addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Retraction of articles

This article reports the retraction of articles published in *Acta Crystallographica Section E* between 2005 and 2009.

After further thorough investigation (see Harrison *et al.*, 2010), articles are retracted as a result of problems with the data sets or incorrect atom assignments. Full details of all the articles are given in Table 1.

Table 1

Details of articles to be retracted, in order of publication.

Title	Reference	DOI	Refcode
Poly[diaquadi-µ ₃ -malonato-µ-pyrazine-dinickel(II)] catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)samarium(II)]-µ-pyridine-2,6- dicarboxylato] tetrahydrate]	Liu et al. (2005) Liu et al. (2006)	10.1107/\$1600536805026358 10.1107/\$1600536806038141	GATWAA FONCUH03
$Poly[[[\mu_4, 4, 4] - carbonylbis(benzene-3, 4-dicarboxylato)]tetrakis(1, 10-phenanthroline)-dipalladium(II)) dihydrate1$	Li, Wang, Zhang & Yu (2007e)	10.1107/S1600536807039050	AFELAZ
$Poly[diaqua-\mu_3-malonato-\mu-pyrazine-diiron(II)]$	Li, Liu et al. (2007)	10.1107/S1600536807038743	AFELON
$Poly[diaqua-di-\mu_3-malonato-\mu-pyrazine-dimanganese(II)]$	Li, Wang, Zhang & Yu (2007f)	10.1107/\$1600536807039773	VIJZAQ
$Poly[[aqua(2,2-bipyridine)(\mu_3-pyridine-3,4-dicarboxylato)cobalt(II)] monohydrate]$	Li, Wang, Zhang & Yu (2007g)	10.1107/S1600536807040275	VIKCIC
catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)holmium(III)]-µ-pyridine-2,6- dicarboxylato] tetrahydrate]	Li, Wang, Zhang & Yu (2007 <i>a</i>)	10.1107/\$1600536807041657	DILGEL
catena-Poly[[(2,2'-bipyridine- $\kappa^2 N, N'$)iron(II)]- μ -5-carboxy-4-carboxylatoimidazol-1-ido- $\kappa^4 N^3, O^4: N^1, O^5$]	Li, Wang, Zhang & Yu (2007 <i>h</i>)	10.1107/\$1600536807042122	XIKWAQ
$Poly[[aqua(2,2'-bipyridine)(\mu_3-pyridine-3,4-dicarboxylato)nickel(II)] monohydrate]$	Li, Wang, Zhang & Yu (2007b)	10.1107/S1600536807046466	LEVZAO01
2-(Benzyliminomethyl)-6-methoxyphenol	Li, Wang, Zhang & Yu (2007 <i>i</i>)	10.1107/S1600536807042134	SILDEX
$Poly[aqua(2,2'-bipyridine)(\mu_3-pyridine-2,4-dicarboxylato)palladium(II)]$	Li, Wang, Zhang & Yu (2007c)	10.1107/S1600536807047575	SILXAN
μ -Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]iron(III)} bis(hexafluoridophosphate)	Liu, Dou, Li & Zhang (2007)	10.1107/S1600536807049665	TINRIS
µ-Oxido-bis({4,4'-dibromo-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- manganese(III))	Liu, Dou, Niu & Zhang (2007a)	10.1107/S1600536807051008	GIMZAE
Bis[N-(8-quinolyl)pyridine-2-carboxamidato]iron(III) perchlorate monohydrate	Li, Wang, Zhang & Yu (2007 <i>d</i>)	10.1107/\$1600536807048556	WIMZIC
µ-Oxido-bis({4,4'-dibromo-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- chromium(III))	Liu, Dou, Niu & Zhang (2007b)	10.1107/S1600536807057996	HIQFIX
µ-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]chromium(III)} bis(hexafluorido- phosphate)	Li, Wang et al. (2008)	10.1107/S1600536807061296	MIRNAD
µ-Oxido-bis({4,4'-dibromo-2,2'-ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- iron(III))	Meng et al. (2008a)	10.1107/\$1600536807063143	MIRWUG
catena Poly[[bis(1H-benzimidazole- κN^3)palladium(II)]- μ -benzene-1,4-dicarboxylato- $\kappa^2 O^1:O^4$]	Meng et al. (2008b)	10.1107/S1600536807065051	XISCAE
Oxalatobis(propane-1,3-diamine)manganese(II) chloride monohydrate	Meng et al. (2008e)	10.1107/S1600536807065361	SISWIB
µ-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]manganese(III)} bis(hexafluorido- phosphate)	Meng et al. (2008c)	10.1107/\$1600536807066512	RISRIV
Bis[N-(8-quinolyl)pyridine-2-carboxamidato-κ ³ N,N',N'']manganese(III) perchlorate monohydrate	Meng et al. (2008d)	10.1107/\$1600536808000287	GISLEA
$Diaquabis(pyridine-2-carboxylato-\kappa^2 N, O) cobalt(II)$	Huang (2008)	10.1107/S1600536808010507	WIZPOL
$Tetra-\mu-2, 5-difluorobenzoato-bis[(2,2'-bipyridine)(2,5-difluorobenzoato)gadolinium(III)]$	Li, Zhang et al. (2008)	10.1107/S1600536808023507	BOFQIX
catena-Poly[[(2,2'-bipyridine- $\kappa^2 N, N'$)nickel(II)]- μ -oxalato- $\kappa^4 O^1, O^2: O^7, O^2$]	Li, Yan et al. (2008)	10.1107/S1600536808028389	NOHYUF
$catena-Poly[[aqua(2,2'-bipyridyl)cobalt(II)]-\mu-5-nitroisophthlalato]$	Liu et al. (2008)	10.1107/S1600536808038178	AFIREN
Diaquabis(pyridine-2-carboxylato-ĸ ⁻ N,O)iron(II) catena-Poly[[[diaquathulium(III)]-µ-6-carboxynicotinato-µ-pyridine-2,5-dicarboxylato] dibudrate1	Xia & Sun (2009) Li <i>et al.</i> (2009)	10.1107/S1600536809005765 10.1107/S1600536809008836	RONFEG NOQNIR
1-Phenyl-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one	Liu et al. (2009)	10.1107/S1600536809040227	PUGLOT

