.0123(5)$	$-0.0004(4)$	$0.0002(4)$	$-0.0001(4)$
O1	$0.012(2)$	$0.020(2)$	$0.016(2)$	0.000	$0.0002(18)$	0.000
O2	$0.0141(16)$	$0.0138(17)$	$0.0165(17)$	$-0.0023(13)$	$-0.0028(12)$	$0.0050(13)$
O3	$0.020(3)$	$0.022(3)$	$0.015(2)$	0.000	$0.001(2)$	0.000
O4	$0.0158(16)$	$0.0187(17)$	$0.0154(15)$	$0.0041(14)$	$0.0008(13)$	$-0.0021(13)$
O5	$0.0139(16)$	$0.0146(15)$	$0.0153(15)$	$-0.0052(13)$	$0.0019(13)$	$0.0009(13)$
O6	$0.0153(17)$	$0.0166(16)$	$0.0196(16)$	$-0.0025(13)$	$-0.0035(14)$	$-0.0032(13)$
O7	$0.0125(15)$	$0.0154(15)$	$0.0172(16)$	$0.0037(13)$	$0.0021(13)$	$0.0038(13)$
O8	$0.0207(19)$	$0.0215(19)$	$0.0150(16)$	$0.0009(14)$	$0.0014(13)$	$0.0058(16)$

Geometric parameters (A, ${ }^{\circ}$)

Y1-O6	2.278 (3)	P1-O5	1.553 (3)
$\mathrm{Y} 1-\mathrm{O}^{\text {i }}$	2.278 (3)	P1-07	1.567 (3)
Y1-O4 ${ }^{\text {i }}$	2.341 (3)	P2-O3iii	1.460 (5)
Y1-O4	2.341 (3)	P2-O1	1.479 (5)
$\mathrm{Y} 1-\mathrm{OB}^{\text {i }}$	2.391 (4)	$\mathrm{P} 2-\mathrm{O} 2$	1.623 (4)
Y1-O8	2.391 (4)	$\mathrm{P} 2-\mathrm{O} 2^{\text {i }}$	1.623 (4)
Y1-O1	2.455 (5)	P3-O4	1.467 (3)
Y1-O3	2.518 (5)	P3-O6 ${ }^{\text {iv }}$	1.468 (3)
$\mathrm{P} 1-\mathrm{OB}^{\text {ii }}$	1.455 (4)	P3-O7v	1.607 (3)
P1-O2	1.549 (4)	P3-O5 ${ }^{\text {vi }}$	1.611 (3)
O6-Y1-O6 ${ }^{\text {i }}$	96.52 (18)	$\mathrm{O} 1-\mathrm{Y} 1-\mathrm{O} 3$	126.14 (16)
O6-Y1-O4 ${ }^{\text {i }}$	144.08 (12)	O8ii-P1-O2	115.9 (2)
O6 ${ }^{\text {i }}$ - $\mathrm{Y} 1-\mathrm{O} 4^{\text {i }}$	79.10 (13)	O8ii-P1-O5	115.9 (2)
O6-Y1-O4	79.10 (13)	O2-P1-05	100.76 (19)
O6i-Y1-O4	144.08 (12)	O8iil-P1-07	116.0 (2)
O4i-Y1-O4	84.04 (18)	O2-P1-07	101.63 (19)
$\mathrm{O} 6-\mathrm{Y} 1-\mathrm{O} 8^{\text {i }}$	145.21 (13)	O5-P1-07	104.42 (19)
O6-Y1-O8 ${ }^{\text {i }}$	84.77 (13)	O3iii-P2-O1	124.1 (3)
O4i-Y1-O8 ${ }^{\text {i }}$	70.44 (12)	$\mathrm{O} 3 \mathrm{iii}-\mathrm{P} 2-\mathrm{O} 2$	106.61 (19)
O4-Y1-O8 ${ }^{\text {i }}$	118.93 (12)	$\mathrm{O} 1-\mathrm{P} 2-\mathrm{O} 2$	108.82 (17)
O6-Y1-O8	84.77 (13)	$\mathrm{O} 3^{\text {iii }}-\mathrm{P} 2-\mathrm{O} 2^{\text {i }}$	106.61 (19)
O6i-Y1-O8	145.21 (13)	$\mathrm{O} 1-\mathrm{P} 2-\mathrm{O} 2^{\text {i }}$	108.82 (17)
O4i-Y1-O8	118.93 (12)	$\mathrm{O} 2-\mathrm{P} 2-\mathrm{O} 2{ }^{\text {i }}$	99.0 (3)
O4-Y1-08	70.44 (12)	O4-P3-O6 ${ }^{\text {iv }}$	122.6 (2)
O8i-Y1-O8	75.38 (19)	$\mathrm{O} 4-\mathrm{P} 3-\mathrm{O} 7^{v}$	107.59 (18)
O6-Y1-O1	71.89 (11)		107.87 (19)
O6i-Y1-O1	71.89 (11)	O4-P3-O5 ${ }^{\text {vi }}$	110.6 (2)
O4i-Y1-O1	136.82 (9)	O6 $6^{\text {iv- }}$ - $3-055^{\text {vi }}$	105.42 (19)
O4-Y1-O1	136.82 (9)	O7v-P3-O5 ${ }^{\text {vi }}$	100.51 (18)
O8i-Y1-O1	75.61 (12)	$\mathrm{P} 2-\mathrm{O} 1-\mathrm{Y} 1$	132.0 (3)
O8-Y1-O1	75.61 (12)	P1-O2-P2	130.7 (2)
O6-Y1-03	73.01 (12)	$\mathrm{P} 2^{\mathrm{iv}}-\mathrm{O} 3-\mathrm{Y} 1$	179.7 (3)
O6i-Y1-O3	73.01 (12)	$\mathrm{P} 3-\mathrm{O} 4-\mathrm{Y} 1$	140.8 (2)
O4i-Y1-O3	71.63 (12)	$\mathrm{P} 1-\mathrm{O} 5-\mathrm{P} 3^{\text {vii }}$	140.4 (2)
O4-Y1-03	71.63 (12)	P3iii-O6-Y1	155.0 (2)
O8i-Y1-O3	138.88 (10)	P1-07-P3 ${ }^{\text {² }}$	131.1 (2)
O8-Y1-O3	138.88 (10)	P1 ${ }^{\text {viii- }}$ - 8 - Y 1	168.4 (3)

[^0]
[^0]: Symmetry codes: (i) $x,-y+1 / 2, z$; (ii) $x+1 / 2, y,-z-1 / 2$; (iii) $x+1 / 2, y,-z+1 / 2$; (iv) $x-1 / 2, y,-z+1 / 2$; (v) $-x,-y+1,-z$; (vi) $-x+1 / 2,-y+1, z+1 / 2$; (vii) $-x+1 / 2,-y+1, z-1 / 2$; (viii) $x-1 / 2, y,-z-1 / 2$.

