Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[aqua(μ_{5}-2-oxido-4-sulfonatobenzoato)lanthanum(III)]

Cheng-Feng Zhu, ${ }^{\text {a }}$ Xing Li ${ }^{\text {b }}$ and Enhong Sheng ${ }^{\text {a* }}$
${ }^{\text {a }}$ College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China, and ${ }^{\text {b }}$ Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhengjiang 315211, People's
Republic of China
Correspondence e-mail: shengeh@mail.ahnu.edu.cn

Received 8 December 2008; accepted 4 March 2009

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.035 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=11.3$.

The title compound, $\left[\mathrm{La}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, forms a threedimensional framework in which the asymmetric unit contains one $\mathrm{La}^{\text {III }}$ atom, one 5 -sulfosalicylate (2-oxido-4-sulfonatobenzoate) ligand and one coordinated water molecule. The $\mathrm{La}^{\mathrm{III}}$ atom is coordinated by nine O atoms from three carboxylate, three sulfonate and two hydroxyl groups, and one water molecule, forming a distorted trigonal-prismatic squareface tricapped geometry.

Related literature

For the use of rigid carboxylate ligands in the design and synthesis of a variety of structures, see: Cao et al. (2002); Li et al. (2004, 2005). For the structure of the isotypic Nd compound, see: Wang et al. (2004).

Experimental

Crystal data

$\left[\mathrm{La}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

$$
\begin{aligned}
& a=6.2297(7) \AA \\
& b=8.2390(8) \AA \\
& c=9.9157(9) \AA
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=111.587(2)^{\circ} \\
& \beta=94.325(2)^{\circ} \\
& \gamma=93.785(2)^{\circ} \\
& V=469.47(8) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection

Siemens SMART CCD area-
detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.415, T_{\text {max }}=0.563$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.090$
$S=1.07$
1633 reflections

Mo $K \alpha$ radiation
$\mu=4.79 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.24 \times 0.16 \times 0.12 \mathrm{~mm}$

2457 measured reflections 1633 independent reflections
1527 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

145 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.79 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.66 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected bond lengths (\AA).

$\mathrm{La} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.676(5)$	$\mathrm{La} 1-\mathrm{O} 4$	$2.573(5)$
$\mathrm{La} 1-\mathrm{O} 2^{\mathrm{ii}}$	$2.449(5)$	$\mathrm{La} 1-\mathrm{O} 5$	$2.970(7)$
$\mathrm{La} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.561(5)$	$\mathrm{La} 1-\mathrm{O} 6^{\mathrm{iv}}$	$2.548(5)$
$\mathrm{La} 1-\mathrm{O} 3^{\mathrm{iii}}$	$2.478(4)$	$\mathrm{La} 1-\mathrm{O} 7$	$2.501(5)$
$\mathrm{La} 1-\mathrm{O} 3^{\mathrm{ii}}$	$2.499(4)$		

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x, y, z+1$; (iii) $-x+2,-y+1,-z$; (iv)
$-x+2,-y+2,-z+1$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The work was supported by the Natural Science Foundation of Anhui Province (grant No. KJ2008B166), the Ningbo Municipal Natural Science Foundation (grant No. 2008 A610048) and the Scientific Research Fund of Ningbo University (grant No. 2006050), and sponsored by the K. C. Wong Magna Fund of Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2373).

References

Cao, R., Sun, D. F., Liang, Y.-C., Hong, M.-C., Tatsumi, K. \& Shi, Q. (2002). Inorg. Chem. 41, 2087-2094.
Li, X., Cao, R., Bi, W.-H., Yuan, D.-Q. \& Sun, D.-F. (2005). Eur. J. Inorg. Chem. pp. 3156-3166.
Li, X., Shi, Q., Sun, D.-F., Bi, W.-H. \& Cao, R. (2004). Eur. J. Inorg. Chem. pp. 2747-2753.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, X.-Q., Zhang, J., Li, Z.-J., Wen, Y.-H., Cheng, J.-K. \& Yao, Y.-G. (2004). Acta Cryst. C60, m657-m658.

supporting information

Acta Cryst. (2009). E65, m383 [doi:10.1107/S1600536809007879]

Poly[aqua(μ_{5}-2-oxido-4-sulfonatobenzoato)lanthanum(III)]

