metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(3-Ammoniopropyl)morpholin-4-ium tetrachloridozincate(II)

Meher El Glaoui,^a Erwann Jeanneau,^b Mohamed Rzaigui^a and Cherif Ben Nasr^a*

^aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and ^bUniverstié Lvon1, Centre de Diffractométrie Henri Longchambon, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

Correspondence e-mail: cherif_bennasr@yahoo.fr

Received 26 January 2009; accepted 6 February 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.019; wR factor = 0.020; data-to-parameter ratio = 19.7.

In the title compound, $(C_7H_{18}N_2O)[ZnCl_4]$, the Zn^{II} ion is coordinated by four Cl atoms in a close to tetrahedral geometry. The crystal packing exhibits $C-H\cdots Cl$, $N-H\cdots Cl$ and $N-H \cdots O$ hydrogen bonds.

Related literature

For common applications of this material, see: Bringley & Rajeswaran (2006); Tao et al. (2003). For structure cohesion, see: Brammer et al. (2002). For a discussion of Zn-Cl distances and Cl-Zn-Cl bond angles, see: Guo et al. (2007); Valkonen et al. (2006). For computational details, see: Prince (1982); Watkin (1994).

Experimental

Crystal data

 $(C_7H_{18}N_2O)[ZnCl_4]$ $M_r = 353.42$ Monoclinic, $P2_1/c$ a = 6.2765 (2) Å b = 14.3552 (4) Å c = 15.4858 (6) Å $\beta = 100.759 \ (4)^{\circ}$

Data collection

Oxford Diffraction Xcalibur areadetector diffractometer Absorption correction: multi-scan (CrvsAlis RED: Oxford Diffraction, 2002) $T_{\min} = 0.63, T_{\max} = 0.82$

13120 measured reflections 3304 independent reflections 2815 reflections with $I > 2\sigma(I)$

V = 1370.75 (8) Å³

Mo $K\alpha$ radiation

0.17 \times 0.09 \times 0.08 mm

 $\mu = 2.55 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.021$

Z = 4

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	137 parameters
$wR(F^2) = 0.020$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
2696 reflections	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots O^{i}$	0.87	1.95	2.821 (2)	173
$N2 - H3 \cdots Cl2$	0.87	2.43	3.209 (2)	150
$C1 - H6 \cdot \cdot \cdot Cl2^{ii}$	0.96	2.72	3.653 (2)	164
$C7-H18\cdots Cl2^{iii}$	0.95	2.70	3.644 (2)	173
$C5-H14\cdots Cl4^{ii}$	0.98	2.82	3.657 (2)	144
N2-H4···Cl3 ⁱⁱⁱ	0.87	2.54	3.320 (2)	149
$N1 - H1 \cdots Cl3^{iv}$	0.88	2.42	3.206 (2)	149
$C2-H7\cdots Cl1^{iv}$	0.97	2.74	3.677 (2)	165

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) -x, -y + 1, -z + 1; (iii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYS-TALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

We acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2089).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956-4961.
- Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304-m1305.
- Guo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.
- Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Tao, J., Yin, X., Jiang, Y. B., Yang, L. F., Huang, R. B. & Zheng, L. S. (2003). Eur. J. Inorg. Chem. pp. 2678-2682.
- Valkonen, A., Ahonen, K. & Kolehmainen, E. (2006). Acta Cryst. C62, m290m292.
- Watkin, D. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2009). E65, m282 [doi:10.1107/S1600536809004346]

4-(3-Ammoniopropyl)morpholin-4-ium tetrachloridozincate(II)

Meher El Glaoui, Erwann Jeanneau, Mohamed Rzaigui and Cherif Ben Nasr

S1. Comment

Hybrid compounds have many practical and potential applications in various field (Tao *et al.*, 2003; Bringley and Rajeswaran, 2006). In these materials, the crystal packing is ensured by hydrogen bonds and coulombic interactions (Brammer *et al.*, 2002). Here we report the crystal structure of the title compound, 4-(3-ammoniopropyl)morpholin-4-ium tetrachlorozincate (II) (Fig. 1).