References

- Harrison, W. T. A., Simpson, J. & Weil, M. (2010). Acta Cryst. E66, e1-e2.
- Huang, G. S. (2008). Acta Cryst. E64, m685-m686.
- Li, S., Chen, Y., He, H.-M. & Ma, Y.-F. (2009). Acta Cryst. E65, m411.
- Li, S., Wang, S.-B., Zhang, F.-L. & Tang, K. (2008). Acta Cryst. E64, m2.
- Li, S., Yan, X.-L., Wang, S.-B. & Ma, Y.-F. (2008). Acta Cryst. E64, m1258.
- Li, S., Zhang, F.-L., Tang, K. & Ma, Y.-F. (2008). Acta Cryst. E64, m1142.
- Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007*a*). *Acta Cryst.* E63, m2438–m2439.
- Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007b). Acta Cryst. E63, m2604. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007c). Acta Cryst. E63, m2642.
- Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007*c*). Acta Cryst. E**03**, hi2042. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007*d*). Acta Cryst. E**63**, m2781.
- Li, Z.-F., Liu, Y., Zhang, Q. & Yu, X.-J. (2007a). Acta Cryst. E63, m2301.
- Li, Z.-F., Eut, I., Zhang, Q. & Tu, X.-J. (2007). Acta Cryst. E03, m2313. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007e). Acta Cryst. E63, m2312.
- Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007*f*). Acta Cryst. E63, m2512.
- Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007). Acta Cryst. E03, m2500. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007g). Acta Cryst. E63, m2373.
- Li, Z.-F., Wang, S.-W., Zhang, Q. & Tu, X.-J. (2007g). Acta Cryst. E63, m2273. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007h). Acta Cryst. E63, m2445.

- Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007i). Acta Cryst. E63, o3930.
- Liu, Y., Dou, J., Li, D. & Zhang, X. (2007). Acta Cryst. E63, m2722.
- Liu, Y., Dou, J., Niu, M. & Zhang, X. (2007a). Acta Cryst. E63, m2771.
- Liu, Y., Dou, J., Niu, M. & Zhang, X. (2007b). Acta Cryst. E63, m3032.
- Liu, Y., Dou, J., Wang, D., Ma, G. & Li, D. (2005). Acta Cryst. E61, m1834–m1836.
- Liu, Y., Dou, J.-M., Wang, D.-Q., Zhang, X.-X. & Zhou, L. (2006). Acta Cryst. E62, m2794–m2795.
- Liu, Y., He, Q., Zhang, X., Xue, Z. & Lv, C. (2008). Acta Cryst. E64, m1605–m1606.
- Liu, Y., Zhang, X., Xue, Z. & Lv, C. (2009). Acta Cryst. E65, o2724.
- Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008a). Acta Cryst. E64, m63.
- Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008b). Acta Cryst. E64, m133.
- Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008c). Acta Cryst. E64, m204.
- Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008d). Acta Cryst. E64, m332.
- Meng, Q.-G., Wang, L.-T., Liu, Y.-Z. & Pang, Y. (2008e). Acta Cryst. E64, m170-m171.
- Xia, G. & Sun, Z. (2009). Acta Cryst. E65, m315-m316.

