Structure Reports

Online
ISSN 1600-5368

The Chevrel phase $\mathbf{I n}_{\mathbf{4 . 0 7}} \mathrm{Mo}_{15} \mathbf{S}_{11.87} \mathrm{Se}_{7.13}$ with mixed chalcogenide occupancy

You-Soon Lee and Sung Kwon Kang*

Department of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea

Correspondence e-mail: skkang@cnu.ac.kr

Received 20 February 2009; accepted 28 February 2009

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{Mo}-\mathrm{Mo})=0.001 \AA$; disorder in main residue; R factor $=0.039 ; w R$ factor $=0.090$; data-to-parameter ratio $=17.0$.

The single-crystal of the title compound, indium pentadecamolybdenum nonadeca(sulfide/selenide), was obtained by solid state reaction with an S / Se mixture. It adopts the structure type of $\mathrm{In}_{3} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ and $\mathrm{In}_{3.7} \mathrm{Mo}_{15} \mathrm{~S}_{19}$, which are nonsubstituted Chevrel phases in the space group $P 6_{3} / m$. The Mo, one S / Se and two In sites have point symmetry m.. and two S / Se and one In atoms are in 3.. sites. This compound contains isolated Mo_{6} and Mo_{9} clusters. The shapes of clusters are octahedral and confacial bioctahedral, respectively, facecapped by chalcogen atoms over each triangle face. The Mo $-X$ bonds ($X=\mathrm{S}$, Se) play an important role for the constitution of the framework. The Mo- X distances of 2.479 (2)-2.6687 (9) \AA are within the ranges of average values of $\mathrm{Mo}-\mathrm{S}$ and $\mathrm{Mo}-$ Se distances. The In atoms located on sites with m.. symmetry are partially occupied.

Related literature

For discussion of the crystal structures of Chevrel phases, see: Grüttner et al. (1979). For applications, see: Suresh et al. (2008); Aurbach et al. (2007). For the syntheses and crystal structures of Chevrel phases with various cations, see: Salloum, Gautier et al. (2004); Salloum, Gougeon et al. (2004).

Experimental

Crystal data
$\mathrm{In}_{4.07} \mathrm{Mo}_{15} \mathrm{~S}_{11.87} \mathrm{Se}_{7.13}$
$M_{r}=2847.4$
Hexagonal, $P 6_{3} / m$
$a=9.5974$ (2) A
$c=19.1668(5) \AA$
$V=1528.93(6) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.431, T_{\text {max }}=0.577$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad 77$ parameters
$w R\left(F^{2}\right)=0.090$
$S=1.41$
1309 reflections
$Z=2$
Mo $K \alpha$ radiation
$\mu=18.17 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.04 \times 0.04 \times 0.03 \mathrm{~mm}$

10366 measured reflections 1309 independent reflections 1047 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$
$\Delta \rho_{\max }=4.14 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-4.12 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

This study was financially supported by the research fund of Chungnam National University in 2008.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2099).

References

Aurbach, D., Suresh, G. S., Levi, E., Mitelman, A., Mizrahi, O., Chusid, O. \& Brunelli, M. (2007). Adv. Mater. 19, 4260-4267.
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. \& Seeber, B. (1979). Acta Cryst. B35, 285-292.
Salloum, D., Gautier, R., Gougeon, P. \& Potel, M. (2004). J. Solid State Chem. 177, 1672-1680.
Salloum, D., Gougeon, P., Roisnel, T. \& Potel, M. (2004). J. Alloys Compd. 383, 57-62.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
Suresh, G. S., Levi, M. D. \& Aurbach, D. (2008). Electrochem. Acta, 53, 38893896.

supporting information

Acta Cryst. (2009). E65, i26 [doi:10.1107/S1600536809007351]

The Chevrel phase $\operatorname{In}_{4.07} \mathrm{Mo}_{15} \mathbf{S}_{11.87} \mathrm{Se}_{7.13}$ with mixed chalcogenide occupancy You-Soon Lee and Sung Kwon Kang