Cheng-Feng Zhu, Xing Li and Enhong Sheng

S1. Comment

The carboxylate groups have a strong ability to bond various metal ions and afford abundant coordination modes, thus rigid carboxylate ligands have been widely used for the design and synthesis of a great variety of structures (Cao et al., 2002; Li et al., 2004). Introduction of a sulfonate group into rigid carboxylate ligands may result in the formation of unexpected frameworks as the sulfonic group has a different shape and properties in terms of its coordination ability compared to the carboxylate group (Li et al., 2005).
Studies on the coordination chemistry of mixed carboxylate-sulfonic ligands are not very common. By employing 5sulfoisophthalic acid as an organic ligand, we have successfully prepared one new metal-organic polymer $\left[\mathrm{La}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~S}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}$ with three dimensional framework by the bridging carboxylate and the sulfonate groups. Single X-ray diffraction analysis reveals that the title complex is isomorphous to the La-compound reported previously (Wang et al., 2004). As Fig. 1 shown, the lanthanum(III) atom is surrounded by nine oxygen atoms, of which three come from carboxylate groups, three from sulfonates, two from hydroxyl groups and one from the coordinated water. The sulfosalicylate ligands serve as μ_{5}-bridge linking five La (III) ions (Fig. 2), resulting in a three dimensional framework.

S2. Experimental

A mixture of 5-sulfosalicylic acid ($0.60 \mathrm{mmol}, 0.15 \mathrm{~g}$), $\mathrm{La}_{2} \mathrm{O}_{3}(0.2 \mathrm{mmol}, 0.065 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$ was sealed in a 25 ml stainless steel reactor with Teflon linear and heated 433 K for 72 h . After cooling to room temperature, colorless crystals were isolated by filtering (yield 35%).

S3. Refinement

Aromatic hydrogen atoms were assigned to calculated positions and allowed to ride on their respective parent C atoms with isotropic thermal displacement parameters. For the hydrogen atoms bonded to coordination water oxygen atom, The H7A was positioned geometrically and H7B was located in a difference map and constrained with O—H = $0.82 \AA$. The deepest residual electron density peak is located at $0.87 \AA$ from atom La1.

Figure 1
A view of the lanthanum ion coordination, Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The sulfosalicylate ligands linking fashion.

Poly[aqua(μ_{5}-2-oxido-4-sulfonatobenzoato)lanthanum(III)]

Crystal data

$\left[\mathrm{La}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=372.08$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.2297$ (7) Å
$b=8.2390$ (8) \AA
$c=9.9157$ (9) \AA
$\alpha=111.587$ (2) ${ }^{\circ}$
$\beta=94.325(2)^{\circ}$

$$
\begin{aligned}
& \gamma=93.785(2)^{\circ} \\
& V=469.47(8) \AA^{3} \\
& Z=2 \\
& F(000)=352 \\
& D_{\mathrm{x}}=2.632 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2088 \text { reflections } \\
& \theta=2.2-25.1^{\circ} \\
& \mu=4.79 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=293 \mathrm{~K}$

Block, colorless

Data collection

Siemens SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.415, T_{\text {max }}=0.563$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.090$
$S=1.07$
1633 reflections
145 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$0.24 \times 0.16 \times 0.12 \mathrm{~mm}$

2457 measured reflections
1633 independent reflections
1527 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=25.1^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-4 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-11 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0456 P)^{2}+4.598 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.79$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.66 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
La1	$0.76441(5)$	$0.64763(5)$	$0.46004(4)$	$0.01280(16)$
S1	$0.9837(3)$	$0.8865(2)$	$0.28204(17)$	$0.0167(4)$
O1	$0.4823(8)$	$0.4571(7)$	$-0.2043(5)$	$0.0258(12)$
O2	$0.5737(8)$	$0.5722(7)$	$-0.3605(5)$	$0.0215(11)$
O3	$1.0224(7)$	$0.6040(6)$	$-0.3536(5)$	$0.0139(9)$
O4	$1.0612(9)$	$0.7528(6)$	$0.3353(5)$	$0.0229(11)$
O5	$0.7603(9)$	$0.9023(8)$	$0.3122(6)$	$0.0360(14)$
O6	$1.1278(9)$	$1.0487(6)$	$0.3439(5)$	$0.0237(11)$
O7	$0.4427(9)$	$0.8190(7)$	$0.5052(7)$	$0.0332(13)$
H7A	0.3472	0.7722	0.4375	0.040^{*}
H7B	0.4185	0.9029	0.5766	0.040^{*}
C1	$0.6163(12)$	$0.5488(9)$	$-0.2412(7)$	$0.0181(14)$
C2	$0.8185(11)$	$0.6385(9)$	$-0.1475(7)$	$0.0150(13)$
C3	$0.8153(11)$	$0.7035(9)$	$0.0033(7)$	$0.0153(13)$

