Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[[diaguacobalt(II)]-bis[μ_2 -1,1'-(butane-1.4-divl)diimidazole- $\kappa^2 N^3$: $N^{3'}$]] dinitrate]

Yu Su,^a Chuan He,^b Zhi-Zhong Sun,^a Guang-Feng Hou^a and Jin-Sheng Gao^a*

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bSchool of Resources and Safety Engineering, China University of Mining and Technology (Beijing Campus), Beijing 100083, People's Republic of China Correspondence e-mail: hgf1000@163.com

Received 17 February 2009; accepted 19 February 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.096; data-to-parameter ratio = 17.3.

In the title compound, $\{[Co(C_{10}H_{14}N_4)_2(H_2O)_2](NO_3)_2\}_n$, the Co^{II} ion lies on an inversion center and is six-coordinated in an octahedral environment by four N atoms from four different 1,1'-butane-1,4-divldiimidazole ligands and two O atoms from the two water molecules. The Co^{II} atoms are bridged by ligands, generating a two-dimensional (4,4)-network. Adjacent fishnet planes are linked to the nitrate anions via $O-H \cdots O$ hydrogen bonds, forming a three-dimensional supramolecular structure.

Related literature

For the synthesis of 1,1'-butane-1,4-divldiimidazole, see: Ma et al. (2003); Yu et al. (2008) For a related Co complex, see: Dong & Zhang (2006).

Experimental

Crystal data

[Co(C10H14N4)2(H2O)2](NO3)2 $\gamma = 98.89 \ (3)^{\circ}$ $M_r = 599.49$ V = 678.2 (8) Å³ Triclinic, $P\overline{1}$ Z = 1a = 8.574 (7) Å Mo $K\alpha$ radiation b = 8.692 (6) Å $\mu = 0.70 \text{ mm}^{-1}$ c = 9.666 (5) Å T = 291 K $\alpha = 104.71 \ (2)^{\circ}$ $0.45 \times 0.28 \times 0.26 \text{ mm}$ $\beta = 97.14 (3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID	6717 measured reflections
diffractometer	3073 independent reflections
Absorption correction: multi-scan	2888 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.015$
$T_{\min} = 0.745, \ T_{\max} = 0.842$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	178 parameters
$vR(F^2) = 0.096$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
3073 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Co1-N3	2.109 (2)	Co1-O1	2.1838 (16)
Co1-N1	2.1697 (18)		
N3-Co1-N1	86.99 (7)	N1-Co1-O1	89.79 (6)
N3-Co1-O1	90.67 (7)		.,

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O1 - H15 \cdots O4^{i} \\ O1 - H16 \cdots O2^{ii} \end{array}$	0.85	1.94	2.775 (3)	167
	0.85	2.09	2.930 (3)	171

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002): program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank Heilongjiang University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2547).

References

Dong, G.-C. & Zhang, R.-C. (2006). Acta Cryst. E62, m1847-m1849. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

metal-organic compounds

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Yu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628.

supporting information

Acta Cryst. (2009). E65, m313-m314 [doi:10.1107/S1600536809005881]

Poly[[[diaquacobalt(II)]-bis[μ_2 -1,1'-(butane-1,4-diyl)diimidazole- $\kappa^2 N^3$: N^3 ']] dinitrate]

Yu Su, Chuan He, Zhi-Zhong Sun, Guang-Feng Hou and Jin-Sheng Gao

S1. Comment

The 1,1'-butane-1,4-diyldiimidazole as a flexible ligand exhibit a variety of supramolecular aggregation patterns (Ma *et al.*, 2003; Dong *et al.*, 2006; Yu *et al.*, 2008). In this paper, we report the new title compound, (I), synthesized by the reaction of 1,1'-butane-1,4-diyldiimidazole ligand and cobalt dinitrate in aqua solution.

In (I), each Co^{II} atom is located on a inversion centre and is six-coordinated in an octahedral environment by four N atoms from four different 1,1'-butane-1,4-diyldiimidazole ligands and two O atoms form the two water molecules (Fig. 1). The Co—N and Co—O distances are normal (Table 1). The Co^{II} atoms are bridged by ligands, generating a two-dimensional (4,4)-network (Fig. 2).

In the crystal, a $R_4^4(12)$ motif is built up by O—H···O hydrogen bonding interaction between the uncoordinated nitrate anions and the coordinated water molecules, which linke the adjacent fishnet planes to a three-dimensional supramolecular structure (Fig. 3, Table 2).

S2. Experimental

1,1'-Butane-1,4-diyldiimidazole ligand was prepared from imidazole and 1,4-dibromobutane in DMSO (Ma *et al.*, 2003*a*). 1,1'-Butane-1,4-diyldiimidazole (0.76 g, 4 mmol) and cobalt dinitrate (0.73 g, 4 mmol) were dissolved in hot aqua solution (10 ml) to give a clear solution. The resulting solution was allowed to stand in a desiccator at room temperature for a week, pink crystals of (I) were obtained.