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[diaquathulium(III)]-μ-6carboxynicotinato-μ-pyridine-2,5-dicarboxylato] dihydrate]

Sheng Li,^a Yue Chen,^b Hong-Mei He^b and Yuan-Fang Ma^{a*}

^aInstitute of Immunology, Key Laboratory of Natural Drugs and Immunological Engineering of Henan Province, College of Medicine, Henan University, Kaifeng 475003, People's Republic of China, and ^bCollege of Medicine, Henan University, Kaifeng 475003, People's Republic of China Correspondence e-mail: mayf_hd@126.com

Received 13 January 2009; accepted 10 March 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.013 Å; R factor = 0.043; wR factor = 0.111; data-to-parameter ratio = 11.7.

The title compound, { $[Tm(C_7H_3NO_4)(C_7H_4NO_4)(H_2O)_2]$ ·2 H_2O }_n, is isotypic with the analogous Tb^{III} compound [Li *et al.* (2009). *Acta Cryst.* E**65**, m410]. All interatomic distances and angles and the hydrogen-bond geometries are very similar for the two structures. The refined Flack parameter of 0.49 (2) suggests inversion twinning.

Related literature

For the isotypic Tb^{III} compound, see Li *et al.* (2009). For other related structures, see: Huang *et al.* (2007).

Experimental

Crystal data $[Tm(C_7H_3NO_4)(C_7H_4NO_4)-(H_2O)_2]$ ·2H₂O $M_r = 572.21$ Tetragonal, $I\overline{4}$ a = 15.1286 (12) Å c = 14.849 (2) Å

 $V = 3398.6 (6) Å^{3}$ Z = 8Mo K\alpha radiation $\mu = 5.30 \text{ mm}^{-1}$ T = 298 K $0.12 \times 0.11 \times 0.09 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.569, T_{max} = 0.647$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.043 \\ wR(F^2) &= 0.111 \\ S &= 1.07 \\ 3085 \text{ reflections} \\ 263 \text{ parameters} \\ \text{H-atom parameters constrained} \end{split}$$

7093 measured reflections 3085 independent reflections 2977 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$

 $\begin{array}{l} \Delta \rho_{max} = 6.96 \mbox{ e } \mbox{\AA}^{-3} \\ \Delta \rho_{min} = -1.18 \mbox{ e } \mbox{\AA}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ \mbox{with 1444 Friedel pairs} \\ \mbox{Flack parameter: 0.49 (2)} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).						
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$O1-H1\cdots O12^{i}$	0.85	1,97	2.788 (11)	162		
O9−H91···O4 ⁱⁱ	0.85	1.83	2.679 (10)	180		
O9−H92···O4 ⁱⁱⁱ	0.85	1.99	2.842 (10)	180		
$O10-H101\cdots O7^{iv}$	0.85	1.83	2.675 (11)	179		
$O10-H102\cdots O9^{i}$	0.85	2.14	2.996 (10)	179		
O11-H111O5	0.85	2.02	2.872 (11)	179		
O11−H112···O2 ^{iv}	0.85	1.91	2.763 (11)	180		
O12-H121 - O6	0.85	2.15	3.004 (12)	179		
O12−H122···O6 ^{vi}	0.85	2.08	2.933 (12)	179		

Symmetry codes: (i) $y + \frac{1}{2}, -x + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) -y + 1, x, -z; (iv) $-x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) -x, -y, z; (vi) y, -x, -z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful for financial support from Henan University (grant No. 05YBGG013)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2347).

References

Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Huang, Y. G., Wu, B. L., Yuan, D. Q., Xu, Y. Q., Jiang, F. L. & Hong, M. C. (2007). Inorg. Chem. 46, 1171–1176.

Li, S., Zhang, F.-L., Wang, S.-B. & Bai, H.-L. (2009). Acta Cryst. E65, m410. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2009). E65, m411 [doi:10.1107/S1600536809008836]

catena-Poly[[[diaquathulium(III)]-*µ*-6-carboxynicotinato-*µ*-pyridine-2,5-dicarboxylato] dihydrate]

Sheng Li, Yue Chen, Hong-Mei He and Yuan-Fang Ma

S1. Comment

The asymmetric unit of the title compound is shown in Fig. 1. Atom Tm1 displays octa-coordination through two water molecules, four carboxylate O atoms and two pyridyl N atoms from two 2,5-pydc and two 2,5-Hpydc ligands (2,5-pydc = 2,5-pyridinedicarboxylate). The 2,5-pydc and 2,5-Hpydc ligands bridge between Tm^H atoms to generate helical coordination polymers along [001] (Fig. 2). An extensive network of O—H…O hydrogen bonds is formed between the coordination polymers and the lattice water molecules (Table 1 and Fig. 3).