H3A	0.6938	0.6777	0.0437	0.018^{*}
C4	$0.9937(11)$	$0.8069(9)$	$0.0930(7)$	$0.0168(14)$
C5	$1.1779(12)$	$0.8448(10)$	$0.0340(7)$	$0.0210(15)$
H5A	1.2964	0.9148	0.0953	0.025^{*}
C6	$1.1846(11)$	$0.7790(9)$	$-0.1142(8)$	$0.0192(14)$
H6A	1.3085	0.8041	-0.1526	0.023^{*}
C7	$1.0069(11)$	$0.6740(8)$	$-0.2089(7)$	$0.0141(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	$0.0098(2)$	$0.0143(2)$	$0.0121(2)$	$-0.00092(15)$	$0.00131(14)$	$0.00277(16)$
S1	$0.0185(8)$	$0.0174(8)$	$0.0098(8)$	$-0.0033(7)$	$0.0027(6)$	$0.0005(6)$
O1	$0.023(3)$	$0.034(3)$	$0.019(3)$	$-0.016(2)$	$-0.001(2)$	$0.012(2)$
O2	$0.017(2)$	$0.031(3)$	$0.016(3)$	$-0.009(2)$	$-0.005(2)$	$0.012(2)$
O3	$0.015(2)$	$0.015(2)$	$0.009(2)$	$0.0004(18)$	$0.0007(18)$	$0.0012(18)$
O4	$0.034(3)$	$0.019(2)$	$0.017(3)$	$-0.002(2)$	$0.005(2)$	$0.009(2)$
O5	$0.025(3)$	$0.047(4)$	$0.022(3)$	$0.001(3)$	$0.008(2)$	$-0.004(3)$
O6	$0.031(3)$	$0.014(2)$	$0.020(3)$	$-0.010(2)$	$-0.001(2)$	$0.001(2)$
O7	$0.023(3)$	$0.030(3)$	$0.037(3)$	$0.010(2)$	$0.003(2)$	$0.000(3)$
C1	$0.024(4)$	$0.014(3)$	$0.014(3)$	$0.000(3)$	$0.004(3)$	$0.002(3)$
C2	$0.014(3)$	$0.018(3)$	$0.014(3)$	$0.004(3)$	$0.003(3)$	$0.005(3)$
C3	$0.017(3)$	$0.019(3)$	$0.012(3)$	$0.003(3)$	$0.007(3)$	$0.007(3)$
C4	$0.022(3)$	$0.018(3)$	$0.008(3)$	$-0.002(3)$	$0.001(3)$	$0.003(3)$
C5	$0.019(3)$	$0.028(4)$	$0.010(3)$	$-0.003(3)$	$-0.001(3)$	$0.001(3)$
C6	$0.017(3)$	$0.020(3)$	$0.017(3)$	$-0.003(3)$	$0.008(3)$	$0.002(3)$
C7	$0.019(3)$	$0.014(3)$	$0.008(3)$	$-0.001(3)$	$0.002(3)$	$0.003(3)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

La1-O1 ${ }^{\text {i }}$	2.676 (5)	O2- ${ }^{\text {C1 }}$	1.279 (9)
$\mathrm{La} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.449 (5)	O3-C7	1.349 (8)
La1- $\mathrm{O}^{2}{ }^{\text {i }}$	2.561 (5)	O7-H7A	0.8200
$\mathrm{La} 1-\mathrm{O} 3{ }^{\text {iii }}$	2.478 (4)	O7-H7B	0.8200
$\mathrm{La} 1-\mathrm{O}^{\text {ii }}$	2.499 (4)	$\mathrm{C} 1-\mathrm{C} 2$	1.480 (10)
La1-O4	2.573 (5)	C2-C3	1.393 (9)
La1-O5	2.970 (7)	C2-C7	1.424 (9)
La1-O6 ${ }^{\text {iv }}$	2.548 (5)	C3-C4	1.385 (10)
La1-O7	2.501 (5)	C3-H3A	0.9300
S1-O4	1.478 (5)	C4-C5	1.395 (10)
S1-O5	1.450 (6)	C5-C6	1.372 (10)
S1-O6	1.457 (5)	C5-H5A	0.9300
S1-C4	1.751 (7)	C6-C7	1.405 (10)
$\mathrm{O} 1-\mathrm{C} 1$	1.251 (9)	C6-H6A	0.9300
$\mathrm{O} 2{ }^{\text {ii }}$ - $\mathrm{La} 1-\mathrm{O} 3{ }^{\text {iii }}$	103.65 (16)	O6-S1-O4	110.7 (3)
$\mathrm{O} 2{ }^{\text {ii }}$ - $\mathrm{La} 1-\mathrm{O}^{\text {ii }}$	68.47 (15)	O5-S1-C4	109.1 (3)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{La} 1-\mathrm{O} 3{ }^{\text {ii }}$	67.24 (16)	O6-S1-C4	107.0 (3)