S1. Comment

The classical Chevrel phases, containing blocks of $\mathrm{Mo}_{6} X_{8}$, have been in interest for both structural respects and application to rechargeable batteries (Suresh, et al., 2008; Aurbach, et al., 2007). The new Chevrel phases $\operatorname{In}_{x} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ ($x=2.9$ and 3.3) also have been studied by X-ray single-crystal method (Grüttner et al., 1979). These were the first compound having a transition metal cluster with the isolated Mo_{6} and Mo_{9} clusters. The Mo_{9} cluster has the shape of a confacial bioctahedron resulting from the condensation of two octahedral Mo_{6} clusters. Both clusters are surrounded by face-capping Se atoms to form $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ and $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ cluster units, and they are interconnected through Mo—Se bonds to build the three dimensional framework (Fig. 1). On our continuous studies to develop new materials for rechargeable batteries, herein, we report the single-crystal structure of the mixed chalcogenide compound $\mathrm{In}_{4.07} \mathrm{Mo}_{15} \mathrm{~S}_{11.87} \mathrm{Se}_{7.13}$ (1). We have investigated the effect of the partial substitution of Se by S atoms in the related Chevrel phase, hoping that the building blocks of Chevrel phase would not be changed.

The crystal structure of the title compound in a unit cell is shown in Fig. 1. The framework is composed of $\mathrm{Mo}_{6} X_{8}$ and $\mathrm{Mo}_{9} X_{11}$ cluster units $(X=\mathrm{Se} / \mathrm{S})$ that are interconnected through Mo- X bonds. The Mo_{6} cluster forms the octahedral geometry with Mo-Mo bonds between the six Mo atoms, and the eight faces on the octahedron share a chalcogen atom to create the $\mathrm{Mo}_{6} X_{8}$ building block (Fig. 2). The Mo_{9} cluster is formed by one dimensional trans-face sharing of two Mo_{6} octahedron, and surrounded by eleven face-capping chalcogen atoms. The Mo-Mo bond distance related through the threefold axis in the Mo_{6} clusters is 2.6728 (11) \AA. And the Mo-Mo distances within the Mo_{9} clusters are in the range of 2.6415 (10) - 2.7540 (8) Å which are within the normal range of the other Chevrel phases (Grüttner et al., 1979; Salloum, Gautier et al., 2004; Salloum, Gougeon et al., 2004). The amount of substitution of Se atoms by S atoms are dependent on the atomic positions with the range of 34% (for X3 atom) - 86% (for X1 atom). The higher the S atom occupation, the shorter Mo- X bond distances are.

S2. Experimental

The title compound was prepared from powder elemental indium (99.999 at.\%), molybdenum (99.999 at.\%), sulfur (99.98 at.\%), and selenium (99.99 at.\%) from Aldrich products in the slightly off-stoichiometric 5:15:12:7 ratio. The reaction mixture was sealed under a nitrogen atmosphere in a silica tube and heated at 1343 K for 72 h and cooled to room temperature at the rate of $10 \mathrm{~K} / \mathrm{h}$ to obtain black single crystals for X-ray studies.

S3. Refinement

The crystal structure of the title compound was solved and refined starting from the atomic coordinates reported for $\mathrm{In}^{-3} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ compound (Grüttner et al., 1979). In the first stage of the refinement, the positions of all atoms but $\operatorname{In} 3$ were obtained reasonably. The remaining In3 atom was located in subsequent difference Fourier syntheses. The maximum and minimum residual electron density peaks were located at 1.07 and $0.46 \AA$, respectively, from the In1 atom.

Figure 1
View of the crystal structure of the title compound along [110], with displacement ellipsoids at the 80% probability level.

Figure 2
$\mathrm{Mo}_{6} X_{8}$ and $\mathrm{Mo}_{9} X_{11}$ cluster units interconnected through Mo- X bonds $(X=\mathrm{Se} / \mathrm{S})$.

indium pentadecamolybdenum nonadeca(sulfide/selenide)

Crystal data
$\mathrm{In}_{4.07} \mathrm{Mo}_{15} \mathrm{~S}_{11.87} \mathrm{Se}_{7.13}$
$M_{r}=2847.4$
Hexagonal, $P 6_{3} / m$
Hall symbol: -P 6c
$a=9.5974$ (2) \AA
$c=19.1668(5) \AA$
$V=1528.93(6) \AA^{3}$
$Z=2$
$F(000)=2524.1$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
$D_{\mathrm{x}}=6.185 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1691 reflections
$\theta=2.5-28.3^{\circ}$
$\mu=18.17 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block, black
$0.04 \times 0.04 \times 0.03 \mathrm{~mm}$
Absorption correction: multi-scan
$(S A D A B S ;$ Bruker, 2002)
$T_{\min }=0.431, T_{\max }=0.577$