S3. Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), and with $U_{iso}(H) = 1.2U_{eq}(C)$. Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the hydrogen-bonding interactions [Symmetry code; (I) -x + 1, -y, -z + 1; (II) -x + 1, -y + 2, -z + 2: (III) -x, -y + 1, -z + 1]

Figure 2

A partial packing view, showing the two-dimensional (4,4)-network. Dashed lines indicate the hydrogen-bonding interactions and no involving H atoms have beeb omitted.

Figure 3

A Partial packing view, shoving the three-dimensional supramolecular structure. Dashed lines indicate the hydrogenbonding interactions and no involving H atoms have beeb omitted.

> Z = 1F(000) = 313 $D_x = 1.468 \text{ Mg m}^{-3}$

 $\theta = 3.0-27.5^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 291 KBlock, brown

 $0.45 \times 0.28 \times 0.26 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 6295 reflections

Poly[[[diaquacobalt(II)]-bis[μ_2 -1,1'-(butane-1,4-diyl)diimidazole- $\kappa^2 N^3$: N^3 ']] dinitrate]

Crystal data
[Co(C ₁₀ H ₁₄ N ₄) ₂ (H ₂ O) ₂](NO ₃) ₂
$M_r = 599.49$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 8.574 (7) Å
b = 8.692 (6) Å
c = 9.666 (5) Å
$\alpha = 104.71 \ (2)^{\circ}$
$\beta = 97.14 \ (3)^{\circ}$
$\gamma = 98.89 \ (3)^{\circ}$
$V = 678.2 (8) \text{ Å}^3$

Data collection

Rigaku R-AXIS RAPID	6717 measured reflections
diffractometer	3073 independent reflections
Radiation source: fine-focus sealed tube	2888 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.015$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(ABSCOR; Higashi, 1995)	$k = -11 \rightarrow 11$
$T_{\min} = 0.745, \ T_{\max} = 0.842$	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.096$	neighbouring sites
S = 1.16	H-atom parameters constrained
3073 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0539P)^2 + 0.1966P]$
178 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.1755 (2)	0.2246 (2)	0.53022 (19)	0.0325 (4)
H1	0.2106	0.2822	0.6272	0.039*
C2	0.0680 (2)	0.1572 (2)	0.30656 (19)	0.0336 (4)
H2	0.0131	0.1605	0.2184	0.040*
C3	0.1346 (2)	0.0324 (2)	0.3277 (2)	0.0372 (4)
Н3	0.1343	-0.0642	0.2586	0.045*
C4	0.2858 (2)	-0.0192 (3)	0.5505 (2)	0.0424 (5)
H4	0.2518	-0.1333	0.4989	0.051*
Н5	0.2548	-0.0033	0.6455	0.051*
C5	0.4672 (2)	0.0257 (2)	0.5695 (2)	0.0386 (4)
H6	0.4997	0.1423	0.6092	0.046*
H7	0.5142	-0.0241	0.6393	0.046*
C6	0.2528 (2)	0.6569 (2)	0.77832 (18)	0.0304 (3)
H8	0.1736	0.6650	0.8359	0.036*
C7	0.3724 (2)	0.6120 (2)	0.59375 (19)	0.0315 (3)
Н9	0.3904	0.5825	0.4985	0.038*
C8	0.4887 (2)	0.6696 (2)	0.7135 (2)	0.0352 (4)
H10	0.5989	0.6866	0.7159	0.042*
C9	0.4832 (3)	0.7684 (3)	0.9839 (2)	0.0437 (5)
H11	0.5643	0.7091	1.0092	0.052*
H12	0.4018	0.7584	1.0441	0.052*
C10	0.5592 (2)	0.9465 (3)	1.0135 (2)	0.0449 (5)
H13	0.6130	0.9868	1.1137	0.054*
H14	0.6398	0.9550	0.9523	0.054*
Col	0.0000	0.5000	0.5000	0.02274 (11)

