inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Neptunium(III) copper(I) diselenide

Daniel M. Wells,^a S. Skanthakumar,^b L. Soderholm^b and James A. Ibers^a*

^aChemistry Department, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA, and ^bChemistry Division, Argonne National Laboratory, Argonne, IL 60439, USA

Correspondence e-mail: ibers@chem.northwestern.edu

Received 23 January 2009; accepted 2 February 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (Cu–Se) = 0.001 Å; R factor = 0.028; wR factor = 0.068; data-to-parameter ratio = 37.2.

The title compound, NpCuSe₂, is the first ternary neptunium transition-metal chalcogenide. It was synthesized from the elements at 873 K in an evacuated fused-silica tube. Single crystals were grown by vapor transport with I₂. NpCuSe₂ crystallizes in the LaCuS₂ structure type and can be viewed as a stacking of layers of CuSe₄ tetrahedra and of double layers of NpSe₇ monocapped trigonal prisms along [100]. Because there are no Se—Se bonds in the structure, the formal oxidation states of Np/Cu/Se may be assigned as +HII/+I/-II, respectively.

Related literature

For discussion of the LaCuS₂ structure type, see: Julien-Pouzol *et al.* (1981); Ijjaali *et al.* (2004). For other compounds with Cu—Se bonds, see: Daoudi *et al.* (1996); Strobel & Schleid (2004); Ijjaali *et al.* (2004). For other neptunium selenides, see: Wastin *et al.* (1995); Wojakowski (1985). For computational details, see Gelato & Parthé (1987).

Experimental

Crystal data

NpCuSe₂ $M_r = 458.46$ Monoclinic, $P2_1/c$ a = 6.6796 (5) Å b = 7.4384 (6) Å c = 7.1066 (5) Å $\beta = 97.156$ (1)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: numerical (face indexed; *SADABS*; Sheldrick, 2006) $T_{\rm min} = 0.045, T_{\rm max} = 0.212$ 6189 measured reflections 1376 independent reflections 1309 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$

V = 350.34 (5) Å³

Mo $K\alpha$ radiation

 $0.08\,\times\,0.05\,\times\,0.04$ mm

 $\mu = 56.06 \text{ mm}^-$

T = 100 (2) K

Z = 4

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.068$ S = 1.351376 reflections 37 parameters $\Delta \rho_{\text{max}} = 2.43 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -4.48 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-Se2 ⁱ	2.4409 (9)	Np1-Se2	2.9743 (6)
Cu1-Se1 ⁱⁱ	2.4490 (9)	Np1-Se1 ^{vi}	2.9784 (6)
Cu1-Se1 ⁱⁱⁱ	2.5066 (9)	Np1-Se2 ^{vii}	2.9785 (6)
Cu1-Se1	2.5899 (9)	Np1-Se1	2.9950 (6)
Np1-Se2 ^{iv}	2.9330 (6)	Np1-Se1 ^{viii}	3.1419 (6)
Np1-Se2 ^v	2.9540 (6)		
Se2 ⁱ -Cu1-Se1 ⁱⁱ	116.52 (4)	Se2 ⁱ -Cu1-Se1	103.94 (3)
Se2 ⁱ -Cu1-Se1 ⁱⁱⁱ	102.85 (3)	Se1 ⁱⁱ -Cu1-Se1	103.44 (3)
Se1 ⁱⁱ -Cu1-Se1 ⁱⁱⁱ	112.76 (4)		

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x, -y + 1, -z; (iv) -x + 1, -y, -z; (v) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (vi) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (vii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (viii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalMaker* (Palmer, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The research was supported at Northwestern University by the US Department of Energy, Basic Energy Sciences grant ER-15522, and at Argonne National Laboratory by the US Department of Energy, OBES, Chemical Sciences Division, under contract DEAC02–06CH11357. We are indebted to Dr Richard G. Haire of Oak Ridge National Laboratory for the gift of Np metal.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2219).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Daoudi, A., Lamire, M., Levet, J. C. & Noël, H. (1996). J. Solid State Chem. 123, 331–336.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Ijjaali, I., Mitchell, K. & Ibers, J. A. (2004). J. Solid State Chem. 177, 760–764. Julien-Pouzol, M., Jaulmes, S., Mazurier, A. & Guittard, M. (1981). Acta Cryst. B37, 1901–1903.
- Palmer, D. (2008). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2006). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Strobel, S. & Schleid, T. (2004). Z Naturforsch. Teil B., 59, 985-991.
- Wastin, F., Spirlet, J. C. & Rebizant, J. (1995). J. Alloys Compd, 219, 232–237. Wojakowski, A. (1985). J. Less Common Met. 107, 155–158.