S2. Experimental

A mixture of thulium oxide (0.5 mmol), 2,5-pyridinedicarboxylic acid (0.5 mmol), in H_2O (8 ml) and ethanol (8 ml) was sealed in a 25 ml Teflon-lined stainless steel autoclave and kept at 413 K for three days. Colourless crystals were obtained after cooling to room temperature with a yield of 27%. Elemental analysis calculated: C 28.90, H 2.75, N 4.82%; Found: C 28.75, H 2.72, N 4.79%.

S3. Refinement

H atoms bound to C atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of the water molecules were placed so as to form a reasonable H-bond network and refined as riding with $U_{iso}(H) = 1.5U_{eq}(O)$. The Flack parameter was refined as a full least-squares parameter, and the refined value of 0.49 (2) suggests inversion twinning. Two relatively large peaks remain in the residual electron density (5.5–7.0 eÅ⁻³) on the special positions (0,0,0) and (0.5,0,0.25), which may indicate further lattice water molecules. The refinement as a dihydrate is consistent with the isomorphous Tb^{III} compound (Li *et al.*, 2009).

Figure 1

Aysymmetric unit of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.

One-dimensional coordination polymer running along [001].

Figure 3

Projection along [001], showing the tetragonal arrangement of coordination polymers. O—H…O hydrogen bonds are shown as dashed lines.

(I)

Crystal data

 $[Tm(C_7H_3NO_4)(C_7H_4NO_4)(H_2O)_2]$ ·2H₂O $D_{\rm x} = 2.237 {\rm Mg} {\rm m}^{-3}$ $M_r = 572.21$ Mo *K* α radiation, $\lambda = 0.71073$ Å Tetragonal, $I\overline{4}$ Cell parameters from 3085 reflections Hall symbol: I -4 $\theta = 1.9 - 25.5^{\circ}$ $\mu = 5.30 \text{ mm}^{-1}$ *a* = 15.1286 (12) Å c = 14.849 (2) Å T = 298 KV = 3398.6 (6) Å³ Block, colorless Z = 8 $0.12 \times 0.11 \times 0.09 \text{ mm}$ F(000) = 2224

Data collection

Duiu conection	
Bruker APEXII CCD	7093 measured reflections
diffractometer	3085 independent reflections
Radiation source: fine-focus sealed tube	2977 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
φ and ω scans	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 16$
(SADABS; Bruker, 2001)	$k = -18 \rightarrow 15$
$T_{\min} = 0.569, \ T_{\max} = 0.647$	$l = -17 \rightarrow 16$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_0^2) + (0.0703P)^2 + 51.4546P]$
S = 1.07	where $P = (F_0^2 + 2F_c^2)/3$
3085 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
263 parameters	$\Delta \rho_{\rm max} = 6.96 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.18 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1444 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.49 (2)
map	
1	
Spacial datails	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Tm1	0.30232 (3)	0.22523 (3)	0.22714 (3)	0.01768 (14)	
C1	0.1831 (5)	0.4107 (6)	0.1942 (6)	0.0111 (18)	
C2	0.1327 (6)	0.4765 (6)	0.1551 (6)	0.0164 (19)	
H2A	0.1115	0.5229	0.1900	0.020*	
C3	0.1140 (6)	0.4732 (6)	0.0642 (6)	0.0156 (18)	
H3A	0.0816	0.5185	0.0376	0.019*	
C4	0.1428 (6)	0.4034 (6)	0.0126 (6)	0.0132 (17)	
C5	0.1880 (6)	0.3365 (6)	0.0577 (7)	0.0170 (19)	
H5A	0.2041	0.2864	0.0253	0.020*	
C6	0.2156 (6)	0.4129 (6)	0.2916 (5)	0.0115 (19)	
C7	0.1298 (6)	0.3968 (6)	-0.0877 (7)	0.017 (2)	
C8	0.1188 (6)	0.1237 (6)	0.1724 (6)	0.0133 (18)	
C9	0.0969 (5)	0.1481 (5)	0.2698 (7)	0.0091 (15)	
C10	0.0232 (6)	0.1189 (6)	0.3171 (7)	0.0160 (18)	
H10A	-0.0196	0.0856	0.2876	0.019*	

