Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetra(chlorido/iodido)(1,10-phenanthroline)platinum(IV) hemi[di(chlorine/ iodine)]

Nam-Ho Kim and Kwang Ha*
School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
Correspondence e-mail: hakwang@chonnam.ac.kr

Received 14 February 2009; accepted 3 March 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; disorder in main residue; R factor $=0.031 ; w R$ factor $=0.062$; data-to-parameter ratio $=16.7$.

The asymmetric unit of the title compound, $\left[\mathrm{PtCl}_{3.66} \mathrm{I}_{0.34^{-}}\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 0.5\left(\mathrm{Cl}_{0.13} \mathrm{I}_{1.87}\right)$, contains a neutral $\mathrm{Pt}^{\mathrm{IV}}$ complex and one half of a halogen molecule. The $\mathrm{Pt}^{\mathrm{IV}}$ ion is sixcoordinated in a distorted octahedral environment by two N atoms of the 1,10 -phenanthroline ligand and Cl or I atoms. The refinement of the structure and the EDX analysis indicate that the compound is a solid solution in which there is some substitution of Cl for I and vice versa. The chemical formula of the pure state of the compound would have been $\left[\mathrm{PtCl}_{4}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 0.5 \mathrm{I}_{2}$. In the analysed crystal, two Cl atoms are partially (ca 25% and 9%) replaced by I atoms, and the I_{2} molecule has a minor component modelled as ICl. As a result of the disorder, the different trans effects of the N and Cl / I atoms are not distinct. The complex displays intermolecular $\pi-\pi$ interactions between the six-membered rings, with a centroid-centroid distance of 3.771 (4) \AA. There are also weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Related literature

For details of some other $\mathrm{Pt}-\mathrm{ph}$ nanthroline complexes, see: Buse et al. (1977); Fanizzi et al. (1996); Kim et al. (2009a,b). For related Pt-bipyridine complexes, see: Hambley (1986); Hojjat Kashani et al. (2008). For bond-length data, see: Orpen et al. (1989).

Experimental

Crystal data
$\left[\mathrm{PtCl}_{3.66} \mathrm{I}_{0.34}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$.
$V=3180.8(19) \AA^{3}$
$0.5\left(\mathrm{Cl}_{0.13} \mathrm{I}_{1.87}\right)$
$M_{r}=669.26$
Orthorhombic, Pbca
$a=14.215$ (5) A
Mo $K \alpha$ radiation
$\mu=11.92 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.25 \times 0.17 \times 0.15 \mathrm{~mm}$
$c=17.575$ (6) A

Data collection

Bruker SMART 1000 CCD diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.111, T_{\text {max }}=0.168$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.062$
$S=0.86$
3246 reflections
194 parameters

17485 measured reflections 3246 independent reflections 2169 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.049$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 2$	0.93	2.73	$3.320(8)$	122
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Cl} 1$	0.93	2.66	$3.240(7)$	121

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007-412-J02001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2156).

References

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Buse, K. D., Keller, H. J. \& Pritzkow, H. (1977). Inorg. Chem. 16, 1072-1076.
Fanizzi, F. P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F. \& Zanello, P. (1996). Inorg. Chem. 35, 3173-3182.

Hambley, T. W. (1986). Acta Cryst. C42, 49-51.
Hojjat Kashani, L., Amani, V., Yousefi, M. \& Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.
Kim, N.-H., Hwang, I.-C. \& Ha, K. (2009a). Acta Cryst. E65, m224.
Kim, N.-H., Hwang, I.-C. \& Ha, K. (2009b). Acta Cryst. E65, m230.
Orpen, G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. 1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, m379 [doi:10.1107/S1600536809007703]

Tetra(chlorido/iodido)(1,10-phenanthroline)platinum(IV) hemi[di(chlorine/iodine)]