supporting information

Acta Cryst. (2009). E65, i14 [doi:10.1107/S160053680900395X]

Neptunium(III) copper(I) diselenide

Daniel M. Wells, S. Skanthakumar, L. Soderholm and James A. Ibers

S1. Comment

In keeping with earlier descriptions of the LaCuS₂ structure type (Julien-Pouzol *et al.*, 1981; Ijjaali *et al.*, 2004) the structure of NpCuSe₂ can be viewed as a stacking of layers of CuSe₄ tetrahedra and double layers of NpSe₇ monocapped trigonal prisms along [100]. Figure 1 provides a view nearly down [010] of the unit cell. It displays the stacking of layers along [100] where atom Se1 is contained within the Cu layer and atom Se2 is contained within the Np double layer. The Cu—Se bond distances are reasonable for a Cu(I) compound; they range from 2.4409 (9) to 2.5899 (9) Å compared to 2.458 (2) to 2.490 (4) Å in SrCuCeSe₃ (Strobel & Schleid, 2004) and 2.450 (1) to 2.607 (1) Å in the Ce analogue CeCuSe₂ (Ijjaali *et al.*, 2004). The Np—Se bond distances range from 2.9330 (6) to 3.1419 (6) Å. Comparisons are limited but can be made with the Np—Se distance of 2.903 (1) Å in NpSe (Wastin *et al.*, 1995) and those of 2.932 and 3.086 Å in NpAsSe (Wojakowski, 1985). There are no Se—Se bonds in NpCuSe₂, so formal oxidation states may be assigned for Np/Cu/Se of +III/+I/-II.

The chemistry of Np is transitional between that of U and Pu. All three elements exhibit multiple oxidation states in their compounds. NpCuSe₂ is the first example of a neptunium chalcogenide compound analogous to a lanthanide(III) structure rather than to a transition-metal or uranium(IV) structure. The Pu analogue is unknown, although arguments based on the stability of various Pu oxidation states suggest it should be stable.

S2. Experimental

NpCuSe₂was formed in an attempted synthesis of the Np analogue of U₃Cu₂Se₇ (Daoudi *et al.*, 1996). Caution! ²³⁷Np is an α -emitting radioisotope and as such is considered a health risk. Its use requires appropriate infrastructure and personnel trained in the handling of radioactive materials. The following reagents were used as obtained from the manufacturer: Cu (Aldrich, 99.5%) and Se (Aldrich, 99%). Resublimed I₂ was utilized as a transport reagent. ²³⁷Np chunks were crushed and used as provided from Oak Ridge National Laboratory. A reaction mixture of 20.2 mg Np (0.085 mmol), 3.58 mg Cu (0.056 mmol), and 15.55 mg Se (0.197 mmol) was loaded into a fused-silica ampoule in an Ar-filled dry box that was then evacuated to 10⁻⁴ Torr and sealed. The sample was placed in a computer controlled furnace, heated to 873 K in 8 h, kept at 873 K for 72 h, cooled at 5 K/h to 373 K, and finally air cooled in the oven to 298 K. The resultant black powder was reloaded into a fused-silica ampoule with 4 mg I₂. The ampoule was evacuated to 10⁻⁴ Torr and sealed. The sample was placed in 873 K for 336 h, cooled at 6.94 K/h to 373 K, before finally being air cooled to 298 K. Black rectangular plates and blocks of NpCuSe₂ were obtained in low yield. The crystals used in characterization were manually extracted from the product mixture.

S3. Refinement

The program *STRUCTURE TIDY* (Gelato & Parthé, 1987) was employed to standardize the atomic coordinates of the structure. The highest peak is 1.71 Å and the deepest hole is 0.08 Å from atom Np1.