C11	0.0128 (6)	0.1380 (6)	0.4051 (7)	0.0160 (19)
H11A	-0.0358	0.1162	0.4364	0.019*
C12	0.0768 (6)	0.1922 (6)	0.4506 (6)	0.0103 (16)
C13	0.1453 (6)	0.2202 (6)	0.3982 (6)	0.0136 (18)
H13A	0.1868	0.2571	0.4251	0.016*
C14	0.0689 (6)	0.2110 (7)	0.5496 (6)	0.016 (2)
N1	0.1582 (5)	0.1994 (5)	0.3117 (6)	0.0152 (16)
N2	0.2099 (5)	0.3404 (5)	0.1464 (5)	0.0117 (15)
01	0.2739 (4)	0.3555 (4)	0.3098 (5)	0.0170 (14)
H1	0.3059	0.3647	0.3559	0.025*
O2	0.1850 (6)	0.4687 (6)	0.3432 (5)	0.0315 (18)
O3	0.1614 (5)	0.3285 (4)	-0.1275 (5)	0.0191 (14)
O4	0.0916 (5)	0.4563 (5)	-0.1268 (5)	0.0221 (15)
O5	0.1938 (4)	0.1458 (4)	0.1461 (5)	0.0177 (14)
O6	0.0627 (5)	0.0860 (5)	0.1274 (5)	0.0221 (15)
07	0.0051 (5)	0.1854 (6)	0.5920 (5)	0.0281 (17)
08	0.1335 (4)	0.2552 (5)	0.5835 (5)	0.0215 (15)
O9	0.3709 (5)	0.0809 (4)	0.2010 (4)	0.0189 (14)
H91	0.3827	0.0691	0.2556	0.028*
H92	0.4227	0.0840	0.1790	0.028*
O10	0.4516 (4)	0.2745 (5)	0.2619 (5)	0.0217 (15)
H101	0.4653	0.2877	0.2080	0.033*
H102	0.4887	0.2336	0.2727	0.033*
O11	0.2679 (7)	0.0199 (6)	0.0226 (6)	0.042 (2)
H111	0.2463	0.0571	0.0594	0.063*
H112	0.2823	0.0234	-0.0326	0.063*
O12	0.1257 (6)	-0.0911 (6)	0.0638 (6)	0.041 (2)
H121	0.0724	-0.0900	0.0821	0.061*
H122	0.1146	-0.0831	0.0083	0.061*

Atomic displacement parameters (A^2)						
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Tm1	0.0186 (2)	0.0188 (2)	0.0156 (2)	-0.00011 (16)	-0.00025 (17)	0.00017 (17)
C1	0.006 (4)	0.014 (4)	0.013 (5)	0.002 (3)	-0.006 (3)	0.001 (3)
C2	0.018 (4)	0.014 (4)	0.017 (5)	0.000 (4)	0.004 (4)	-0.006 (4)
C3	0.012 (4)	0.016 (4)	0.019 (4)	0.008 (3)	-0.002 (4)	0.002 (4)
C4	0.011 (4)	0.016 (4)	0.013 (4)	-0.004 (3)	-0.005 (3)	0.001 (3)
C5	0.022 (5)	0.012 (4)	0.017 (5)	0.010 (4)	-0.001 (4)	-0.004 (4)
C6	0.016 (4)	0.015 (4)	0.003 (5)	-0.001 (3)	0.002 (3)	-0.006 (3)
C7	0.017 (5)	0.019 (5)	0.017 (5)	-0.001 (4)	0.001 (4)	-0.009(4)
C8	0.024 (5)	0.013 (4)	0.003 (4)	0.006 (4)	-0.004 (4)	-0.005 (3)
C9	0.013 (4)	0.010 (4)	0.004 (4)	-0.002 (3)	-0.005 (4)	0.005 (3)
C10	0.016 (4)	0.019 (4)	0.013 (4)	0.000 (3)	-0.002 (4)	-0.002 (4)
C11	0.013 (4)	0.015 (4)	0.021 (5)	0.000 (3)	-0.001 (4)	0.002 (4)
C12	0.012 (4)	0.012 (4)	0.007 (4)	0.005 (3)	0.004 (3)	0.000 (3)
C13	0.016 (4)	0.015 (4)	0.009 (4)	-0.002 (3)	0.000 (3)	-0.003 (3)
C14	0.014 (4)	0.024 (5)	0.011 (5)	0.001 (4)	-0.003 (4)	-0.001 (4)

