Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Potassium oxalurate monohydrate

## Lian-Feng Zhang

College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China Correspondence e-mail: zhanglf2009@126.com

Received 7 February 2009: accepted 17 February 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.077; data-to-parameter ratio = 10.6.

The title salt, poly[aqua- $\mu_3$ -oxalurato-potassium(I)],  $[K(C_3H_3N_2O_4)(H_2O)]_n$ , which was obtained from a water solution of oxaluric acid and KOH at room temperature, crystallizes as potassium and oxalurate ions along with a water molecule. The K<sup>+</sup> cation lies on a crystallographic twofold rotation axis (site symmetry 2, Wyckoff position f), and the water and oxalurate molecules are located within different mirror planes (site symmetry m, Wyckoff position g). The K<sup>+</sup> cation is eight-coordinated by six O atoms of six oxalurate ligands and two O atoms from two water molecules in a distorted square-antiprismatic geometry. All of the eight coordinated O atoms are in a monodentate bridging mode, with alternate bridged  $K \cdots K$  distances of 3.5575 (12) and 3.3738 (12) Å. The oxalurate ligand shows a  $\mu_3$ -bridging coordination mode, which links the K<sup>+</sup> cation into a threedimensional network. The oxalurate ligands and the water molecules are involved in inter- and intramolecular N- $H \cdots O$ , and  $O - H \cdots O$  hydrogen bonds, which stabilize the network.

### **Related literature**

For oxalurate metal complexes, see: Falvello et al. (2002). For elongated K-O bonds, see: Karapetyan (2008); Kunz et al. (2009).



## **Experimental**

#### Crystal data

| $[K(C_3H_3N_2O_4)(H_2O)]$ | $V = 685.9 (3) \text{ Å}^3$               |
|---------------------------|-------------------------------------------|
| $M_r = 188.19$            | Z = 4                                     |
| Orthorhombic, Pnnm        | Mo $K\alpha$ radiation                    |
| a = 7.7313 (17)  Å        | $\mu = 0.75 \text{ mm}^{-1}$              |
| b = 12.799 (3) Å          | T = 296  K                                |
| c = 6.9313 (16) Å         | $0.41 \times 0.39 \times 0.28 \text{ mm}$ |

#### Data collection

| Bruker SMART CCD area-detector       |  |
|--------------------------------------|--|
| diffractometer                       |  |
| Absorption correction: multi-scan    |  |
| (SADABS; Bruker, 1997)               |  |
| $T_{\min} = 0.748, T_{\max} = 0.816$ |  |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.026$ | 66 parameters                                              |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.077$               | H-atom parameters constrained                              |
| S = 1.09                        | $\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 599 reflections                 | $\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$ |

3320 measured reflections

 $R_{\rm int} = 0.013$ 

699 independent reflections

633 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Selected bond lengths (Å).

| K1-O1       | 2.7291 (11) | K1-O5          | 2.8458 (13) |
|-------------|-------------|----------------|-------------|
| $K1 - O3^i$ | 2.7812 (11) | $K1 - O4^{ii}$ | 2.9775 (13) |
|             | <br>3 1 1   |                |             |

Symmetry codes: (i)  $-x + \frac{3}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii) x + 1, y, z.

Table 2 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$       | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------|------|-------------------------|--------------|--------------------------------------|
| N1-H1···O4 <sup>iii</sup>         | 0.86 | 2.10                    | 2.936 (2)    | 164                                  |
| $N2-H2A\cdots O1^{iv}$            | 0.86 | 2.17                    | 2.997 (2)    | 163                                  |
| $N2-H2A\cdots O2^{iv}$            | 0.86 | 2.37                    | 3.069 (2)    | 139                                  |
| $N2 - H2B \cdot \cdot \cdot O3$   | 0.86 | 2.01                    | 2.667 (2)    | 133                                  |
| $N2-H2B\cdots O5^{v}$             | 0.86 | 2.38                    | 3.076 (3)    | 138                                  |
| $O5-H1W \cdot \cdot \cdot O2^{i}$ | 0.83 | 1.97                    | 2.791 (2)    | 172                                  |
| $O5-H1W \cdot \cdot \cdot O3^{i}$ | 0.83 | 2.59                    | 3.068 (2)    | 118                                  |
| $O5-H2W \cdots O2^{vi}$           | 0.83 | 2.14                    | 2.973 (2)    | 178                                  |

Symmetry codes: (i)  $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (iii) -x + 1, -y + 1, -z; (iv) x - 1, y, z; (v)  $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$ ; (vi)  $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$ .