Figure 1

A view nearly down [010] of the unit cell of NpCuSe2, with displacement ellipsoids at the 99% probability level.

Neptunium(III) copper(I) diselenide

Crystal data	
NpCuSe ₂ $M_r = 458.46$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.6796 (5) Å b = 7.4384 (6) Å c = 7.1066 (5) Å $\beta = 97.156$ (1)° V = 350.34 (5) Å ³ Z = 4	F(000) = 760 $D_x = 8.692 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4110 reflections $\theta = 4.0-33.7^{\circ}$ $\mu = 56.06 \text{ mm}^{-1}$ T = 100 K Block, black $0.08 \times 0.05 \times 0.04 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: numerical (face indexed; <i>SADABS</i> ; Sheldrick, 2006) $T_{\min} = 0.045, T_{\max} = 0.212$	6189 measured reflections 1376 independent reflections 1309 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 33.9^\circ, \theta_{min} = 3.1^\circ$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.028$	Secondary atom site location: difference Fourier
$wR(F^2) = 0.068$	map
S = 1.35	$w = 11/[\sigma^2(E^2) + (0.0312)E^{212}]$
1376 reflections	$(\Delta/\sigma)_{max} < 0.001$
37 parameters	$\Delta\rho_{max} = 2.43 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta\rho_{min} = -4.48 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.07000 (11)	0.66155 (10)	0.04945 (11)	0.00850 (14)
Np1	0.30684 (3)	0.04823 (3)	0.19759 (3)	0.00478 (8)
Se1	0.09977 (8)	0.39107 (7)	0.28075 (8)	0.00539 (11)
Se2	0.58173 (9)	0.27585 (7)	0.00026 (8)	0.00520 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0082 (3)	0.0081 (3)	0.0091 (3)	-0.0008 (2)	0.0009 (2)	-0.0017 (2)
Np1	0.00560 (11)	0.00354 (11)	0.00509 (11)	-0.00032 (6)	0.00021 (8)	-0.00020 (6)
Se1	0.0063 (2)	0.0041 (2)	0.0056 (2)	0.00028 (16)	-0.00019 (18)	-0.00004 (17)
Se2	0.0058 (2)	0.0044 (2)	0.0051 (2)	0.00028 (17)	-0.00027 (18)	0.00013 (17)

Geometric parameters (Å, °)

Cu1—Se2 ⁱ	2.4409 (9)	Np1—Se1	2.9950 (6)	
Cu1—Se1 ⁱⁱ	2.4490 (9)	Np1—Se1 ^v	3.1419 (6)	
Cu1—Se1 ⁱⁱⁱ	2.5066 (9)	Np1—Cu1 ^{viii}	3.3772 (8)	
Cu1—Se1	2.5899 (9)	Np1—Cu1 ^x	3.3866 (8)	
Cu1—Cu1 ⁱⁱⁱ	2.6421 (15)	Np1—Cu1 ^{vii}	3.4894 (8)	
Cu1—Np1 ⁱⁱ	3.3772 (8)	Se1—Cu1 ^{viii}	2.4490 (9)	
Cu1—Np1 ^{iv}	3.3866 (8)	Se1—Cu1 ⁱⁱⁱ	2.5066 (9)	
Cu1—Np1 ^v	3.4894 (8)	Se1—Np1 ⁱⁱ	2.9784 (6)	
Np1—Se2 ^{vi}	2.9330 (6)	Se1—Np1 ^{vii}	3.1419 (6)	
Np1—Se2 ^{vii}	2.9540 (6)	Se2—Cu1 ⁱ	2.4409 (9)	
Np1—Se2	2.9743 (6)	Se2—Np1 ^{vi}	2.9330 (6)	
Np1—Se1 ^{viii}	2.9784 (6)	Se2—Np1 ^v	2.9540 (6)	
Np1—Se2 ^{ix}	2.9785 (6)	Se2—Np1 ^{xi}	2.9785 (6)	
Se2 ⁱ —Cu1—Se1 ⁱⁱ	116.52 (4)	Se2 ^{vi} —Np1—Cu1 ^{viii}	135.297 (18)	
Se2 ⁱ —Cu1—Se1 ⁱⁱⁱ	102.85 (3)	Se2 ^{vii} —Np1—Cu1 ^{viii}	86.489 (18)	
Se1 ⁱⁱ —Cu1—Se1 ⁱⁱⁱ	112.76 (4)	Se2—Np1—Cu1 ^{viii}	130.824 (18)	
Se2 ⁱ —Cu1—Se1	103.94 (3)	Sel ^{viii} —Np1—Cu1 ^{viii}	47.587 (17)	
Sel ⁱⁱ —Cul—Sel	103.44 (3)	Se2 ^{ix} —Np1—Cu1 ^{viii}	85.522 (17)	
Sel ⁱⁱⁱ —Cul—Sel	117.57 (3)	Se1—Np1—Cu1 ^{viii}	44.705 (16)	
Se2 ⁱ —Cu1—Cu1 ⁱⁱⁱ	116.56 (4)	Sel ^v —Np1—Cu1 ^{viii}	101.316 (18)	