N1	0.017 (4)	0.017 (4)	0.011 (4)	-0.002 (3)	0.000 (3)	-0.007 (3)
N2	0.015 (4)	0.014 (4)	0.006 (4)	0.003 (3)	-0.002(3)	0.000 (3)
01	0.022 (3)	0.015 (3)	0.015 (3)	-0.003 (3)	-0.005 (3)	0.000 (3)
O2	0.047 (5)	0.036 (4)	0.012 (3)	0.021 (4)	-0.004 (3)	-0.005 (3)
O3	0.026 (4)	0.017 (3)	0.014 (3)	0.009 (3)	-0.001 (3)	-0.004 (3)
O4	0.031 (4)	0.022 (4)	0.013 (3)	0.014 (3)	-0.007 (3)	0.000 (3)
O5	0.018 (3)	0.017 (3)	0.018 (4)	-0.003 (3)	0.006 (3)	0.000 (3)
O6	0.019 (3)	0.025 (4)	0.022 (4)	-0.008 (3)	-0.003 (3)	-0.006 (3)
O7	0.030 (4)	0.038 (4)	0.016 (4)	-0.012 (3)	0.007 (3)	-0.007(3)
08	0.016 (3)	0.034 (4)	0.015 (3)	-0.008 (3)	0.003 (3)	-0.007 (3)
09	0.021 (3)	0.022 (3)	0.014 (3)	0.003 (3)	0.007 (3)	0.002 (3)
O10	0.016 (3)	0.032 (4)	0.017 (4)	0.001 (3)	0.001 (3)	-0.001(3)
O11	0.061 (6)	0.036 (5)	0.029 (4)	0.002 (4)	0.015 (4)	-0.007 (4)
012	0.044 (5)	0.041 (5)	0.036 (5)	0.019 (4)	0.002 (4)	0.012 (4)
		(8 . 0)				
Geomei	tric parameters ((A, ⁰)				
Tm1—	01	2.36	1 (7)	C8—C9		1.529 (13)
Tm1—	$O8^{1}$	2.36	3 (7)	C9—N1		1.360 (12)
Tm1—	O5	2.36	4 (7)	C9—C10		1.390 (13)
Tm1—	O3 ¹¹	2.37	1 (7)	C10—C11		1.347 (15)
Tm1—	O10	2.43	4 (7)	C10—H10A		0.930
Tm1—	09	2.44	8(7)	C11–C12		1.438 (13)
Tm1—	N2	2.53	6 (8)	С11—НПА		0.930
Tm1—	N1	2.54	6 (8)	C12—C13		1.363 (13)
C1-N2	2	1.34	1 (12)	C12—C14		1.502 (13)
C1—C2	2	1.38	1 (13)	C13—N1		1.338 (13)
C1—C	6	1.52	8 (12)	C13—H13A		0.930
C2—C.	3	1.38	0 (14)	C14—O7		1.215 (13)
С2—Н	2A	0.93		C14—O8		1.287 (12)
C3—C4	4	1.37	6 (13)	01—H1		0.850
С3—Н	3A	0.93	0	O3—Tm1 ⁱ		2.371 (7)
C4—C:	5	1.39	2 (13)	O8—Tm1 ⁱⁱ		2.363 (7)
C4—C'	7	1.50	6 (14)	O9—H91		0.850
C5—N	2	1.35	9 (13)	O9—H92		0.850
С5—Н	5A	0.93	0	O10—H101		0.850
C6—O	2	1.23	0 (12)	O10—H102		0.850
С6—О	1	1.26	8 (11)	O11—H111		0.850
C7—O	4	1.21	7 (13)	O11—H112		0.850
C7—O	3	1.28	4 (12)	O12—H121		0.850
C8—O	6	1.22	1 (12)	O12—H122		0.850
C8—O	5	1.24	6 (12)			
O1—Ti	m1—O8 ⁱ	116.	1 (3)	O1—C6—C1		114.3 (8)
01—T1	m1—O5	124.	3 (2)	O4—C7—O3		123.6 (9)
O8 ⁱ —T	m1—O5	83.6	(2)	O4—C7—C4		119.1 (9)
01—T1	m1—O3 ⁱⁱ	81.6	(2)	O3—C7—C4		117.4 (9)
08 ⁱ —T	m1—O3 ⁱⁱ	140.	4 (2)	O6—C8—O5		126.0 (9)