As shown in Fig. 1, to ensure charge balance, the organic species is double protonated at N1 and N2 nitrogen atoms. The structure consists essentially of an 4-(3-ammoniopropyl)morpholin-4-ium and $[ZnCl_4]^{2-}$ anion which are held together by N—H···Cl and C—H···Cl hydrogen bonds so as to build layers developing parallel to (a, c) planes (Fig. 2). These layers, situated at $y = \frac{1}{4}$ and $y = \frac{3}{4}$, are themselves interconnected by a set of N2—H···Cl hydrogen bonds (Table 1), alternating with layers, to form a three dimensional infinite network (Fig. 3). The Zn (II) ion is in tetrahedral coordination environment composed of four chloride ions. Each ZnCl4²⁻ anion is connected to its neighbors organic cations, which are associated *via* N—H···O hydrogen bonds, by N—H···Cl and C—H···Cl interactions involving four chlorine atoms (Table 1). The Cl1 and Cl4 are simple acceptors, the Cl3 is double acceptor and the Cl2 is triple acceptor of hydrogen bonds. The (N)—H···Cl distances, varying between 2.42 and 2.54 Å, are smaller than the sum of the Van der Walls radii of the chlorine and hydrogen atoms [r(Cl) + r(H) = 2.81 Å]. Consequently, these values correspond well to strong hydrogen bonds.

However, it is worth noticing that the Zn—Cl bond lengths and Cl—Zn—Cl bond angles in the $[ZnCl_4]^{2-}$ anion are not equal to one another but vary with the environment around the Cl atoms(Valkonen *et al.*, 2006). In the title compound, the Zn—Cl bond lengths vary between 2.2486 (4) and 2.2950 (4) Å. The Cl—Zn—Cl bond angles range from 104.32 (1) to 114.43 (2) °. These values indicate that the anionic $[ZnCl_4]^{2-}$ tetrahedron is slightly distorted (Guo *et al.*, 2007).

S2. Experimental

 $ZnCl_2$, aqueous 1*M* HCl solution and 3-Morpholinopropylamine in a 1:2:1 molar ratio were mixed and dissolved in sufficient ethanol. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in ethanol at room temperature after a few days.

S3. Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 and O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 40% probability level.

Figure 2

Crystal structure of (I) viewed along b axis showing the layered organization.

The packing of (I) viewed down the *a* axis showing layers at $y = \frac{1}{4}$ and $y = \frac{3}{4}$.

4-(3-Ammoniopropyl)morpholin-4-ium tetrachloridozincate(II)

Crystal data

 $(C_7H_{18}N_2O)[ZnCl_4]$ $M_r = 353.42$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.2765 (2) Å b = 14.3552 (4) Å c = 15.4858 (6) Å $\beta = 100.759$ (4)° V = 1370.75 (8) Å³ Z = 4

Data collection

Oxford Diffraction XCALIBUR area-detector diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 15.9897 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2002) $T_{\min} = 0.63, T_{\max} = 0.82$

Refinement

Refinement on *F* Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.020$ F(000) = 720 $D_x = 1.712 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.7107 \text{ Å}$ Cell parameters from 7336 reflections $\theta = 2.8-29.2^{\circ}$ $\mu = 2.55 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.17 \times 0.09 \times 0.08 \text{ mm}$

13120 measured reflections 3304 independent reflections 2815 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 29.3^\circ, \ \theta_{min} = 2.8^\circ$ $h = -8 \rightarrow 8$ $k = -18 \rightarrow 18$ $l = -18 \rightarrow 20$

S = 1.042696 reflections 137 parameters 0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained Method, part 1, Chebychev polynomial, (Watkin, 1994, *P*rince, 1982) [weight] = 1.0/[A₀*T₀(x) + A₁*T₁(x) ··· + A_{n-1}]*T_{n-1}(x)] where A_i are the Chebychev coefficients listed below and x = *F* /*F*max Method = Robust Weighting (*P*rince, 1982) W = [weight] * [1-(delta*F*/6*sigma*F*)²]² A_i are: 8.69 -6.08 5.75 (Δ/σ)_{max} = 0.001 $\Delta\rho_{max} = 0.27 \text{ e } \text{Å}^{-3}$ Extinction correction: Larson (1970), Equation 22 Extinction coefficient: 64 (4)