Absorption correction: multi-scan
$T_{\text {min }}=0.431, T_{\text {max }}=0.577$

10366 measured reflections
1309 independent reflections
1047 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.090$
$S=1.41$
1309 reflections
77 parameters

$$
\begin{aligned}
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=2.1^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-9 \rightarrow 12 \\
& l=-25 \rightarrow 25
\end{aligned}
$$

$$
\begin{aligned}
& 0 \text { restraints } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0327 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=4.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-4.12 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Mo1	$0.16177(10)$	$0.50528(10)$	0.25	$0.0084(2)$	
Mo2	$0.01379(7)$	$0.16724(7)$	$0.05730(3)$	$0.00754(18)$	
Mo3	$0.31869(7)$	$0.50095(7)$	$0.13306(3)$	$0.00801(18)$	
Se1	0	0	$0.15855(13)$	$0.0164(9)$	$0.140(9)$
S1	0	0	$0.15855(13)$	$0.0164(9)$	$0.860(9)$
Se2	0.3333	0.6667	$0.03438(13)$	$0.0137(9)$	$0.142(9)$
S2	0.3333	0.6667	$0.03438(13)$	$0.0137(9)$	$0.858(9)$
Se3	$0.31626(16)$	$0.34882(16)$	0.25	$0.0139(5)$	$0.658(8)$
S3	$0.31626(16)$	$0.34882(16)$	0.25	$0.0139(5)$	$0.342(8)$
Se4	$0.71167(14)$	$0.03659(14)$	$0.05076(5)$	$0.0122(4)$	$0.437(6)$
S4	$0.71167(14)$	$0.03659(14)$	$0.05076(5)$	$0.0122(4)$	$0.563(6)$
Se5	$0.01082(16)$	$0.38207(15)$	$0.13790(6)$	$0.0149(5)$	$0.328(6)$
S5	$0.01082(16)$	$0.38207(15)$	$0.13790(6)$	$0.0149(5)$	$0.672(6)$
In1	0.6667	0.3333	$0.10758(9)$	$0.0837(6)$	
In2	$0.2155(3)$	$0.0510(3)$	0.25	$0.0331(8)$	$0.468(4)$
In3	$0.5545(8)$	$0.2420(7)$	0.25	$0.055(2)$	$0.224(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	$0.0086(4)$	$0.0086(4)$	$0.0080(4)$	$0.0043(4)$	0	0
Mo2	$0.0079(3)$	$0.0083(3)$	$0.0066(3)$	$0.0041(3)$	$-0.0002(2)$	$-0.0006(2)$
Mo3	$0.0083(3)$	$0.0085(3)$	$0.0072(3)$	$0.0042(3)$	$-0.0002(2)$	$-0.0005(2)$
Se1	$0.0198(11)$	$0.0198(11)$	$0.0098(13)$	$0.0099(6)$	0	0
S1	$0.0198(11)$	$0.0198(11)$	$0.0098(13)$	$0.0099(6)$	0	0
Se2	$0.0132(10)$	$0.0132(10)$	$0.0146(14)$	$0.0066(5)$	0	0
S2	$0.0132(10)$	$0.0132(10)$	$0.0146(14)$	$0.0066(5)$	0	0

Se3	$0.0143(8)$	$0.0136(8)$	$0.0129(7)$	$0.0064(6)$	0	0
S3	$0.0143(8)$	$0.0136(8)$	$0.0129(7)$	$0.0064(6)$	0	0
Se4	$0.0108(6)$	$0.0127(6)$	$0.0107(6)$	$0.0041(5)$	$0.0031(4)$	$0.0006(4)$
S4	$0.0108(6)$	$0.0127(6)$	$0.0107(6)$	$0.0041(5)$	$0.0031(4)$	$0.0006(4)$
Se5	$0.0197(8)$	$0.0110(7)$	$0.0136(7)$	$0.0073(6)$	$-0.0028(5)$	$-0.0045(5)$
S5	$0.0197(8)$	$0.0110(7)$	$0.0136(7)$	$0.0073(6)$	$-0.0028(5)$	$-0.0045(5)$
In1	$0.0967(10)$	$0.0967(10)$	$0.0579(10)$	$0.0483(5)$	0	0
In2	$0.0608(17)$	$0.0434(14)$	$0.0201(10)$	$0.0446(13)$	0	0
In3	$0.072(4)$	$0.043(4)$	$0.060(4)$	$0.037(3)$	0	0