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Nan Yang Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2155).

## References

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,-Wisconsin, USA. Falvello, L. R., Garde, R. & Tomás, M. (2002). *Inorg. Chem.* 41, 4599–4604.
Karapetyan, H. A. (2008). *Acta Cryst.* E64, m1369.
Kunz, K., Lerner, H.-W. & Bolte, M. (2009). *Acta Cryst.* E65, m171.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

# supporting information

Acta Cryst. (2009). E65, m308-m309 [doi:10.1107/S1600536809005637]

# Potassium oxalurate monohydrate

# **Lian-Feng Zhang**

## S1. Comment

Oxaluric acid is the condensation product of oxalic acid and urea. Deprotonated oxalurate possesses four oxygen atoms and two amine N atoms, which can serve as hydrogen-bond acceptors and hydrogen-bond donors, respectively. In addition, one or more of six different atoms can bind to metal centers in any of at least three distinct coordination modes, namely, chelating, terminal, or bridging coordination (Falvello, 2002).

As shown in Fig. 1, the asymmetric structure unit consists of one K<sup>+</sup> cation, one C<sub>3</sub>H<sub>3</sub>N<sub>2</sub>O<sub>4</sub><sup>-</sup> anion, and one water molecule. The K<sup>+</sup> cation is surrounded by six oxalurate ligands and two water molecules, making close contacts with eight O atoms at 2.7291 (11)–2.9775 (13) A ° in a distorted square antiprismatic geometry of the central atom (Karapetyan, 2008; Kunz, 2009) (Table 1). All the eight coordinated O atoms are in the monodentate bridging mode, with the bridged K…K distance of 3.558 (1) and 3.374 (1) Å alternately. The oxalurate ligand, which is planar, shows a  $\mu_3$ bridging coordination mode and links the K<sup>+</sup> cation into a three-dimensional network (Fig. 2). The oxalurate ligands and water molecules are involved in inter- and intramolecular N—H…O, and O—H…O hydrogen bonds, which stabilize the network (Table 2).

## **S2.** Experimental

A 10 ml sample of a KOH solution (0.5 mol/*L*) was added to a water suspension of oxaluric acid, HOOCCONHCONH<sub>2</sub> (0.5 mmol/10 ml). The KOH addition produced a partial solubilization of the acid and then the precipitation of a white solid. After 20 min of stirring, the solid was filtered off, washed with i-PrOH. The single crystals suitable for X-ray analysis were obtained by slow diffusion of  $Et_2O$  into the water solution of the solid.

## **S3. Refinement**

Water H atoms were located in a difference Fourier and allowed to ride at the value approximately 0.83 Å with  $U_{iso}(H) = 1.5Ueq(O)$ . Other H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å (NH and NH<sub>2</sub>) and  $U_{iso}(H) = 1.2Ueq(N)$ .



# Figure 1

A perspective view of the asymmetric unit, showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level.



## Figure 2

A view of the compound packing down the *a* axis.

## poly[aqua- $\mu_3$ -oxalurato-potassium(I)]

## Crystal data

 $[K(C_3H_3N_2O_4)(H_2O)]$   $M_r = 188.19$ Orthorhombic, *Pnnm* Hall symbol: -P 2 2n a = 7.7313 (17) Å b = 12.799 (3) Å c = 6.9313 (16) Å  $V = 685.9 (3) \text{ Å}^3$ Z = 4

## Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 1997)  $T_{\min} = 0.748, T_{\max} = 0.816$  F(000) = 384  $D_x = 1.823 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1939 reflections  $\theta = 2.9-28.2^{\circ}$   $\mu = 0.75 \text{ mm}^{-1}$  T = 296 KBlock, pink  $0.41 \times 0.39 \times 0.28 \text{ mm}$ 