Special details

Refinement. Data with $I \leq 3\sigma(I)$ were excluded from the refinement.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.37044 (3)	0.371470 (11)	0.756164 (11)	0.0273	
C11	0.48665 (7)	0.47971 (3)	0.85946 (3)	0.0402	
Cl2	0.00747 (6)	0.35230 (3)	0.74949 (3)	0.0367	
C13	0.51658 (6)	0.22854 (2)	0.79921 (3)	0.0372	
Cl4	0.43433 (6)	0.42069 (3)	0.62551 (2)	0.0402	
C1	0.2040 (3)	0.73398 (12)	0.47182 (11)	0.0383	
C2	0.2358 (3)	0.83554 (14)	0.45739 (12)	0.0468	
C3	-0.0795 (3)	0.87396 (11)	0.50847 (11)	0.0441	
C4	-0.1308 (2)	0.77313 (10)	0.52356 (10)	0.0319	
C5	0.0385 (3)	0.61461 (10)	0.54896 (10)	0.0319	
C6	-0.1030 (2)	0.58498 (10)	0.61278 (9)	0.0310	
C7	-0.0059 (2)	0.60272 (10)	0.70780 (9)	0.0284	
0	0.0323 (2)	0.88265 (8)	0.43720 (8)	0.0456	
N1	0.07386 (18)	0.71776 (8)	0.54268 (7)	0.0256	
N2	-0.1501 (2)	0.56344 (9)	0.76395 (8)	0.0355	
H1	0.1513	0.7371	0.5924	0.0370*	
H2	-0.0977	0.5758	0.8191	0.0530*	
Н3	-0.1610	0.5037	0.7569	0.0543*	
H4	-0.2786	0.5881	0.7508	0.0540*	
Н5	0.3391	0.7034	0.4902	0.0478*	
H6	0.1254	0.7059	0.4190	0.0461*	
H7	0.3247	0.8625	0.5090	0.0563*	
H8	0.3080	0.8410	0.4080	0.0566*	
H9	0.0095	0.9001	0.5612	0.0534*	
H10	-0.2154	0.9071	0.4938	0.0536*	
H11	-0.2037	0.7673	0.5727	0.0386*	
H12	-0.2185	0.7468	0.4714	0.0373*	
H13	0.1820	0.5879	0.5638	0.0378*	
H14	-0.0305	0.5963	0.4896	0.0376*	
H15	-0.1224	0.5188	0.6059	0.0375*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H16	-0.2428	0.6161	0.5982	0.0365*	
H17	0.1334	0.5740	0.7240	0.0348*	
H18	0.0068	0.6679	0.7193	0.0354*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02689 (9)	0.02429 (9)	0.02946 (9)	-0.00028 (6)	0.00203 (6)	0.00055 (6)
Cl1	0.0496 (2)	0.03524 (19)	0.03582 (19)	-0.00756 (15)	0.00812 (16)	-0.00963 (14)
Cl2	0.02569 (16)	0.03157 (17)	0.0513 (2)	-0.00010 (12)	0.00342 (14)	0.00177 (15)
Cl3	0.02699 (16)	0.02632 (16)	0.0545 (2)	0.00182 (12)	-0.00201 (15)	0.00397 (15)
Cl4	0.0402 (2)	0.0493 (2)	0.03073 (18)	-0.00006 (16)	0.00604 (15)	0.00497 (15)
C1	0.0350 (8)	0.0496 (9)	0.0336 (8)	0.0016 (7)	0.0147 (6)	0.0046 (7)
C2	0.0456 (9)	0.0538 (10)	0.0415 (9)	-0.0109 (8)	0.0096 (7)	0.0126 (8)
C3	0.0648 (11)	0.0334 (8)	0.0370 (8)	0.0071 (7)	0.0177 (8)	0.0041 (6)
C4	0.0333 (7)	0.0331 (7)	0.0306 (7)	0.0031 (6)	0.0093 (6)	0.0007 (5)
C5	0.0405 (8)	0.0261 (7)	0.0297 (7)	0.0009 (5)	0.0084 (6)	-0.0024 (5)
C6	0.0367 (7)	0.0256 (7)	0.0300 (7)	-0.0060(5)	0.0047 (6)	-0.0010 (5)
C7	0.0318 (7)	0.0238 (6)	0.0293 (7)	-0.0020 (5)	0.0052 (5)	0.0007 (5)
0	0.0610 (8)	0.0437 (7)	0.0337 (6)	0.0007 (5)	0.0133 (5)	0.0131 (5)
N1	0.0283 (6)	0.0286 (6)	0.0192 (5)	-0.0033 (4)	0.0027 (4)	-0.0002 (4)
N2	0.0441 (7)	0.0331 (6)	0.0310 (6)	-0.0010 (5)	0.0119 (5)	0.0018 (5)