Geometric parameters (\AA, ${ }^{\circ}$)

Mo1-Mo3	2.7123 (7)	Mo3-S3	2.6687 (9)
$\mathrm{Mo} 1-\mathrm{Mo3}{ }^{\text {i }}$	2.7540 (8)	Mo3-S4 ${ }^{\text {vii }}$	2.6034 (12)
$\mathrm{Mo} 2-\mathrm{Mo} 2{ }^{\text {ii }}$	2.6728 (11)	Mo3-S5iii	2.4976 (14)
Mo3-Mo3 ${ }^{\text {iii }}$	2.6415 (10)	Mo3-S5	2.5827 (15)
Mo1-S3	2.5844 (16)	In1-In3	2.904 (3)
Mol-S3 ${ }^{\text {i }}$	2.5681 (16)	In2-In3	2.825 (7)
Mo1-S5 ${ }^{\text {iv }}$	2.5299 (13)	In2-Mo1 ${ }^{\text {viii }}$	2.862 (2)
Mo2-S1	2.479 (2)	In1-S2 ${ }^{\text {ix }}$	2.721 (3)
Mo2-S4 ${ }^{\text {v }}$	2.5093 (12)	In2-S $1^{\text {iv }}$	2.564 (2)
Mo2-S4 ${ }^{\text {vi }}$	2.5219 (13)	In2-S3	2.518 (3)
Mo2-S4 $4^{\text {vii }}$	2.6101 (13)	In2-S5 ${ }^{\text {viii }}$	2.8445 (18)
Mo2-S5	2.5880 (13)	In3-S3	2.937 (6)
Mo3-S2	2.430 (2)	In3-S5 ${ }^{\text {viii }}$	3.055 (4)
Mo2 ${ }^{\text {iii }}-\mathrm{Mo} 2-\mathrm{Mo}^{\text {viii }}$	60.0	S1-Mo2-Mo2 ${ }^{\text {ii }}$	57.39 (3)
Mo3 $3^{\text {iii- }} \mathrm{Mo} 3-\mathrm{Mo} 3^{\text {i }}$	60.0	$\mathrm{S} 4{ }^{\mathrm{v}}$-Mo2-Mo2 ${ }^{\text {ii }}$	120.33 (3)
Mo3-Mo1-Mo3 ${ }^{\text {iv }}$	111.46 (4)	$\mathrm{S} 4{ }^{\text {vi }}$ - $\mathrm{Mo} 2-\mathrm{Mo} 2{ }^{\text {ii }}$	60.24 (4)
Mo3-Mo1-Mo3 ${ }^{\text {i }}$	57.79 (2)	S4 ${ }^{\text {vii }}$-Mo2-Mo2 ${ }^{\text {ii }}$	116.94 (3)
Mo3 ${ }^{\text {x-M }} \mathrm{Mo} 1-\mathrm{Mo}^{\text {i }}$	108.95 (4)	$\mathrm{S} 4{ }^{\mathrm{v}}-\mathrm{Mo} 2-\mathrm{Mo} 2^{\text {viii }}$	118.11 (3)
Mo3-Mol-Mo3 ${ }^{\text {x }}$	144.30 (4)	$\mathrm{S4} 4^{\text {vi}}-\mathrm{Mo} 2-\mathrm{Mo} 2^{\text {viii }}$	120.16 (4)
S5-Mo1-S5iv	116.27 (7)	S4 ${ }^{\text {vii }} \mathrm{Mo} 2-\mathrm{Mo} 2^{\text {viii }}$	57.01 (3)
S5-Mo1-S3 ${ }^{\text {i }}$	87.54 (4)	S5-Mo2-Mo2 ${ }^{\text {ii }}$	131.12 (4)
S5-Mo1-S3	95.12 (4)	S5-Mo2-Mo2 ${ }^{\text {viii }}$	136.62 (4)
S3 - Mol-S3	174.93 (5)	S2-Mo3-S3	173.60 (5)
S5-Mo1-Mo3	58.91 (3)	S2-Mo3-S5 ${ }^{\text {iii }}$	91.81 (3)
S5 ${ }^{\text {iv }}$-Mo1-Mo3	152.53 (5)	S5iii-Mo3-S5	175.03 (5)
S3i-Mo1-Mo3	117.85 (3)	S5iii-Mo3-S3	86.03 (4)
S3-Mo1-Mo3	60.45 (2)	S5 ${ }^{\text {iii }}$-Mo3-S4 ${ }^{\text {vii }}$	86.33 (4)
S5-Mo1-Mo3 ${ }^{\text {x }}$	145.74 (5)	S5-Mo3-S4 ${ }^{\text {vii }}$	98.34 (4)
S5 ${ }^{\text {iv }}$ - Mo1-Mo3 ${ }^{\text {x }}$	56.23 (3)	S2-Mo3-Mo3iii	57.07 (3)
S3i-Mo1-Mo3 ${ }^{\text {x }}$	60.07 (2)	S3iii-Mo3-Mo3	116.82 (3)
S3-Mo1-Mo3 ${ }^{\text {x }}$	118.08 (2)	S3i-Mo3-Mo3	119.14 (3)
S5 ${ }^{\text {iv }}$-Mo1-Mo3 ${ }^{\text {i }}$	145.74 (5)	S4 ${ }^{\text {vii }}$-Mo3-Mo3 ${ }^{\text {i }}$	136.62 (3)
S3 ${ }^{\text {i }}$ - Mo1-Mo3 ${ }^{\text {i }}$	60.07 (2)	S4 ${ }^{\text {vii }}$-Mo3-Mo3 ${ }^{\text {iii }}$	130.06 (4)
S1-Mo2-S4 ${ }^{\text {v }}$	175.41 (5)	S5 ${ }^{\text {iii }}$-Mo3-Mo3 ${ }^{\text {iii }}$	60.26 (4)
S1-Mo2-S4 ${ }^{\text {vi }}$	92.35 (3)	S5 ${ }^{\text {iii] }}$-Mo3-Mo3 ${ }^{\text {i }}$	120.21 (4)