3320 measured reflections 699 independent reflections 633 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.013$  $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$  $h = -9 \rightarrow 9$  $k = -15 \rightarrow 15$  $l = -8 \rightarrow 6$  Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
|-------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.026$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.077$                               | neighbouring sites                                       |
| S = 1.09                                        | H-atom parameters constrained                            |
| 699 reflections                                 | $w = 1/[\sigma^2(F_o^2) + (0.0457P)^2 + 0.2142P]$        |
| 66 parameters                                   | where $P = (F_o^2 + 2F_c^2)/3$                           |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.17$ e Å <sup>-3</sup>           |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                          |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | Y            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|-------------|-----------------------------|--|
| K1  | 1.0000       | 0.5000       | 0.24337 (6) | 0.0336 (2)                  |  |
| 01  | 0.89541 (18) | 0.34475 (10) | 0.0000      | 0.0329 (4)                  |  |
| O2  | 0.90620 (19) | 0.17010(11)  | 0.0000      | 0.0478 (5)                  |  |
| O3  | 0.55768 (18) | 0.16337 (10) | 0.0000      | 0.0349 (4)                  |  |
| 04  | 0.30509 (18) | 0.44721 (10) | 0.0000      | 0.0396 (4)                  |  |
| N1  | 0.5439 (2)   | 0.34235 (12) | 0.0000      | 0.0278 (4)                  |  |
| H1  | 0.6069       | 0.3977       | 0.0000      | 0.033*                      |  |
| N2  | 0.2646 (2)   | 0.27328 (14) | 0.0000      | 0.0414 (5)                  |  |
| H2A | 0.1538       | 0.2794       | 0.0000      | 0.050*                      |  |
| H2B | 0.3111       | 0.2122       | 0.0000      | 0.050*                      |  |
| C1  | 0.8300 (3)   | 0.25554 (15) | 0.0000      | 0.0266 (5)                  |  |
| C2  | 0.6290 (2)   | 0.24914 (14) | 0.0000      | 0.0239 (4)                  |  |
| C3  | 0.3632 (2)   | 0.35754 (14) | 0.0000      | 0.0281 (5)                  |  |
| 05  | 0.7184 (2)   | 0.46547 (13) | 0.5000      | 0.0490 (5)                  |  |
| H1W | 0.6919       | 0.5284       | 0.5000      | 0.073*                      |  |
| H2W | 0.6298       | 0.4287       | 0.5000      | 0.073*                      |  |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$   | $U^{33}$    | $U^{12}$      | $U^{13}$ | $U^{23}$ |
|----|-------------|------------|-------------|---------------|----------|----------|
| K1 | 0.0406 (3)  | 0.0241 (3) | 0.0362 (4)  | -0.00314 (16) | 0.000    | 0.000    |
| 01 | 0.0213 (7)  | 0.0206 (7) | 0.0567 (10) | -0.0038 (5)   | 0.000    | 0.000    |
| O2 | 0.0210 (7)  | 0.0224 (7) | 0.0999 (15) | 0.0037 (6)    | 0.000    | 0.000    |
| O3 | 0.0226 (7)  | 0.0171 (7) | 0.0650 (11) | -0.0027 (6)   | 0.000    | 0.000    |
| O4 | 0.0227 (7)  | 0.0203 (7) | 0.0758 (12) | 0.0033 (6)    | 0.000    | 0.000    |
| N1 | 0.0175 (8)  | 0.0165 (8) | 0.0493 (11) | -0.0020 (6)   | 0.000    | 0.000    |
| N2 | 0.0172 (8)  | 0.0219 (8) | 0.0852 (16) | 0.0006 (7)    | 0.000    | 0.000    |
| C1 | 0.0194 (10) | 0.0224 (9) | 0.0379 (11) | -0.0015 (7)   | 0.000    | 0.000    |
| C2 | 0.0197 (10) | 0.0190 (9) | 0.0330 (11) | -0.0007 (7)   | 0.000    | 0.000    |
| C3 | 0.0184 (9)  | 0.0221 (9) | 0.0438 (13) | 0.0014 (7)    | 0.000    | 0.000    |
| 05 | 0.0247 (8)  | 0.0271 (8) | 0.0952 (14) | 0.0024 (7)    | 0.000    | 0.000    |

Geometric parameters (Å, °)