Nam-Ho Kim and Kwang Ha

S1. Comment

The asymmetric unit of the title compound contains a neutral $\mathrm{Pt}^{\mathrm{tV}}$ complex and one half-molecule of iodine which includes some Cl atoms ($\mathrm{ca} 6 \%$). $\mathrm{The}^{\mathrm{Pt}}{ }^{\mathrm{tV}}$ ion is six-coordinated in a distorted octahedral environment by two N atoms of the 1,10 -phenanthroline ligand and Cl or I atoms. The chemical formula of the pure state of the title compound would have been $\left[\mathrm{PtCl}_{4}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 0.5 \mathrm{I}_{2}$. In the particular crystal of the compound used, two Cl atoms (Cl 3 and Cl 4$)$ are partially (ca 25% and 9%, respectively) displaced by the I atoms (I3 and I4) through the substitution reaction between the Cl^{-}and I- ligand, and the I_{2} molecule also appears to have a minor component, that is $\mathrm{I}-\mathrm{Cl}$ (Fig. 1 and 2). The chemical formula which resulted from the refinement of the structure was $\left[\mathrm{PtCl}_{3.66} \mathrm{I}_{0.34}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] .0 .5\left(\mathrm{C}_{0.13} \mathrm{I}_{1.87}\right)$, and in this case the ratio of the Cl atom to I atom is 2.91:1. An EDX analysis of the compound, however, gave a ratio of $\mathrm{Cl}: \mathrm{I}=2.47: 1$. Accordingly, the exact composition may very well be variable, and likely dependent on the exact conditions present during crystal formation. Even though these data are slightly different, they indicate clearly that the crystals are a solid solution in which there was some substitution of Cl for I and vice versa.

As a result of the different trans effects of the N and Cl atoms, the $\mathrm{Pt}-\mathrm{Cl}$ bonds trans to the N atom are in general slightly shorter than bond lengths to mutually trans Cl atoms (Kim et al. 2009a and 2009b). But the trans effects of the N and Cl / I atoms in the crystal are not distinct owing to the disordered atoms. The Pt-I distance is restrained to the value given in table 9.6.3.3 of the International Tables Vol. C (Orpen et al., 1989) ($2.658 \AA$). The main contributor to the distortion from a true octahedral structure is the tight $\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{N} 2$ chelate angle $\left(81.3(2)^{\circ}\right)$, which result in non-linear trans axes $\left(<\mathrm{Cl} 1 — \mathrm{Pt} 1-\mathrm{N} 1=174.14(16)^{\circ}\right.$ and $\left.<\mathrm{Cl} 2 — \mathrm{Pt} 1-\mathrm{N} 2=175.97(17)^{\circ}\right)$. The complex displays intermolecular π π interactions between the six-membered rings, with a shortest centroid-centroid distance of 3.771 (4) \AA and with a dihedral angle between the ring planes of $2.1(3)^{\circ}$. There are also weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table $1)$.
The iodine molecule was presumedly formed as a consequence of the oxidation of the iodide ion by the Pt^{4+} ion, and crystallized with the partially substituted complex. The bond distance between the I atoms is 2.708 (2) \AA.

S2. Experimental

To a solution of $\left[\mathrm{PtCl}_{4}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] . \mathrm{H}_{2} \mathrm{O}(0.0821 \mathrm{~g}, 0.153 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added $\mathrm{KI}(0.1318 \mathrm{~g}, 0.794 \mathrm{mmol})$, and stirred for 2 h at room temperature. The precipitate was separated by filtration and washed with water (20 ml) and MeOH $(20 \mathrm{ml})$ and dried under vacuum, to give a dark brown powder (0.0846 g). Black crystals suitable for X-ray analysis were isolated from an acetone solution of the reaction products. EDX analysis (\%atom): Cl 62.30\%, I 25.18\%, Pt 12.52\%.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})$ $\left.=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$. The disordered C 15 atom was refined isotropically. Eight restraints instructions were used for the refinement using the following SHELXL97 (Sheldrick, 2008) commands: EADP C13 I3 and C14 I4, SIMU 0.010 I1 C15, BIND I1 C15a and C15 I1a, FREE C15 C15a, DFIX 2.658 0.010 Pt1 I3 and Pt1 I4.