supporting information

S1-Mo2-S4 ${ }^{\text {vii }}$	90.27 (3)
S1-Mo2-S5	91.73 (5)
S4 - Mo2-S5	92.56 (4)
S44i-Mo2-S5	87.58 (4)
S4 ${ }^{\text {v }}$ - $\mathrm{Mo} 2-\mathrm{S} 4{ }^{\text {vii }}$	87.51 (3)
S4 ${ }^{\text {vi }}$-Mo2— $\mathrm{S}^{\text {vii }}$	173.73 (5)
S4v - Mo2-S4 ${ }^{\text {vi }}$	89.47 (3)
S5-Mo2-S4 ${ }^{\text {vii }}$	98.04 (4)

Mo1 ${ }^{\text {iii }}$-S3-Mo1	65.07 (5)
Moi ${ }^{\text {iii- }}$-S3-Mo3 ${ }^{\text {iv }}$	63.42 (3)
Mo1-S5-Mo3	64.07 (4)
$\mathrm{Mo} 2{ }^{\text {iii }}$-S1-Mo2 ${ }^{\text {viii }}$	65.23 (6)
Mo2 ${ }^{\text {xi }}$-S $4-\mathrm{Mo} 2^{\text {xii }}$	64.49 (4)
Mo2 ${ }^{\text {xi }}$-S $4-\mathrm{Mo} 3^{\text {xiii }}$	131.31 (5)
Mo2 ${ }^{\text {xii }}$-S4—Mo3 ${ }^{\text {xiii }}$	127.85 (5)

Symmetry codes: (i) $-x+y,-x+1, z$; (ii) $-y, x-y, z$; (iii) $-y+1, x-y+1, z$; (iv) $x, y,-z+1 / 2$; (v) $y,-x+y+1,-z$; (vi) $x-1, y, z$; (vii) $-x+y+1,-x+1, z$; (viii) $-x+y,-x, z$; (ix) $-x+1,-y+1,-z$; (x) $-x+y,-x+1,-z+1 / 2$; (xi) $x-y+1, x,-z$; (xii) $x+1, y, z$; (xiii) $-y+1, x-y, z$.