Sel ⁱⁱ —Cul—Cul ⁱⁱⁱ	126.51 (5)	Se2 ^{vi} —Np1—Cu1 ^x	44.728 (17)
Sel ⁱⁱⁱ —Cul—Cul ⁱⁱⁱ	60.33 (3)	Se2 ^{vii} —Np1—Cu1 ^x	145.739 (18)
Se1—Cu1—Cu1 ⁱⁱⁱ	57.24 (3)	Se2—Np1—Cu1 ^x	128.963 (18)
Se2 ⁱ —Cu1—Np1 ⁱⁱ	155.73 (3)	Sel ^{viii} —Np1—Cu1 ^x	44.687 (17)
Sel ⁱⁱ —Cu1—Np1 ⁱⁱ	59.35 (2)	Se2 ^{ix} —Np1—Cu1 ^x	73.231 (18)
Sel ⁱⁱⁱ —Cul—Npl ⁱⁱ	100.32 (3)	Se1—Np1—Cu1 ^x	125.113 (18)
Se1—Cu1—Np1 ⁱⁱ	58.107 (19)	Se1 ^v —Np1—Cu1 ^x	72.255 (17)
Cu1 ⁱⁱⁱ —Cu1—Np1 ⁱⁱ	69.64 (3)	Cu1 ^{viii} —Np1—Cu1 ^x	91.556 (15)
Se2 ⁱ —Cu1—Np1 ^{iv}	57.74 (2)	Se2 ^{vi} —Np1—Cu1 ^{vii}	98.092 (18)
Sel ⁱⁱ —Cu1—Np1 ^{iv}	58.79 (2)	Se2 ^{vii} —Np1—Cu1 ^{vii}	88.423 (18)
Sel ⁱⁱⁱ —Cu1—Np1 ^{iv}	124.26 (3)	Se2—Np1—Cu1 ^{vii}	162.568 (18)
Se1—Cu1—Np1 ^{iv}	117.81 (3)	Sel ^{viii} —Np1—Cu1 ^{vii}	44.741 (17)
Cu1 ⁱⁱⁱ —Cu1—Np1 ^{iv}	172.48 (5)	Se2 ^{ix} —Np1—Cu1 ^{vii}	43.454 (17)
Np1 ⁱⁱ —Cu1—Np1 ^{iv}	113.38 (2)	Se1—Np1—Cu1 ^{vii}	88.717 (17)
Se2 ⁱ —Cu1—Np1 ^v	57.06 (2)	Se1 ^v —Np1—Cu1 ^{vii}	123.660 (17)
Sel ⁱⁱ —Cu1—Np1 ^v	160.72 (3)	Cu1 ^{viii} —Np1—Cu1 ^{vii}	45.22 (2)
Sel ⁱⁱⁱ —Cu1—Np1 ^v	56.76 (2)	Cu1 ^x —Np1—Cu1 ^{vii}	66.861 (13)
Se1—Cu1—Np1 ^v	95.83 (3)	Cu1 ^{viii} —Se1—Cu1 ⁱⁱⁱ	99.74 (3)
Cu1 ⁱⁱⁱ —Cu1—Np1 ^v	65.14 (3)	Cu1 ^{viii} —Se1—Cu1	148.28 (3)
Np1 ⁱⁱ —Cu1—Np1 ^v	134.78 (2)	Cu1 ⁱⁱⁱ —Se1—Cu1	62.43 (3)
Np1 ^{iv} —Cu1—Np1 ^v	111.51 (2)	Cu1 ^{viii} —Se1—Np1 ⁱⁱ	76.53 (2)
Se2 ^{vi} —Np1—Se2 ^{vii}	122.772 (13)	Cu1 ⁱⁱⁱ —Se1—Np1 ⁱⁱ	78.50 (2)
Se2 ^{vi} —Np1—Se2	91.915 (16)	Cu1—Se1—Np1 ⁱⁱ	74.31 (2)
Se2 ^{vii} —Np1—Se2	74.152 (12)	Cu1 ^{viii} —Se1—Np1	75.95 (2)