O5—Tm1—O3 ⁱⁱ	116.7 (2)	O6—C8—C9	118.6 (9)
O1—Tm1—O10	78.6 (2)	O5—C8—C9	115.4 (8)
O8 ⁱ —Tm1—O10	76.8 (2)	N1-C9-C10	119.8 (9)
O5—Tm1—O10	155.2 (2)	N1	115.0 (8)
O3 ⁱⁱ —Tm1—O10	72.4 (2)	С10—С9—С8	125.1 (8)
O1—Tm1—O9	154.7 (2)	C11—C10—C9	121.0 (9)
O8 ⁱ —Tm1—O9	78.1 (2)	C11—C10—H10A	119.5
O5—Tm1—O9	76.1 (2)	C9—C10—H10A	119.5
O3 ⁱⁱ —Tm1—O9	75.0 (2)	C10—C11—C12	120.0 (9)
O10—Tm1—O9	85.1 (2)	C10—C11—H11A	120.0
O1—Tm1—N2	64.7 (2)	C12—C11—H11A	120.0
O8 ⁱ —Tm1—N2	73.3 (3)	C13—C12—C11	114.9 (8)
O5—Tm1—N2	74.1 (3)	C13—C12—C14	124.1 (8)
O3 ⁱⁱ —Tm1—N2	142.5 (2)	C11—C12—C14	120.9 (8)
O10—Tm1—N2	113.6 (3)	N1—C13—C12	125.9 (9)
O9—Tm1—N2	140.5 (2)	N1—C13—H13A	117.0
O1—Tm1—N1	73.5 (3)	С12—С13—Н13А	117.0
O8 ⁱ —Tm1—N1	144.7 (3)	07—C14—O8	124.5 (9)
O5—Tm1—N1	65.1 (3)	07—C14—C12	120.7 (9)
O3 ⁱⁱ —Tm1—N1	72.3 (3)	O8—C14—C12	114.8 (8)
O10—Tm1—N1	137.5 (3)	C13—N1—C9	118.3 (8)
O9—Tm1—N1	107.7 (2)	C13—N1—Tm1	124.2 (6)
N2—Tm1—N1	82.3 (3)	C9-N1-Tm1	116.5 (7)
N2—C1—C2	121.0 (8)	C1 N2 C5	118.3 (8)
N2—C1—C6	114.9 (7)	C1—N2—Tm1	117.5 (6)
C2—C1—C6	124.0 (8)	C5—N2—Tm1	124.2 (6)
C3—C2—C1	119.9 (8)	C6—O1—Tm1	126.0 (6)
C3—C2—H2A	120.0	C6—O1—H1	117.1
C1—C2—H2A	120.0	Tm1—O1—H1	116.9
C4—C3—C2	120.4 (8)	C7—O3—Tm1 ⁱ	141.4 (6)
С4—С3—НЗА	119.8	C8—O5—Tm1	127.5 (6)
С2—С3—НЗА	119.8	C14—O8—Tm1 ⁱⁱ	136.9 (6)
C3—C4—C5	116.5 (8)	Tm1—O9—H91	97.2
C3—C4—C7	124.0 (9)	Tm1—O9—H92	113.8
C5—C4—C7	119.5 (8)	H91—O9—H92	100.6
N2—C5—C4	123.6 (8)	Tm1-O10-H101	95.7
N2—C5—H5A	118.2	Tm1-O10-H102	115.4
С4—С5—Н5А	118.2	H101—O10—H102	100.8
O2—C6—O1	126.8 (8)	H111—O11—H112	132.5
O2—C6—C1	119.0 (8)	H121—O12—H122	96.9
N2 C1 C2 C2	-4.1 (14)	$O3^{ii}$ Tm1 N1 C0	-1270(7)
-601-02-03	173 5 (8)	0.0 - 1 m 1 - N 1 - C 9	-162.2(6)
$C_1 = C_2 = C_3 = C_4$	20(14)	00 - Tm1 - N1 - 00	-59.8(7)
$C_{2} = C_{3} = C_{4} = C_{5}$	2.0 (17)	$N_{-}Tm_{-}N_{-}C_{9}$	80.9 (6)
$C_2 = C_3 = C_4 = C_7$	-1765(9)	$C_2 - C_1 - N_2 - C_5$	16(13)
$C_2 = C_3 = C_4 = C_7$	-50(14)	$C_2 - C_1 - N_2 - C_5$	-1762(8)
$C_{3} - C_{4} - C_{5} - N_{2}$	173.0 (0)	$C_{1} = C_{1} = C_{2} = C_{3}$	170.2(0)
$C_1 - C_4 - C_3 - M_2$	1/3.7 (7)	02 - 01 - 102 - 11111	1/2.2(/)