Figure 1

The disordered structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for nonH atoms [Symmetry code: (a) 1-x,1-y,-z]. The minor bonds are drawn with dashed lines.

Figure 2
View of a packing detail of the title compound. For the sake of clarity, only the major disorder component is shown.
Chloridoiodido(1,10-phenanthroline)platinum(IV) hemi[di(chloride/iodide)]

Crystal data

$\left[\mathrm{PtCl}_{3.66} \mathrm{I}_{0.34}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 0.5\left(\mathrm{Cl}_{0.13} \mathrm{I}_{1.87}\right)$
$M_{r}=669.26$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=14.215$ (5) \AA
$b=12.733(5) \AA$
$c=17.575$ (6) \AA
$V=3180.8(19) \AA^{3}$
$Z=8$

Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
$F(000)=2424$
$D_{\mathrm{x}}=2.795 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 973 reflections
$\theta=2.4-24.5^{\circ}$
$\mu=11.92 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, black
$0.25 \times 0.17 \times 0.15 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.111, T_{\text {max }}=0.168$
17485 measured reflections
3246 independent reflections
2169 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.049 \\
& \theta_{\max }=26.4^{\circ}, \theta_{\min }=2.3^{\circ} \\
& h=-15 \rightarrow 17
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.062$
$S=0.86$
3246 reflections
194 parameters
8 restraints
Primary atom site location: structure-invariant direct methods
$k=-10 \rightarrow 15$
$l=-17 \rightarrow 21$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0244 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.29 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.50$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Pt1	$-0.134096(18)$	$0.30394(2)$	$0.177609(15)$	$0.03991(10)$	
C11	$-0.17047(13)$	$0.14177(15)$	$0.22685(10)$	$0.0521(5)$	
C12	$-0.28869(12)$	$0.36077(15)$	$0.19550(10)$	$0.0512(5)$	
C13	$-0.0903(14)$	$0.3607(17)$	$0.2949(8)$	$0.0494(13)$	$0.746(3)$
I3	$-0.0759(11)$	$0.3695(13)$	$0.3094(6)$	$0.0494(13)$	$0.254(3)$
C14	$-0.1730(7)$	$0.2478(8)$	$0.0572(3)$	$0.0518(8)$	$0.913(3)$
I4	$-0.177(2)$	$0.238(2)$	$0.0398(9)$	$0.0518(8)$	$0.087(3)$
N1	$-0.0875(4)$	$0.4446(4)$	$0.1355(3)$	$0.0393(14)$	
N2	$0.0029(4)$	$0.2642(4)$	$0.1585(3)$	$0.0388(13)$	
C1	$-0.1341(5)$	$0.5328(6)$	$0.1283(4)$	$0.0517(19)$	
H1	-0.1978	0.5341	0.1403	0.062^{*}	$0.058(2)$
C2	$-0.0911(6)$	$0.6243(6)$	$0.1031(4)$	0.070^{*}	
H2	-0.1256	0.6863	0.0999	$0.055(2)$	0.066^{*}
C3	$0.0015(6)$	$0.6235(6)$	$0.0831(4)$	$0.0438(18)$	
H3	0.0305	0.6846	0.0660	$0.0484(19)$	
C4	$0.0535(5)$	$0.5285(6)$	$0.0887(4)$	0.058^{*}	
C5	$0.1496(5)$	$0.5174(6)$	$0.0688(4)$	$0.050(2)$	0.061^{*}
H5	0.1820	0.5741	0.0481	$0.0403(17)$	
C6	$0.1946(5)$	$0.4255(6)$	$0.0796(4)$	$0.052(2)$	