| K1—01                                  | 2.7291 (11) | O3—K1 <sup>vii</sup>                     | 2.7812 (11)  |
|----------------------------------------|-------------|------------------------------------------|--------------|
| K1—O1 <sup>i</sup>                     | 2.7291 (11) | O3—K1 <sup>viii</sup>                    | 2.7812 (11)  |
| K1—O3 <sup>ii</sup>                    | 2.7812 (11) | O4—C3                                    | 1.232 (2)    |
| K1—O3 <sup>iii</sup>                   | 2.7812 (11) | O4—K1 <sup>v</sup>                       | 2.9775 (13)  |
| K1—O5 <sup>iv</sup>                    | 2.8458 (13) | O4—K1 <sup>ix</sup>                      | 2.9775 (13)  |
| K1—O5                                  | 2.8458 (13) | N1—C2                                    | 1.362 (2)    |
| K1—O4 <sup>v</sup>                     | 2.9775 (13) | N1—C3                                    | 1.410 (2)    |
| K1—O4 <sup>vi</sup>                    | 2.9775 (13) | N1—H1                                    | 0.8600       |
| K1—K1 <sup>i</sup>                     | 3.3738 (12) | N2—C3                                    | 1.321 (3)    |
| K1—K1 <sup>iv</sup>                    | 3.5575 (12) | N2—H2A                                   | 0.8600       |
| K1—H1W                                 | 2.9950      | N2—H2B                                   | 0.8600       |
| 01—C1                                  | 1.249 (2)   | C1—C2                                    | 1.556 (3)    |
| 01—K1 <sup>i</sup>                     | 2.7291 (11) | O5—K1 <sup>iv</sup>                      | 2.8458 (13)  |
| O2—C1                                  | 1.242 (2)   | O5—H1W                                   | 0.8312       |
| O3—C2                                  | 1.228 (2)   | O5—H2W                                   | 0.8317       |
|                                        |             |                                          |              |
| 01—K1—01 <sup>i</sup>                  | 103.64 (4)  | O3 <sup>ii</sup> —K1—K1 <sup>iv</sup>    | 50.24 (2)    |
| O1—K1—O3 <sup>ii</sup>                 | 153.54 (4)  | O3 <sup>iii</sup> —K1—K1 <sup>iv</sup>   | 50.24 (2)    |
| 01 <sup>i</sup> —K1—O3 <sup>ii</sup>   | 84.00 (3)   | $O5^{iv}$ — $K1$ — $K1^{iv}$             | 51.32 (2)    |
| 01—K1—O3 <sup>iii</sup>                | 84.00 (3)   | O5—K1—K1 <sup>iv</sup>                   | 51.32 (2)    |
| 01 <sup>i</sup> —K1—O3 <sup>iii</sup>  | 153.54 (4)  | O4 <sup>v</sup> —K1—K1 <sup>iv</sup>     | 124.509 (19) |
| O3 <sup>ii</sup> —K1—O3 <sup>iii</sup> | 100.48 (4)  | O4 <sup>vi</sup> —K1—K1 <sup>iv</sup>    | 124.509 (19) |
| O1—K1—O5 <sup>iv</sup>                 | 136.56 (4)  | $K1^{i}$ — $K1$ — $K1^{iv}$              | 180.0        |
| $O1^{i}$ —K1— $O5^{iv}$                | 92.67 (4)   | C1—O1—K1                                 | 141.79 (2)   |
| O3 <sup>ii</sup> —K1—O5 <sup>iv</sup>  | 66.81 (4)   | C1                                       | 141.79 (2)   |
| $O3^{iii}$ —K1— $O5^{iv}$              | 66.07 (4)   | K1K1 <sup>i</sup>                        | 76.36 (4)    |
| 01—K1—05                               | 92.67 (4)   | C2—O3—K1 <sup>vii</sup>                  | 138.06 (4)   |
| 01 <sup>i</sup> —K1—O5                 | 136.56 (4)  | C2—O3—K1 <sup>viii</sup>                 | 138.06 (4)   |
| O3 <sup>ii</sup> —K1—O5                | 66.07 (4)   | K1 <sup>vii</sup> —O3—K1 <sup>viii</sup> | 79.52 (4)    |
| O3 <sup>iii</sup> —K1—O5               | 66.81 (4)   | C3—O4—K1 <sup>v</sup>                    | 120.01 (9)   |
| O5 <sup>iv</sup> —K1—O5                | 102.63 (4)  | C3—O4—K1 <sup>ix</sup>                   | 120.01 (9)   |
| 01—K1—O4 <sup>v</sup>                  | 65.19 (4)   | K1 <sup>v</sup>                          | 69.02 (4)    |
| 01 <sup>i</sup> —K1—O4 <sup>v</sup>    | 73.70 (4)   | C2—N1—C3                                 | 126.81 (16)  |
| O3 <sup>ii</sup> —K1—O4 <sup>v</sup>   | 93.71 (3)   | C2—N1—H1                                 | 116.6        |
| $O3^{iii}$ —K1—O4 <sup>v</sup>         | 131.30 (4)  | C3—N1—H1                                 | 116.6        |
| $O5^{iv}$ —K1—O4 <sup>v</sup>          | 157.65 (5)  | C3—N2—H2A                                | 120.0        |
| O5—K1—O4 <sup>v</sup>                  | 77.49 (3)   | C3—N2—H2B                                | 120.0        |
| O1-K1-O4 <sup>vi</sup>                 | 73.70 (4)   | H2A—N2—H2B                               | 120.0        |
| $O1^{i}$ —K1— $O4^{vi}$                | 65.19 (4)   | O2—C1—O1                                 | 127.80 (18)  |
| O3 <sup>ii</sup> —K1—O4 <sup>vi</sup>  | 131.30 (4)  | O2—C1—C2                                 | 115.29 (17)  |
| $O3^{iii}$ —K1—O4 <sup>vi</sup>        | 93.71 (3)   | O1—C1—C2                                 | 116.91 (17)  |
| $O5^{iv}$ —K1—O4 <sup>vi</sup>         | 77.49 (3)   | O3—C2—N1                                 | 124.44 (17)  |
| O5-K1-O4 <sup>vi</sup>                 | 157.65 (5)  | O3—C2—C1                                 | 119.70 (17)  |
| $O4^{v}$ —K1— $O4^{vi}$                | 110.98 (4)  | N1—C2—C1                                 | 115.87 (16)  |
| 01—K1—K1 <sup>i</sup>                  | 51.82 (2)   | O4—C3—N2                                 | 123.36 (18)  |
| 01 <sup>i</sup> —K1—K1 <sup>i</sup>    | 51.82 (2)   | O4—C3—N1                                 | 119.31 (17)  |
|                                        |             |                                          |              |