Se2 ^{vi} —Np1—Se1 ^{viii}	89.408 (17)	Cu1 ⁱⁱⁱ —Se1—Np1	81.29 (2)
Se2 ^{vii} —Np1—Se1 ^{viii}	128.634 (17)	Cu1—Se1—Np1	122.48 (3)
Se2—Np1—Se1 ^{viii}	150.258 (17)	Np1 ⁱⁱ —Se1—Np1	142.27 (2)
Se2 ^{vi} —Np1—Se2 ^{ix}	74.394 (9)	Cu1 ^{viii} —Se1—Np1 ^{vii}	79.17 (2)
Se2 ^{vii} —Np1—Se2 ^{ix}	72.516 (18)	Cu1 ⁱⁱⁱ —Se1—Np1 ^{vii}	178.90 (3)
Se2—Np1—Se2 ^{ix}	127.853 (11)	Cu1—Se1—Np1 ^{vii}	118.47 (3)
Sel ^{viii} —Np1—Se2 ^{ix}	80.988 (16)	Np1 ⁱⁱ —Se1—Np1 ^{vii}	101.074 (17)
Se2 ^{vi} —Np1—Se1	160.988 (17)	Np1—Se1—Np1 ^{vii}	98.541 (17)
Se2 ^{vii} —Np1—Se1	74.905 (16)	Cu1 ⁱ —Se2—Np1 ^{vi}	77.53 (2)
Se2—Np1—Se1	86.315 (17)	Cu1 ⁱ —Se2—Np1 ^v	109.10 (3)
Sel ^{viii} —Np1—Sel	82.962 (10)	Np1 ^{vi} —Se2—Np1 ^v	100.770 (17)
Se2 ^{ix} —Np1—Se1	121.133 (17)	Cu1 ⁱ —Se2—Np1	146.34 (3)
Se2 ^{vi} —Np1—Se1 ^v	76.958 (16)	Np1 ^{vi} —Se2—Np1	88.085 (16)
Se2 ^{vii} —Np1—Se1 ^v	141.588 (16)	Np1 ^v —Se2—Np1	103.371 (19)
Se2—Np1—Se1 ^v	72.469 (16)	Cu1 ⁱ —Se2—Np1 ^{xi}	79.48 (2)
Sel ^{viii} —Np1—Sel ^v	78.926 (17)	Np1 ^{vi} —Se2—Np1 ^{xi}	148.12 (2)
Se2 ^{ix} —Np1—Se1 ^v	144.944 (16)	Np1 ^v —Se2—Np1 ^{xi}	107.484 (18)
Sel—Npl—Sel ^v	84.479 (14)	Np1—Se2—Np1 ^{xi}	99.254 (17)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, *y*+1/2, -*z*+1/2; (iii) -*x*, -*y*+1, -*z*; (iv) *x*, *y*+1, *z*; (v) *x*, -*y*+1/2, *z*-1/2; (vi) -*x*+1, -*y*, -*z*; (vii) *x*, -*y*+1/2, *z*+1/2; (viii) -*x*, *y*-1/2, -*z*+1/2; (ix) -*x*+1, *y*-1/2, -*z*+1/2; (x) *x*, *y*-1, *z*; (xi) -*x*+1, *y*+1/2, -*z*+1/2.