H8	0.2534	0.2282	0.1141	0.062^{*}
C9	$0.1393(5)$	$0.1590(6)$	$0.1546(4)$	$0.0494(19)$
H9	0.1678	0.0947	0.1647	0.059^{*}
C10	$0.0446(5)$	$0.1735(5)$	$0.1703(4)$	$0.0447(18)$
H10	0.0098	0.1177	0.1897	0.054^{*}
C11	$0.0538(5)$	$0.3460(6)$	$0.1273(4)$	$0.0384(17)$
C12	$0.0055(5)$	$0.4415(5)$	$0.1167(3)$	$0.0368(16)$
I1	$0.5652(7)$	$0.45323(7)$	$0.04476(5)$	$0.0912(4)$
C15	$0.558(3)$	$0.496(4)$	$0.021(2)$	$0.062(9)^{*}$

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	$0.04138(16)$	$0.03167(16)$	$0.04668(17)$	$-0.00138(13)$	$0.00129(14)$	$0.00057(14)$
C11	$0.0561(11)$	$0.0392(11)$	$0.0608(12)$	$-0.0060(9)$	$0.0047(9)$	$0.0072(9)$
C12	$0.0490(11)$	$0.0431(12)$	$0.0616(12)$	$0.0050(9)$	$0.0083(9)$	$0.0040(9)$
C13	$0.064(4)$	$0.045(3)$	$0.039(4)$	$-0.005(2)$	$-0.007(2)$	$-0.014(3)$
I3	$0.064(4)$	$0.045(3)$	$0.039(4)$	$-0.005(2)$	$-0.007(2)$	$-0.014(3)$
C14	$0.0649(15)$	$0.052(2)$	$0.038(3)$	$-0.0073(14)$	$-0.006(3)$	$-0.004(2)$
I4	$0.0649(15)$	$0.052(2)$	$0.038(3)$	$-0.0073(14)$	$-0.006(3)$	$-0.004(2)$
N1	$0.044(4)$	$0.029(4)$	$0.045(3)$	$-0.001(3)$	$-0.001(3)$	$-0.002(3)$
N2	$0.037(3)$	$0.032(3)$	$0.046(3)$	$0.000(3)$	$-0.005(3)$	$-0.001(3)$
C1	$0.053(5)$	$0.048(5)$	$0.055(5)$	$0.001(4)$	$-0.002(4)$	$-0.007(4)$
C2	$0.057(5)$	$0.031(5)$	$0.086(6)$	$0.006(4)$	$-0.009(5)$	$-0.004(4)$
C3	$0.071(6)$	$0.034(5)$	$0.060(5)$	$-0.011(4)$	$-0.003(4)$	$0.003(4)$
C4	$0.052(5)$	$0.036(5)$	$0.043(4)$	$-0.006(4)$	$-0.007(4)$	$-0.003(3)$
C5	$0.050(5)$	$0.044(5)$	$0.051(5)$	$-0.017(4)$	$-0.006(4)$	$0.007(4)$
C6	$0.045(5)$	$0.052(6)$	$0.054(5)$	$-0.012(4)$	$0.006(4)$	$-0.011(4)$
C7	$0.044(5)$	$0.036(4)$	$0.041(4)$	$-0.001(3)$	$-0.002(3)$	$-0.006(3)$
C8	$0.046(5)$	$0.053(5)$	$0.056(5)$	$0.007(4)$	$0.006(4)$	$-0.004(4)$
C9	$0.047(5)$	$0.046(5)$	$0.055(5)$	$0.009(4)$	$-0.007(4)$	$-0.010(4)$
C10	$0.050(5)$	$0.032(5)$	$0.052(5)$	$-0.006(3)$	$0.002(4)$	$-0.002(3)$
C11	$0.040(4)$	$0.037(4)$	$0.038(4)$	$-0.007(3)$	$-0.008(3)$	$-0.001(3)$
C12	$0.042(4)$	$0.034(4)$	$0.034(4)$	$-0.002(3)$	$-0.004(3)$	$0.002(3)$
I1	$0.1295(7)$	$0.0635(6)$	$0.0805(6)$	$-0.0192(5)$	$0.0312(5)$	$-0.0058(4)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Pt} 1-\mathrm{N} 2$	$2.040(5)$	$\mathrm{C} 4-\mathrm{C} 12$	$1.391(9)$
$\mathrm{Pt} 1-\mathrm{N} 1$	$2.048(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.417(9)$
$\mathrm{Pt} 1-\mathrm{Cl} 3$	$2.272(9)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.346(9)$
$\mathrm{Pt} 1-\mathrm{Cl} 1$	$2.2977(19)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{Pt} 1-\mathrm{C} 14$	$2.301(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.428(9)$
$\mathrm{Pt} 1-\mathrm{Cl} 2$	$2.3347(19)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{Pt} 1-\mathrm{I} 3$	$2.598(7)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.389(9)$
$\mathrm{Pt} 1-\mathrm{I} 4$	$2.635(9)$	$\mathrm{C} 7-\mathrm{C} 11$	$1.391(8)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.309(8)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.346(10)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.364(8)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9300