Geometric parameters (Å, °)

Zn1—Cl1	2.2515 (4)	С5—Н13	0.966
Zn1—Cl2	2.2779 (4)	C5—H14	0.976
Zn1—Cl3	2.2950 (4)	C6—C7	1.5056 (19)
Zn1—Cl4	2.2486 (4)	C6—H16	0.973
O—C2	1.427 (2)	C6—H15	0.961
O—C3	1.419 (2)	C7—N2	1.4790 (18)
C2—C1	1.494 (2)	C7—H18	0.954
С2—Н7	0.966	C7—H17	0.957
С2—Н8	0.962	N2—H2	0.875
C1—N1	1.5036 (18)	N2—H3	0.866
С1—Н5	0.950	N2—H4	0.869
С1—Н6	0.961	C4—C3	1.510 (2)
N1—C5	1.5032 (17)	C4—H11	0.963
N1-C4	1.4922 (18)	C4—H12	0.965
N1—H1	0.875	С3—Н9	0.974
C5—C6	1.508 (2)	С3—Н10	0.966
Cl1—Zn1—Cl2	107.710 (16)	C5—C6—C7	114.36 (12)
Cl1—Zn1—Cl3	110.593 (17)	C5—C6—H16	109.5
Cl2—Zn1—Cl3	104.316 (14)	C7—C6—H16	109.4
Cl1—Zn1—Cl4	109.501 (17)	C5—C6—H15	106.5
Cl2—Zn1—Cl4	109.997 (17)	C7—C6—H15	107.2
Cl3—Zn1—Cl4	114.428 (17)	H16—C6—H15	109.8

C2-O-C3	109.87 (13)	C6—C7—N2	109.25 (12)
$0 - C_{2} - C_{1}$	110.87 (14)	C6-C7-H18	110.7
O-C2-H7	110.3	N2-C7-H18	107.7
C1—C2—H7	109.9	С6—С7—Н17	111.5
О—С2—Н8	108.8	N2—C7—H17	108.1
С1—С2—Н8	107.1	H18—C7—H17	109.5
Н7—С2—Н8	109.9	C7—N2—H2	109.7
C2-C1-N1	111.48 (13)	C7—N2—H3	110.2
С2—С1—Н5	111.0	H2—N2—H3	109.4
N1—C1—H5	106.6	C7—N2—H4	110.5
С2—С1—Н6	110.1	H2—N2—H4	108.0
N1—C1—H6	107.0	H3—N2—H4	109.0
Н5—С1—Н6	110.5	N1—C4—C3	109.92 (13)
C1—N1—C5	107.86 (11)	N1—C4—H11	108.4
C1—N1—C4	109.72 (11)	C3—C4—H11	110.6
C5—N1—C4	113.91 (11)	N1—C4—H12	107.1
C1—N1—H1	107.7	C3—C4—H12	110.5
C5—N1—H1	108.7	H11—C4—H12	110.3
C4—N1—H1	108.8	C4—C3—O	110.79 (13)
N1—C5—C6	115.63 (11)	С4—С3—Н9	110.1
N1—C5—H13	105.3	О—С3—Н9	109.2
С6—С5—Н13	111.7	C4—C3—H10	107.7
N1—C5—H14	104.5	O—C3—H10	108.4
C6—C5—H14	109.2	Н9—С3—Н10	110.5
H13—C5—H14	110.3		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2····O ⁱ	0.87	1.95	2.821 (2)	173
N2—H3…Cl2	0.87	2.43	3.209 (2)	150
C1—H6···Cl2 ⁱⁱ	0.96	2.72	3.653 (2)	164
C7—H18····Cl2 ⁱⁱⁱ	0.95	2.70	3.644 (2)	173
C5—H14····Cl4 ⁱⁱ	0.98	2.82	3.657 (2)	144
N2—H4···Cl3 ⁱⁱⁱ	0.87	2.54	3.320 (2)	149
N1—H1···Cl3 ^{iv}	0.88	2.42	3.206 (2)	149
C2—H7···Cl1 ^{iv}	0.97	2.74	3.677 (2)	165

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) -x, -y+1, -z+1; (iii) -x, y+1/2, -z+3/2; (iv) -x+1, y+1/2, -z+3/2.