| O3 <sup>ii</sup> —K1—K1 <sup>i</sup>     | 129.76 (2)   | N2—C3—N1                                  | 117.34 (17) |
|------------------------------------------|--------------|-------------------------------------------|-------------|
| O3 <sup>iii</sup> —K1—K1 <sup>i</sup>    | 129.76 (2)   | K1 <sup>iv</sup> —O5—K1                   | 77.37 (4)   |
| $O5^{iv}$ —K1—K1 <sup>i</sup>            | 128.68 (2)   | K1 <sup>iv</sup> —O5—H1W                  | 92.2        |
| O5—K1—K1 <sup>i</sup>                    | 128.68 (2)   | K1—O5—H1W                                 | 92.2        |
| $O4^{v}$ — $K1$ — $K1^{i}$               | 55.491 (19)  | K1 <sup>iv</sup> —O5—H2W                  | 135.9       |
| $O4^{vi}$ — $K1$ — $K1^{i}$              | 55.491 (19)  | K1—O5—H2W                                 | 135.9       |
| O1—K1—K1 <sup>iv</sup>                   | 128.18 (2)   | H1W—O5—H2W                                | 110.2       |
| O1 <sup>i</sup> —K1—K1 <sup>iv</sup>     | 128.18 (2)   |                                           |             |
|                                          |              |                                           |             |
| $O1^{i}$ —K1—O1—C1                       | -177.2 (2)   | K1 <sup>vii</sup> —O3—C2—C1               | -73.10 (14) |
| O3 <sup>ii</sup> —K1—O1—C1               | -72.9 (2)    | K1 <sup>viii</sup> —O3—C2—C1              | 73.10 (14)  |
| O3 <sup>iii</sup> —K1—O1—C1              | 28.56 (19)   | C3—N1—C2—O3                               | 0.0         |
| $O5^{iv}$ —K1—O1—C1                      | 73.8 (2)     | C3—N1—C2—C1                               | 180.0       |
| O5—K1—O1—C1                              | -37.78 (19)  | O2—C1—C2—O3                               | 0.0         |
| O4 <sup>v</sup> —K1—O1—C1                | -112.67 (19) | O1—C1—C2—O3                               | 180.0       |
| O4 <sup>vi</sup> —K1—O1—C1               | 124.22 (19)  | O2—C1—C2—N1                               | 180.0       |
| K1 <sup>i</sup> —K1—O1—C1                | -177.2 (2)   | O1—C1—C2—N1                               | 0.0         |
| K1 <sup>iv</sup> —K1—O1—C1               | 2.8 (2)      | K1 <sup>v</sup> —O4—C3—N2                 | -40.86 (6)  |
| $O1^{i}$ —K1— $O1$ —K $1^{i}$            | 0.0          | K1 <sup>ix</sup> —O4—C3—N2                | 40.86 (6)   |
| $O3^{ii}$ —K1—O1—K1 <sup>i</sup>         | 104.25 (5)   | K1 <sup>v</sup> —O4—C3—N1                 | 139.14 (6)  |
| O3 <sup>iii</sup> —K1—O1—K1 <sup>i</sup> | -154.26 (4)  | K1 <sup>ix</sup> —O4—C3—N1                | -139.14 (6) |
| $O5^{iv}$ —K1—O1—K1 <sup>i</sup>         | -109.03 (4)  | C2—N1—C3—O4                               | 180.0       |
| O5—K1—O1—K1 <sup>i</sup>                 | 139.40 (3)   | C2—N1—C3—N2                               | 0.0         |
| $O4^{v}$ —K1—O1—K1 <sup>i</sup>          | 64.50 (3)    | O1—K1—O5—K1 <sup>iv</sup>                 | 139.06 (3)  |
| $O4^{vi}$ —K1—O1—K1 <sup>i</sup>         | -58.60 (3)   | $O1^{i}$ —K1—O5—K1 <sup>iv</sup>          | -107.82 (4) |
| $K1^{iv}$ — $K1$ — $O1$ — $K1^{i}$       | 180.0        | O3 <sup>ii</sup> —K1—O5—K1 <sup>iv</sup>  | -57.25 (3)  |
| K1—O1—C1—O2                              | -92.22 (16)  | O3 <sup>iii</sup> —K1—O5—K1 <sup>iv</sup> | 56.75 (3)   |
| K1 <sup>i</sup> O1O2                     | 92.22 (16)   | O5 <sup>iv</sup> —K1—O5—K1 <sup>iv</sup>  | 0.0         |
| K1—O1—C1—C2                              | 87.78 (16)   | $O4^{v}$ —K1—O5—K1 <sup>iv</sup>          | -157.09 (5) |
| K1 <sup>i</sup> —O1—C1—C2                | -87.78 (16)  | $O4^{vi}$ —K1—O5—K1 <sup>iv</sup>         | 87.77 (8)   |
| K1 <sup>vii</sup> —O3—C2—N1              | 106.90 (14)  | K1 <sup>i</sup> —K1—O5—K1 <sup>iv</sup>   | 180.0       |
| K1 <sup>viii</sup> —O3—C2—N1             | -106.90 (14) |                                           |             |