0.09324 (17)	0.27910 (17)	0.43482 (15)	0.0296 (3)
0.20264 (17)	0.07610 (18)	0.47097 (17)	0.0318 (3)
0.22398 (16)	0.60381 (16)	0.63499 (15)	0.0273 (3)
0.41025 (18)	0.69767 (19)	0.83026 (16)	0.0329 (3)
0.8937 (2)	0.6642 (2)	0.02300 (18)	0.0456 (4)
0.08701 (16)	0.57801 (16)	0.32103 (13)	0.0362 (3)
0.1299	0.5143	0.2619	0.054*
0.0215	0.6177	0.2734	0.054*
0.8432 (2)	0.6759 (3)	0.13902 (17)	0.0653 (5)
1.0374 (3)	0.7011 (3)	0.0241 (2)	0.0777 (6)
0.7986 (3)	0.6117 (3)	-0.09384(18)	0.0784 (7)
	0.09324 (17) 0.20264 (17) 0.22398 (16) 0.41025 (18) 0.8937 (2) 0.08701 (16) 0.1299 0.0215 0.8432 (2) 1.0374 (3) 0.7986 (3)	$\begin{array}{cccccccc} 0.09324 \ (17) & 0.27910 \ (17) \\ 0.20264 \ (17) & 0.07610 \ (18) \\ 0.22398 \ (16) & 0.60381 \ (16) \\ 0.41025 \ (18) & 0.69767 \ (19) \\ 0.8937 \ (2) & 0.6642 \ (2) \\ 0.08701 \ (16) & 0.57801 \ (16) \\ 0.1299 & 0.5143 \\ 0.0215 & 0.6177 \\ 0.8432 \ (2) & 0.6759 \ (3) \\ 1.0374 \ (3) & 0.7011 \ (3) \\ 0.7986 \ (3) & 0.6117 \ (3) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0368 (9)	0.0342 (9)	0.0280 (8)	0.0154 (7)	0.0043 (6)	0.0069 (6)
C2	0.0329 (9)	0.0340 (9)	0.0296 (8)	0.0099 (7)	-0.0003 (6)	0.0018 (7)
C3	0.0351 (9)	0.0295 (8)	0.0410 (10)	0.0095 (7)	0.0044 (7)	-0.0016 (7)
C4	0.0378 (10)	0.0439 (10)	0.0616 (12)	0.0199 (8)	0.0163 (9)	0.0325 (9)
C5	0.0347 (9)	0.0401 (10)	0.0481 (11)	0.0173 (8)	0.0071 (8)	0.0188 (8)
C6	0.0275 (8)	0.0326 (8)	0.0281 (8)	0.0071 (6)	0.0016 (6)	0.0040 (6)
C7	0.0294 (8)	0.0352 (9)	0.0289 (8)	0.0104 (7)	0.0043 (6)	0.0050 (6)
C8	0.0252 (8)	0.0408 (9)	0.0361 (9)	0.0074 (7)	0.0022 (7)	0.0052 (7)
C9	0.0417 (10)	0.0535 (12)	0.0264 (9)	0.0104 (9)	-0.0092 (7)	0.0006 (8)
C10	0.0347 (10)	0.0518 (12)	0.0331 (10)	0.0069 (8)	-0.0095 (7)	-0.0068 (8)
Col	0.02260 (16)	0.02296 (16)	0.02042 (16)	0.00763 (11)	-0.00069 (10)	0.00224 (11)
N1	0.0317 (7)	0.0279 (7)	0.0289 (7)	0.0123 (6)	0.0024 (5)	0.0046 (5)
N2	0.0292 (7)	0.0300 (7)	0.0415 (8)	0.0124 (6)	0.0095 (6)	0.0137 (6)
N3	0.0256 (7)	0.0269 (7)	0.0267 (7)	0.0074 (5)	-0.0003 (5)	0.0034 (5)
N4	0.0286 (7)	0.0367 (8)	0.0273 (7)	0.0071 (6)	-0.0034 (5)	0.0017 (6)
N5	0.0577 (11)	0.0593 (11)	0.0302 (8)	0.0315 (9)	0.0132 (7)	0.0166 (7)
01	0.0396 (7)	0.0424 (7)	0.0261 (6)	0.0096 (5)	0.0033 (5)	0.0091 (5)
O2	0.0727 (12)	0.0991 (15)	0.0351 (8)	0.0308 (11)	0.0235 (8)	0.0233 (9)
O3	0.0612 (12)	0.1029 (17)	0.0649 (12)	0.0139 (11)	0.0261 (10)	0.0096 (11)
O4	0.0786 (13)	0.1321 (19)	0.0324 (8)	0.0623 (13)	0.0048 (8)	0.0143 (10)

Geometric parameters (Å, °)

C1—N1	1.318 (2)	C8—N4	1.373 (2)
C1—N2	1.341 (2)	C8—H10	0.9300
C1—H1	0.9300	C9—N4	1.470 (2)
C2—C3	1.350 (3)	C9—C10	1.523 (3)
C2—N1	1.379 (2)	C9—H11	0.9700
С2—Н2	0.9300	C9—H12	0.9700
C3—N2	1.366 (3)	C10-C10 ⁱⁱ	1.521 (4)
С3—Н3	0.9300	C10—H13	0.9700
C4—N2	1.469 (2)	C10—H14	0.9700
C4—C5	1.519 (3)	Co1—N3	2.109 (2)

