Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[μ -chlorido-[μ_4 -5-(4-pyridyl)tetrazolatoldicopper(I)]

Cun-Kuan Wang^a* and Xiao-Yan Li^b

^aYangming School, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China, and ^bDepartment of Biological Engineering, Zibo Vocational Institute, Zibo, Shandong 255314, People's Republic of China Correspondence e-mail: wcklx@nbu.edu.cn

Received 25 December 2008; accepted 23 February 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; R factor = 0.027; wR factor = 0.092; data-to-parameter ratio = 12.3.

The title three-dimensional coordination polymer, [Cu₂Cl- $(C_6H_4N_5)]_n$, is the product of the hydrothermal reaction of CuCl₂·2H₂O and 5-(4-pyridyl)-1H-tetrazole (4-Hptz). The two independent Cu^I ions are coordinated in distorted tetrahedral and distorted trigonal coordination environments. In the unique 5-(4-pyridyl)-1*H*-tetrazolate ligand, the dihedral angle between the pyridine and tetrazole rings is $17.3 (2)^{\circ}$.

Related literature

For related transition metals complexes of 5-(4-pyridyl)-1Htetrazole, see: Xue et al. (2002); Jiang et al. (2004); Luo et al. (2005); Lin et al. (2005); Chen et al. (2008). For the applications of tetrazoles, see: Butler (1996).

Experimental

Crystal data $[Cu_2Cl(C_6H_4N_5)]$ $M_r = 308.67$ Monoclinic Cc a = 19.6899 (7) Å b = 3.64790 (10) Åc = 11.6337 (3) Å $\beta = 102.923 \ (2)^{\circ}$

$V = 814.45 (4) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 5.50 \text{ mm}^{-1}$
$T = 298 { m K}$
$0.30 \times 0.26 \times 0.24~\text{mm}$

 $R_{\rm int} = 0.027$

3752 measured reflections

1572 independent reflections

1415 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.230, T_{\max} = 0.269$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.092$	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
S = 1.11	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$
1572 reflections	Absolute structure: Flack (1983),
128 parameters	621 Friedel pairs
2 restraints	Flack parameter: 0.19 (3)

Table 1

Selected geometric parameters (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Cu1 - N3^{i}$ Cu1 - N1 Cu1 - Cl1 $Cu1 - Cl1^{ii}$	1.958 (5) 2.038 (5) 2.4422 (15) 2.5090 (16)	$\begin{array}{c} Cu2\!-\!N2^{iii}\\ Cu2\!-\!N5^{iv}\\ Cu2\!-\!Cl1 \end{array}$	1.921 (5) 1.931 (4) 2.4923 (18)
	$N3^{i} - Cu1 - N1$ $N3^{i} - Cu1 - Cl1$ N1 - Cu1 - Cl1 $N3^{i} - Cu1 - Cl1^{ii}$ $N1 - Cu1 - Cl1^{ii}$ $Cl1 - Cu1 - Cl1^{ii}$	133.4 (2) 116.27 (15) 97.70 (14) 106.89 (15) 100.51 (13) 94.90 (6)	$\begin{array}{l} N2^{iii}-Cu2-N5^{iv}\\ N2^{iii}-Cu2-Cl1\\ N5^{iv}-Cu2-Cl1\\ Cu1-Cl1-Cu2\\ Cu1-Cl1-Cu2\\ Cu1-Cl1-Cu1^{iii}\\ Cu2-Cl1-Cu1^{iii}\\ \end{array}$	152.3 (2) 101.13 (17) 106.30 (16) 123.48 (7) 94.90 (6) 78.17 (5)

Symmetry codes: (i) $x, -y + 2, z - \frac{1}{2}$; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) $x - \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: APEX2 (Bruker, 2003) ; cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the K. C. Wong Magna Fund in Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2752).

References

Bruker (2003). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Butler, R. N. (1996). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. Oxford: Pergamon.

Chen, Y., Ren, Z.-G., Li, H.-X., Tang, X.-Y., Zhang, W.-H., Zhang, Y. & Lang, J.-P. (2008). J. Mol. Struct. 875, 339-345.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jiang, C., Yu, Z., Wang, S., Jiao, C., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 3662-3667.