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) -*x*+3/2, *y*+1/2, -*z*+1/2; (iii) *x*+1/2, -*y*+1/2, *z*+1/2; (iv) -*x*+2, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*; (vi) *x*+1, *y*, *z*; (vii) *x*-1/2, -*y*+1/2, *z*-1/2; (viii) -*x*+3/2, *y*-1/2, -*z*+1/2; (ix) *x*-1, *y*, *z*.

| Hydrogen-hond  | geometry | (Å  | 0) |
|----------------|----------|-----|----|
| 11yurogen-bonu | geometry | (л, | /  |

| <i>D</i> —H··· <i>A</i>             | D—H  | H···A | $D \cdots A$ | D—H···A |  |
|-------------------------------------|------|-------|--------------|---------|--|
| N1—H1····O4 <sup>v</sup>            | 0.86 | 2.10  | 2.936 (2)    | 164     |  |
| N2—H2A····O1 <sup>ix</sup>          | 0.86 | 2.17  | 2.997 (2)    | 163     |  |
| N2—H2A····O2 <sup>ix</sup>          | 0.86 | 2.37  | 3.069 (2)    | 139     |  |
| N2—H2 <i>B</i> ···O3                | 0.86 | 2.01  | 2.667 (2)    | 133     |  |
| N2—H2 <i>B</i> ···O5 <sup>vii</sup> | 0.86 | 2.38  | 3.076 (3)    | 138     |  |
| O5—H1 <i>W</i> ···O2 <sup>ii</sup>  | 0.83 | 1.97  | 2.791 (2)    | 172     |  |
| O5—H1 <i>W</i> ···O3 <sup>ii</sup>  | 0.83 | 2.59  | 3.068 (2)    | 118     |  |
| $O5-H2W\cdots O2^{x}$               | 0.83 | 2.14  | 2.973 (2)    | 178     |  |
|                                     |      |       |              |         |  |

Symmetry codes: (ii) -x+3/2, y+1/2, -z+1/2; (v) -x+1, -y+1, -z; (vii) x-1/2, -y+1/2, z-1/2; (ix) x-1, y, z; (x) x-1/2, -y+1/2, z+1/2.