N2-C10	1.316 (8)
N2-C11	1.381 (8)
C1-C2	1.388 (10)
C1-H1	0.9300
C2-C3	1.364 (10)
C2-H2	0.9300
C3-C4	1.421 (10)
C3-H3	0.9300
$\mathrm{N} 2-\mathrm{Pt} 1-\mathrm{N} 1$	81.3 (2)
N2-Pt1-Cl3	88.1 (6)
N1-Pt1-Cl3	87.8 (6)
N2-Pt1-Cl1	93.11 (17)
N1—Pt1-Cl1	174.14 (16)
$\mathrm{Cl} 3-\mathrm{Pt} 1-\mathrm{Cl} 1$	90.3 (6)
N2-Pt1-Cl4	90.0 (3)
N1—Pt1-Cl4	91.0 (3)
$\mathrm{Cl} 3-\mathrm{Pt} 1-\mathrm{Cl} 4$	177.9 (6)
Cl1-Pt1-Cl4	90.8 (3)
N2-Pt1-Cl2	175.97 (17)
N1—Pt1-Cl2	94.69 (16)
$\mathrm{Cl} 3-\mathrm{Pt} 1-\mathrm{Cl} 2$	92.1 (5)
$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl} 2$	90.91 (7)
Cl4-Pt1-Cl2	89.7 (3)
N2-Pt1-I3	85.6 (4)
N1—Pt1-I3	86.5 (4)
Cl3-Pt1-I3	2.7 (9)
Cl1-Pt1-I3	91.4 (4)
C14-Pt1-I3	175.2 (4)
Cl2-Pt1-I3	94.6 (4)
N2—Pt1-I4	89.4 (8)
N1—Pt1-I4	91.3 (7)
Cl3-Pt1-I4	177.5 (9)
Cl1-Pt1-I4	90.4 (7)
C14-Pt1-I4	0.7 (10)
Cl2-Pt1-I4	90.3 (7)
$\mathrm{I} 3-\mathrm{Pt} 1-\mathrm{I} 4$	174.8 (8)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12$	119.5 (6)
C1-N1-Pt1	128.4 (5)
C12-N1-Pt1	112.1 (4)
C10-N2-C11	119.3 (6)
C10-N2-Pt1	128.5 (5)
C11-N2-Pt1	112.2 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	121.9 (7)
$\mathrm{N} 2-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	-176.8 (6)
$\mathrm{Cl} 3-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	-88.4 (8)
C14-Pt1-N1-C1	93.3 (6)

$\mathrm{C} 9-\mathrm{C} 10$	$1.387(9)$
$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 10-\mathrm{H} 10$	0.9300
$\mathrm{C} 11-\mathrm{C} 12$	$1.408(9)$
$\mathrm{I} 1-\mathrm{Cl}^{\mathrm{i}}$	$2.19(4)$
$\mathrm{I} 1-\mathrm{I} 1^{\mathrm{i}}$	$2.708(2)$
$\mathrm{Cl} 5-\mathrm{Il}^{\mathrm{i}}$	$2.19(4)$