Lin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388-2394.

Luo, T.-T., Tsai, H.-L., Yang, S.-L., Liu, Y.-H., Yadav, R. D., Su, C.-C., Ueng, C.-H., Lin, L.-G. & Lu, K.-L. (2005). Angew. Chem. Int. Ed. 44, 6063-6067.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. & Che, C.-M. (2002). Inorg. Chem. 41, 6544-6546.

supporting information

Acta Cryst. (2009). E65, m363 [doi:10.1107/S1600536809006564]

Poly[μ -chlorido-[μ_4 -5-(4-pyridyl)tetrazolato]dicopper(I)]

Cun-Kuan Wang and Xiao-Yan Li

S1. Comment

Tetrazoles have found a wide range of applications in areas as diverse as coordination chemistry, medicinal chemistry and materials science (Butler, 1996). The study of complexes containing substituted tetrazole ligands is of interest to delineate the ways in which tetrazoles bind to metal centres. Recently, a series of 5-(4-pyridyl)-1*H*-tetrazole complexes of transition metals have been reported in which a range of coordination modes for the ligand were observed and extended two-dimensional and three-dimensional structures identified (Xue *et al.*, 2002; Jiang *et al.*, 2004; Luo *et al.*, 2005; Lin *et al.*, 2005; Chen *et al.*, 2008). Herein, we report the crystal structure of a three-dimensional coordination polymer, $[Cu_2^1Cl(4-ptz)]_n$, derived from 5-(4-pyridyl)-1*H*-tetrazole and CuCl₂.2H₂O under hydrothermal reaction.

The asymmetric unit of the title complex contains of two independent Cu^I ions, one Cl⁻, and one 4-ptz ligand. As shown in Fig. 1, atom Cu1 adopts distorted tetrahedral geometry with a Cl_2N_2 donor set and atom Cu2 is in a disorted trigonal coordination geometry with an N₂Cl donor set. Atom Cl1 is bonded to three Cu^I atoms, and the 4-ptz ligand coordinates to four Cu^I ions. It is noteworthy that atoms N1, N2, and N3 bond to three Cu^I atoms, respectively, forming a μ_3 -1,2,3tetrazolyl coordination mode. The overall structure of title complex is a three-dimensional network (Fig. 2).

S2. Experimental

A mixture of $CuCl_2.2H_2O$ (0.172 g, 1 mmol), 5-(4-pyridyl)-1*H*-tetrazole (0.074 g, 0.5 mmol) in 8 ml deionized water was homogenized at room temperature for 30 minutes. Then the final solution was sealed in a 20 mL stainless-steelautoclave at 433 K for 72 h. A quantity of crystals was obtained after the solution was cooled to room temperature. The crystals were filtered, washed with deionized water and dried at room temperature. The yield is *ca* 64% based on CuCl₂.2H₂O.

S3. Refinement

All H atoms on C atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 and $U_{iso}(H) = 1.2 U_{eq}(C)$. The crystal is an inversion twin with the ratio of twin components 0.81 (3):0.19 (3).

Figure 1

View of the coordination environment around the Cu^I ions and 4-ptz ligand of title complex with labeling scheme and 30% thermal ellipsoids. Symmetry codes: (i) x, -y + 2, z - 1/2; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) x - 1/2, y - 1/2, z;(v) x, -y + 2, z + 1/2; (vi) x + 1/2, y + 1/2, z.

Figure 2

Part of the crystal structure of the title complex.

Poly[μ -chlorido-[μ_4 -5-(4-pyridyl)tetrazolato]dicopper(I)]

Crystal data

 $[Cu_2Cl(C_6H_4N_5)]$ $M_r = 308.67$ Monoclinic, Cc Hall symbol: C -2yc *a* = 19.6899 (7) Å b = 3.6479(1) Å c = 11.6337(3) Å $\beta = 102.923 \ (2)^{\circ}$ V = 814.45 (4) Å³ Z = 4