C4—H4	0.9700	Co1—N3 ⁱⁱⁱ	2.109 (2)
C4—H5	0.9700	Co1—N1 ⁱⁱⁱ	2.1697 (18)
C5-C5 ⁱ	1.510 (4)	Co1—N1	2.1697 (18)
С5—Н6	0.9700	Co1-01 ⁱⁱⁱ	2.1838 (16)
C5—H7	0.9700	$C_{01} = 01$	2 1838 (16)
C6—N3	1 322 (2)	N5-03	1.222(3)
C6—N4	1.322(2) 1 339(2)	N5-03	1.222(3) 1.238(2)
	0.0300	N5 04	1.233(2)
C_{7}	0.9500	01 H15	1.243(3)
C^{-}	1.300(3)	01_HI5	0.8500
C7N3	1.377(2)	01—H10	0.8300
C7—H9	0.9300		
N1 - C1 - N2	112.01 (16)	C9—C10—H13	108.7
N1-C1-H1	124.0	$C10^{ii}$ — $C10$ —H14	108.7
N2-C1-H1	124.0	C9-C10-H14	108.7
$C_3 - C_2 - N_1$	110.00 (16)	H_{13} C_{10} H_{14}	107.6
$C_3 = C_2 = H_2$	125.0	$N^2 C_2 1 N^2$	180.0
N1 C2 H2	125.0	$N_{2} = C_{01} = N_{3}$	03.01.(7)
N1 = C2 = N2	125.0 106.20(15)	N_{2}	95.01 (7) 86.00 (7)
$C_2 = C_3 = N_2$	100.29 (13)	$N_{2} = C_{01} = N_{1}$	80.99 (7)
C2—C3—H3	120.9	$N_{2} = C_{1} = N_{1}$	80.99 (7)
N2-C3-H3	120.9		93.01 (7)
N2-C4-C5	113.21 (16)		180.0
N2—C4—H4	108.9	N3—Col—Ol ^m	89.33 (7)
C5—C4—H4	108.9	N ^{3m} —Col—Ol ^m	90.67 (7)
N2—C4—H5	108.9	N1 ^m —Co1—O1 ^m	89.79 (6)
C5—C4—H5	108.9	N1—Co1—O1 ⁱⁱⁱ	90.21 (6)
H4—C4—H5	107.8	N3—Co1—O1	90.67 (7)
$C5^{i}$ — $C5$ — $C4$	113.9 (2)	N3 ⁱⁱⁱ —Co1—O1	89.33 (7)
C5 ⁱ —C5—H6	108.8	N1 ⁱⁱⁱ —Co1—O1	90.21 (6)
С4—С5—Н6	108.8	N1—Co1—O1	89.79 (6)
C5 ⁱ —C5—H7	108.8	O1 ⁱⁱⁱ —Co1—O1	180.0
С4—С5—Н7	108.8	C1—N1—C2	104.72 (15)
Н6—С5—Н7	107.7	C1—N1—Co1	121.60 (12)
N3—C6—N4	111.57 (16)	C2—N1—Co1	133.01 (12)
N3—C6—H8	124.2	C1—N2—C3	106.97 (15)
N4—C6—H8	124.2	C1—N2—C4	124.90 (17)
C8—C7—N3	109.66 (16)	C3—N2—C4	128.10 (16)
С8—С7—Н9	125.2	C6—N3—C7	105.41 (14)
N3—C7—H9	125.2	C6—N3—Co1	127.19 (12)
C7—C8—N4	105.97 (16)	C7—N3—Co1	126.95 (12)
C7—C8—H10	127.0	C6—N4—C8	107.39 (15)
N4—C8—H10	127.0	C6—N4—C9	125 56 (17)
N4—C9—C10	110.98 (17)	C8—N4—C9	126.96 (16)
N4—C9—H11	109.4	03—N5—02	1197(2)
C10-C9-H11	109.4	03 - N5 - 04	1204(2)
NA (0) H12	109.4	02_N5_04	120.7(2)
C10 - C9 - H12	109.4	$C_2 - 10 - 04$	119.0 (2)
$H_{11} = C_{0} = H_{12}$	109.4		115.0
1111 07 1112	100.0		110.0

supporting information

С10 ^{іі} —С10—С9	114.1 (2)	H15—O1—H16	109.0
C10 ⁱⁱ —C10—H13	108.7		

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+2; (iii) -*x*, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H15…O4 ^{iv}	0.85	1.94	2.775 (3)	167
O1—H16···O2 ^v	0.85	2.09	2.930 (3)	171

Symmetry codes: (iv) -*x*+1, -*y*+1, -*z*; (v) *x*-1, *y*, *z*.