$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{La} 1-\mathrm{O} 7$	72.75 (19)	O4-S1-C4	107.5 (3)
O3iii-La1-07	158.70 (17)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{La}{ }^{\text {i }}$	93.1 (4)
O3ii-La1-O7	127.17 (17)	C1-O2-La1 ${ }^{\text {v }}$	139.2 (4)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{La} 1-\mathrm{O}^{\text {iv }}$	87.98 (17)	C1-O2-La1 ${ }^{\text {i }}$	97.8 (4)
O3iii-La1-O6 ${ }^{\text {iv }}$	131.23 (16)	$\mathrm{La} 1^{\mathrm{v}}-\mathrm{O} 2-\mathrm{La} 1^{\mathrm{i}}$	116.49 (18)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{La} 1-\mathrm{O} 6^{\mathrm{iv}}$	74.06 (16)	C7-O3-Lal ${ }^{\text {iii }}$	121.3 (4)
O7-La1-O6 ${ }^{\text {iv }}$	70.05 (18)	C7-O3-La1 ${ }^{\text {v }}$	123.5 (4)
$\mathrm{O} 2{ }^{\text {ii- }} \mathrm{La} 1-\mathrm{O} 2{ }^{\text {i }}$	63.51 (18)	La1 ${ }^{\text {iii }}-\mathrm{O} 3-\mathrm{La}^{\text {v }}$	112.76 (16)
$\mathrm{O} 3^{\text {iii] }}$ - $\mathrm{La} 1-\mathrm{O} 2^{\text {i }}$	86.88 (16)	S1-O4-La1	110.1 (3)
$\mathrm{O} 3{ }^{\text {ii- }} \mathrm{La} 1-\mathrm{O} 2{ }^{\text {i }}$	116.96 (15)	S1-O5-La1	93.3 (3)
$\mathrm{O} 7-\mathrm{La} 1-\mathrm{O} 2^{\text {i }}$	72.64 (18)	S1-O6-La1 ${ }^{\text {iv }}$	151.0 (3)
$\mathrm{O}^{\text {iv }}-\mathrm{La} 1-\mathrm{O} 2^{\text {i }}$	138.33 (17)	La1-O7-H7A	109.5
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{La} 1-\mathrm{O} 4$	162.22 (17)	La1-O7-H7B	130.5
O3 ${ }^{\text {iii }}$-La1-O4	73.55 (15)	H7A-O7-H7B	119.7
O3ii-La1-O4	94.76 (16)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	119.2 (6)
O7-La1-O4	116.21 (18)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.1 (6)
O6 ${ }^{\text {iv- }} \mathrm{La} 1-\mathrm{O} 4$	81.48 (16)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	118.6 (6)
$\mathrm{O} 2{ }^{\text {i}}-\mathrm{La} 1-\mathrm{O} 4$	132.71 (16)	C3-C2-C7	120.0 (6)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{La} 1-\mathrm{O} 1^{\mathrm{i}}$	110.68 (15)	C3-C2-C1	118.6 (6)
$\mathrm{O} 3{ }^{\text {iii] }}$ - $\mathrm{La} 1-\mathrm{Ol}^{\text {i }}$	88.69 (16)	C7- $22-\mathrm{C} 1$	121.1 (6)
$\mathrm{O}{ }^{3 i}-\mathrm{La} 1-\mathrm{O} 1^{\text {i }}$	154.12 (16)	C4-C3-C2	119.7 (6)
O7-Lal- $\mathrm{Ol}^{\text {i }}$	73.65 (18)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1
$\mathrm{O}^{\text {iv- }} \mathrm{La} 1-\mathrm{Ol}^{\text {i }}$	131.55 (17)	C2-C3-H3A	120.1
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{La} 1-\mathrm{O} 1^{\text {i }}$	49.19 (15)	C3-C4-C5	120.7 (6)
$\mathrm{O} 4-\mathrm{La} 1-\mathrm{Ol}^{\text {i }}$	86.95 (15)	C3-C4-S1	118.5 (5)
O2ii-La1-O5	139.80 (16)	C5-C4-S1	120.8 (5)
O3 ${ }^{\text {iii--La1-O5 }}$	115.64 (15)	C6-C5-C4	120.1 (6)
O3ii-La1-O5	134.13 (15)	C6-C5-H5A	120.0
O7-La1-O5	67.57 (18)	C4-C5-H5A	120.0
O6 ${ }^{\text {iv }}$-La1-O5	72.93 (16)	C5-C6-C7	120.9 (6)
O2-LLa1-O5	108.88 (15)	C5-C6-H6A	119.5
O4-La1-O5	49.58 (16)	C7-C6-H6A	119.5
O1-Lal-O5	64.08 (16)	O3-C7-C6	119.5 (6)
O5-S1-O6	115.5 (3)	O3-C7-C2	122.0 (6)
O5-S1-O4	106.9 (3)	C6-C7-C2	118.4 (6)

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x, y, z+1$; (iii) $-x+2,-y+1,-z$; (iv) $-x+2,-y+2,-z+1$; (v) $x, y, z-1$.