Data collection

Bruker SMART CCD APEXII	3752 measured reflections
diffractometer	1572 independent reflections
Radiation source: fine-focus sealed tube	1415 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
Detector resolution: 8.40 pixels mm ⁻¹	$\theta_{\rm max} = 27.8^\circ, \ \theta_{\rm min} = 2.1^\circ$
ω scans	$h = -21 \rightarrow 25$
Absorption correction: multi-scan	$k = -4 \rightarrow 4$
(SADABS; Sheldrick, 1996)	$l = -15 \rightarrow 15$
$T_{\min} = 0.230, \ T_{\max} = 0.269$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.092$	$w = 1/[\sigma^2(F_c^2) + (0.0547P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.71 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.71 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack (1983), 621 Friedel direct methods pairs Secondary atom site location: difference Fourier Absolute structure parameter: 0.19 (3)

F(000) = 600

 $\theta = 2.1 - 27.8^{\circ}$

 $\mu = 5.50 \text{ mm}^{-1}$

Block, yellow

 $0.30 \times 0.26 \times 0.24 \text{ mm}$

T = 298 K

 $D_{\rm x} = 2.517 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1367 reflections

Special details

S = 1.11

1572 reflections

128 parameters

2 restraints

map

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.17283 (4)	0.9867 (2)	0.16168 (5)	0.0302 (2)	
Cu2	0.07924 (5)	0.1504 (3)	0.34304 (8)	0.0341 (2)	

Cl1	0.08796 (8)	0.4991 (4)	0.16267 (13)	0.0264 (3)	
N1	0.2207 (2)	0.9667 (13)	0.3361 (4)	0.0188 (9)	
N2	0.1753 (3)	1.0294 (14)	0.4064 (5)	0.0209 (9)	
N3	0.2072 (3)	0.9615 (14)	0.5171 (4)	0.0219 (10)	
N4	0.2723 (3)	0.8552 (15)	0.5223 (4)	0.0232 (10)	
N5	0.4827 (2)	0.6742 (14)	0.3528 (4)	0.0215 (10)	
C1	0.4640 (3)	0.5674 (16)	0.4514 (6)	0.0234 (12)	
H1A	0.4971	0.4535	0.5101	0.028*	
C2	0.3980 (3)	0.6184 (16)	0.4700 (5)	0.0203 (11)	
H2A	0.3876	0.5450	0.5407	0.024*	
C3	0.4326 (3)	0.8253 (16)	0.2677 (5)	0.0230 (11)	
H3A	0.4446	0.9003	0.1985	0.028*	
C4	0.3644 (3)	0.8755 (16)	0.2771 (5)	0.0203 (11)	
H4A	0.3312	0.9704	0.2145	0.024*	
C5	0.3469 (3)	0.7798 (14)	0.3829 (5)	0.0176 (10)	
C6	0.2791 (3)	0.8611 (16)	0.4091 (5)	0.0173 (10)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0279 (4)	0.0496 (4)	0.0144 (3)	-0.0021 (4)	0.0076 (3)	0.0018 (3)
Cu2	0.0125 (3)	0.0561 (5)	0.0334 (4)	0.0066 (4)	0.0042 (3)	0.0033 (4)
C11	0.0223 (7)	0.0274 (6)	0.0276 (8)	-0.0018 (5)	0.0016 (6)	0.0035 (5)
N1	0.012 (2)	0.032 (2)	0.012 (2)	0.0020 (18)	0.0023 (17)	0.0003 (18)
N2	0.013 (2)	0.036 (2)	0.014 (2)	0.0013 (19)	0.0042 (16)	-0.001 (2)
N3	0.017 (2)	0.038 (3)	0.011 (2)	0.0014 (19)	0.0038 (18)	-0.0001 (18)
N4	0.018 (2)	0.040 (3)	0.011 (2)	0.004 (2)	0.0035 (18)	0.001 (2)
N5	0.014 (2)	0.028 (2)	0.022 (2)	0.0037 (19)	0.0043 (19)	-0.0005 (19)
C1	0.016 (3)	0.028 (3)	0.025 (3)	0.006 (2)	0.001 (2)	0.006 (2)
C2	0.019 (3)	0.030 (3)	0.012 (3)	0.002 (2)	0.003 (2)	0.002 (2)
C3	0.017 (3)	0.034 (3)	0.018 (3)	0.002 (2)	0.005 (2)	-0.001 (2)
C4	0.021 (3)	0.028 (3)	0.012 (3)	0.004 (2)	0.002 (2)	-0.002 (2)
C5	0.012 (2)	0.023 (2)	0.017 (3)	0.002 (2)	0.002 (2)	-0.0028 (19)
C6	0.014 (2)	0.024 (2)	0.012 (2)	0.000 (2)	0.0001 (19)	-0.002 (2)