N2-C1-C6-O2	-170.7 (9)	C6-C1-N2-Tm1	2.1 (10)
C2-C1-C6-O2	11.5 (14)	C4—C5—N2—C1	3.1 (14)
N2-C1-C6-O1	10.3 (11)	C4—C5—N2—Tm1	-175.1 (7)
C2-C1-C6-O1	-167.5 (8)	O1—Tm1—N2—C1	-7.8 (6)
C3—C4—C7—O4	0.1 (14)	$O8^{i}$ —Tm1—N2—C1	-138.3 (7)
C5—C4—C7—O4	-178.7 (9)	O5—Tm1—N2—C1	133.7 (7)
C3—C4—C7—O3	178.9 (9)	O3 ⁱⁱ —Tm1—N2—C1	20.3 (9)
C5—C4—C7—O3	0.2 (13)	O10-Tm1-N2-C1	-71.3 (7)
O6—C8—C9—N1	-172.2 (8)	O9—Tm1—N2—C1	176.1 (6)
O5—C8—C9—N1	7.3 (11)	N1—Tm1—N2—C1	67.5 (7)
O6—C8—C9—C10	10.7 (13)	O1—Tm1—N2—C5	170.3 (8)
O5—C8—C9—C10	-169.9 (9)	$O8^{i}$ —Tm1—N2—C5	39.8 (8)
N1-C9-C10-C11	-2.3 (13)	O5—Tm1—N2—C5	-48.2 (8)
C8—C9—C10—C11	174.7 (8)	O3 ⁱⁱ —Tm1—N2—C5	-161.6 (7)
C9-C10-C11-C12	2.3 (14)	O10—Tm1—N2—C5	106.8 (8)
C10-C11-C12-C13	-0.2 (13)	O9—Tm1—N2—C5	-5.7 (10)
C10-C11-C12-C14	-177.1 (9)	N1—Tm1—N2—C5	-114.3 (8)
C11—C12—C13—N1	-2.1 (14)	O2—C6—O1—Tm1	161.1 (8)
C14—C12—C13—N1	174.7 (9)	C1—C6—O1—Tm1	-20.0 (11)
C13—C12—C14—O7	178.6 (9)	O8 ⁱ —Tm1—O1—C6	69.8 (7)
C11—C12—C14—O7	-4.8 (14)	O5—Tm1—O1—C6	-30.8 (8)
C13—C12—C14—O8	-1.2 (13)	O3 ⁱⁱ —Tm1—O1—C6	-147.5 (7)
C11—C12—C14—O8	175.4 (8)	O10—Tm1—O1—C6	138.9 (7)
C12—C13—N1—C9	2.2 (14)	09—Tm1 —O1—C6	-170.2 (6)
C12—C13—N1—Tm1	-166.1 (7)	N2—Tm1—O1—C6	15.6 (7)
C10—C9—N1—C13	0.1 (13)	N1—Tm1—O1—C6	-73.6 (7)
C8—C9—N1—C13	-177.2 (8)	04—C7—O3—Tm1 ⁱ	14.3 (17)
C10—C9—N1—Tm1	169.3 (6)	C4—C7—O3—Tm1 ⁱ	-164.4 (7)
C8—C9—N1—Tm1	-8.0 (9)	O6—C8—O5—Tm1	176.6 (7)
O1—Tm1—N1—C13	-44.8 (7)	C9—C8—O5—Tm1	-2.8 (11)
O8 ⁱ —Tm1—N1—C13	-156.8 (7)	O1—Tm1—O5—C8	-46.8 (8)
O5—Tm1—N1—C13	173.4 (8)	O8 ⁱ —Tm1—O5—C8	-164.2 (8)
O3 ⁱⁱ —Tm1—N1—C13	41.5 (7)	O3 ⁱⁱ —Tm1—O5—C8	51.6 (8)
O10—Tm1—N1—C13	6.3 (9)	O10—Tm1—O5—C8	158.1 (7)
O9—Tm1—N1—C13	108.7 (7)	O9—Tm1—O5—C8	116.5 (8)
N2—Tm1—N1—C13	-110.6 (8)	N2—Tm1—O5—C8	-89.7 (7)
O1—Tm1—N1—C9	146.7 (7)	N1—Tm1—O5—C8	-0.9 (7)
O8 ⁱ —Tm1—N1—C9	34.7 (9)	O7—C14—O8—Tm1 ⁱⁱ	23.9 (16)
O5—Tm1—N1—C9	4.9 (6)	C12—C14—O8—Tm1 ⁱⁱ	-156.4 (6)

Symmetry codes: (i) -x+1/2, -y+1/2, z-1/2; (ii) -x+1/2, -y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O1—H1···O12 ⁱⁱⁱ	0.85	1.97	2.788 (11)	162
O9—H91…O4 ⁱⁱ	0.85	1.83	2.679 (10)	180
O9—H92…O4 ^{iv}	0.85	1.99	2.842 (10)	180

supporting information

O10—H101…O7 ⁱ	0.85	1.83	2.675 (11)	179
O10—H102…O9 ⁱⁱⁱ	0.85	2.14	2.996 (10)	179
O11—H111…O5	0.85	2.02	2.872 (11)	179
O11—H112···O2 ⁱ	0.85	1.91	2.763 (11)	180
O12—H121···O6 ^v	0.85	2.15	3.004 (12)	179
O12—H122…O6 ^{vi}	0.85	2.08	2.933 (12)	179

Symmetry codes: (i) -x+1/2, -y+1/2, z-1/2; (ii) -x+1/2, -y+1/2, z+1/2; (iii) y+1/2, -x+1/2, -z+1/2; (iv) -y+1, x, -z; (v) -x, -y, z; (vi) y, -x, -z.

witcher acted