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \quad 119.0$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \quad 119.0$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1 \quad 120.0$ (7)
120.0
120.0
119.4 (7)
120.3
120.3
118.7 (7)
116.6 (7)
124.7 (7)
120.7 (7)
119.7
119.7
122.5 (7)
118.8
118.8
117.2 (7)
126.4 (7)
116.3 (6)
120.8 (7)
119.6
119.6
119.8 (7)
120.1
120.1
121.5 (7)
119.2
119.2
121.3 (6)
116.6 (6)
122.0 (6)
122.5 (6)
117.7 (6)
119.7 (6)
176.6 (7)
1.6 (11)
-177.6(7)

$\mathrm{Cl2}-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	3.6 (6)
$\mathrm{I} 3-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	-90.8 (7)
I4-Pt1-N1-C1	93.9 (9)
$\mathrm{N} 2-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 12$	0.2 (4)
$\mathrm{Cl3}-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 12$	88.7 (7)
C14-Pt1-N1-C12	-89.7 (5)
$\mathrm{Cl2}-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 12$	-179.4 (4)
$\mathrm{I} 3-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 12$	86.3 (5)
$\mathrm{I} 4-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 12$	-89.0 (8)
N1-Pt1-N2-C10	-179.6 (6)
$\mathrm{Cl} 3-\mathrm{Pt} 1-\mathrm{N} 2-\mathrm{C} 10$	92.4 (8)
C11-Pt1-N2-C10	2.2 (5)
C14-Pt1-N2-C10	-88.6 (6)
$\mathrm{I} 3-\mathrm{Pt} 1-\mathrm{N} 2-\mathrm{C} 10$	93.4 (7)
$\mathrm{I} 4-\mathrm{Pt} 1-\mathrm{N} 2-\mathrm{C} 10$	-88.2 (9)
N1—Pt1-N2-C11	-1.3 (4)
C13-Pt1-N2-C11	-89.3 (7)
$\mathrm{Cl1}-\mathrm{Pt} 1-\mathrm{N} 2-\mathrm{C} 11$	-179.5 (4)
C14-Pt1-N2-C11	89.7 (5)
$\mathrm{I} 3-\mathrm{Pt} 1-\mathrm{N} 2-\mathrm{C} 11$	-88.3 (6)
$\mathrm{I} 4-\mathrm{Pt} 1-\mathrm{N} 2-\mathrm{C} 11$	90.1 (8)
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-1.2 (10)
Pt1-N1-C1-C2	175.7 (5)
N1-C1-C2-C3	1.8 (11)
C1-C2-C3-C4	-0.4 (11)
C2-C3-C4-C12	-1.6 (10)
C2-C3-C4-C5	179.2 (7)
C12-C4-C5-C6	-2.6(10)

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 11$	$-0.4(10)$
$\mathrm{C} 11-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$1.1(10)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$178.3(7)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$0.1(11)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	$2.1(9)$
$\mathrm{P} 1-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	$-179.7(5)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2$	$-1.7(10)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 7$	$-0.9(9)$
$\mathrm{P} 1-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 7$	$-179.4(5)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$-179.4(6)$
$\mathrm{P} 1-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$-0.7(9)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 11-\mathrm{N} 2$	$-178.2(6)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 11-\mathrm{N} 2$	$177.7(6)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 11-\mathrm{C} 12$	$0.3(9)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 11-\mathrm{C} 12$	$-1.0(9)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 4$	$-178.3(5)$
$\mathrm{P} 11-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 4$	$178.2(6)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11$	$0.9(7)$
$\mathrm{P} 1-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11$	$-178.4(6)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 12-\mathrm{N} 1$	$2.3(9)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 12-\mathrm{N} 1$	$2.4(9)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 12-\mathrm{C} 11$	$-176.9(6)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 12-\mathrm{C} 11$	$-2.0(9)$
$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 1$	$179.5(6)$
$\mathrm{C} 7-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 1$	$177.2(6)$
$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 4$	$-1.3(10)$
$\mathrm{C} 7-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 4$	

Symmetry code: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{Cl2}$	0.93	2.73	$3.320(8)$	122
$\mathrm{C} 10 — \mathrm{H} 10 \cdots \mathrm{Cl1}$	0.93	2.66	$3.240(7)$	121