Geometric parameters (Å, °)

Cu1—N3 ⁱ	1.958 (5)	N4—C6	1.354 (7)	
Cu1—N1	2.038 (5)	N5—C1	1.339 (8)	
Cu1—Cl1	2.4422 (15)	N5—C3	1.349 (7)	
Cu1—Cl1 ⁱⁱ	2.5090 (16)	N5—Cu2 ^{vi}	1.931 (4)	
Cu2—N2 ⁱⁱⁱ	1.921 (5)	C1—C2	1.377 (8)	
Cu2—N5 ^{iv}	1.931 (4)	C1—H1A	0.9300	
Cu2—Cl1	2.4923 (18)	C2—C5	1.389 (8)	
Cl1—Cu1 ⁱⁱⁱ	2.5090 (16)	C2—H2A	0.9300	
N1—C6	1.325 (7)	C3—C4	1.383 (8)	
N1—N2	1.360 (7)	С3—НЗА	0.9300	
N2—N3	1.323 (7)	C4—C5	1.395 (8)	

N2—Cu2 ⁱⁱ	1.921 (5)	C4—H4A	0.9300
N3—N4	1.327 (7)	C5—C6	1.464 (7)
N3—Cu1 ^v	1.958 (5)		
N3 ⁱ —Cu1—N1	133.4 (2)	C1—N5—C3	116.8 (5)
N3 ⁱ —Cu1—Cl1	116.27 (15)	$C1$ — $N5$ — $Cu2^{vi}$	120.1 (4)
N1—Cu1—Cl1	97.70 (14)	$C3$ — $N5$ — $Cu2^{vi}$	122.9 (4)
N3 ⁱ —Cu1—Cl1 ⁱⁱ	106.89 (15)	N5-C1-C2	123.1 (5)
N1—Cu1—Cl1 ⁱⁱ	100.51 (13)	N5-C1-H1A	118.5
Cl1—Cu1—Cl1 ⁱⁱ	94.90 (6)	C2—C1—H1A	118.5
N2 ⁱⁱⁱ —Cu2—N5 ^{iv}	152.3 (2)	C1—C2—C5	119.8 (5)
N2 ⁱⁱⁱ —Cu2—Cl1	101.13 (17)	C1—C2—H2A	120.1
$N5^{iv}$ —Cu2—Cl1	106.30 (16)	С5—С2—Н2А	120.1
Cu1—Cl1—Cu2	123.48 (7)	N5—C3—C4	124.0 (5)
Cu1—Cl1—Cu1 ⁱⁱⁱ	94.90 (6)	N5—C3—H3A	118.0
Cu2—Cl1—Cu1 ⁱⁱⁱ	78.17 (5)	C4—C3—H3A	118.0
C6—N1—N2	104.9 (5)	C3—C4—C5	118.2 (5)
C6—N1—Cu1	142.2 (4)	C3—C4—H4A	120.9
N2—N1—Cu1	111.9 (4)	C5—C4—H4A	120.9
N3—N2—N1	108.7 (5)	C2—C5—C4	117.9 (5)
N3—N2—Cu2 ⁱⁱ	128.9 (4)	C2—C5—C6	118.6 (5)
N1—N2—Cu2 ⁱⁱ	122.1 (4)	C4—C5—C6	123.4 (5)
N2—N3—N4	110.1 (4)	N1-C6-N4	111.5 (5)
N2—N3—Cu1 ^v	129.6 (4)	N1—C6—C5	128.8 (5)
N4—N3—Cu1 ^v	120.3 (4)	N4—C6—C5	119.6 (5)
N3—N4—C6	104.8 (4)		

Symmetry codes: (i) x, -y+2, z-1/2; (ii) x, y+1, z; (iii) x, y-1, z; (iv) x-1/2, y-1/2, z; (v) x, -y+2, z+1/2; (vi) x+1/2, y+1/2, z.