metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[1-ethyl-6-fluoro-7-(4-methylpiperazin-1-vl)-4-oxo-1.4-dihvdroguinoline-3-carboxylato- $\kappa^2 O^3, O^4$]copper(II)

Wei Qi,^a Jing Gao,^b Di Liang^a and Zhe An^a*

^aSchool of Pharmaceutical Science, Harbin Medical University, Harbin 150086, People's Republic of China, and ^bDepartment of Pharmacy, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China Correspondence e-mail: anzhe6409@sina.com

Received 24 January 2009; accepted 29 January 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.103; data-to-parameter ratio = 16.1.

In the title compound, $[Cu(C_{17}H_{19}FN_3O_3)_2]$, the Cu^{II} atom (site symmetry $\overline{1}$) exhibits a slightly distorted CuO₄ squareplanar geometry defined by two bidentate O,O'-bonded 1ethyl-6-fluoro-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (perfloxacinate) anions.

Related literature

For the silver, manganese, cobalt and zinc complexes of the perfloxacinate (pef) anion, see: Baenziger et al. (1986); An, Huang & Qi (2007); An, Qi & Huang (2007); Qi et al.(2008), respectively. For background on the medicinal uses of Hpef, see: Mizuki et al. (1996).

Experimental

Crystal data

$[Cu(C_{17}H_{19}FN_{3}O_{3})_{2}]$	$\gamma = 108.01 \ (3)^{\circ}$
$M_r = 728.24$	V = 802.7 (4) Å ³
Triclinic, P1	Z = 1
a = 8.5548 (17) Å	Mo $K\alpha$ radiation
b = 10.253 (2) Å	$\mu = 0.75 \text{ mm}^{-1}$
c = 10.467 (2) Å	T = 296 (2) K
$\alpha = 95.22 \ (3)^{\circ}$	$0.36 \times 0.28 \times 0.19 \text{ mm}$
$\beta = 109.63 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector	7880 measured reflections
diffractometer	3633 independent reflections
Absorption correction: multi-scan	3274 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.022$
$T_{\min} = 0.774, \ T_{\max} = 0.871$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.033$	225 parameters
$wR(F^2) = 0.103$	H-atom parameters constraine

225 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

1.9247 (13)

Table 1

S = 1.143633 reflections

Selected bond length	s (A).		
Cu1-O1	1.8858 (15)	Cu1-O3	

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for

The authors thank the Scientific Research Fund of Heilongjiang Provincial Education Department (grant No. 11531115) and the Graduate Creativity Funds of Harbin Medical University (HCXS) (grant No. 2008008) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2904).

References

publication: SHELXTL.

An, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.

An, Z., Qi, W. & Huang, J. (2007). Acta Cryst. E63, m2084-m2085.

Baenziger, N. C., Fox, C. L. & Modak, S. L. (1986). Acta Cryst. C42, 1505-1509. Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 (Suppl. A), 41-45.

Qi, W., Huang, J. & An, Z. (2008). Acta Cryst. E64, m302.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m248 [doi:10.1107/S1600536809003584]

Bis[1-ethyl-6-fluoro-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylato- $\kappa^2 O^3$, O^4] copper(II)

Wei Qi, Jing Gao, Di Liang and Zhe An

S1. Comment

Pefloxacin (Hpef, C₁₇H₂₀FN₃O₃, 1-ethyl-6-fluoro-7-(4-methylpiperazin-1-yl)-4-oxo-quinoline -3-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki *et al.*, 1996;). The silver(I), manganese(II), cobalt(II) and zinc(II) derivative of the pefloxacinate (pef) anion has been reported (Baenziger *et al.*,1986; An, Huang & Qi (2007); An, Qi & Huang (2007); Qi *et al.*(2008); Qi *et al.*, 2008). The title copper(II)-containing complex of pef, (I), is reported here.

The structure of (I) is built up from Cu^{2+} cations (site symmetry $\overline{1}$) anions (pef) ligands, (Fig. 1). It is confirmed that four coordinating O atoms arround Cu^{II} cation form a square planar configuration. (Table 1).

S2. Experimental

A mixture of $Cu(CH_3COO)_2$.H₂O (0.050 g, 0.25 mmol), Hpef (0.17 g, 0.5 mmol) and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 72 h under autogenous pressure. Upon cooling, blue prisms of (I) were obtained from the reaction mixture.

S3. Refinement

All H atoms on C atoms were generated geometrically and refined as riding atoms with C—H= 0.93-0.97Å and U_{iso} (H)= $1.2U_{eq}$ (C) or $1.5U_{eq}$ (methyl C).

Figure 1

The molecular structure of (I), show the Cu coordination, showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). [Symmetry code: (i) 1-x, 1-y, 1-z.]

Bis[1-ethyl-6-fluoro-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline- 3-carboxylato- $\kappa^2 O^3$, O^4] copper(II)

Z = 1

F(000) = 379

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 0.75 \text{ mm}^{-1}$

T = 296 K

Prism, blue

 $R_{\rm int} = 0.022$

 $h = -11 \rightarrow 10$

 $k = -10 \rightarrow 13$

 $l = -13 \rightarrow 13$

 $D_{\rm x} = 1.506 {\rm Mg} {\rm m}^{-3}$

 $0.36 \times 0.28 \times 0.19 \text{ mm}$

7880 measured reflections

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$

3633 independent reflections

3274 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7808 reflections

Crystal data

 $\begin{bmatrix} Cu(C_{17}H_{19}FN_{3}O_{3})_{2} \end{bmatrix}$ $M_{r} = 728.24$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.5548 (17) Å b = 10.253 (2) Å c = 10.467 (2) Å $a = 95.22 (3)^{\circ}$ $\beta = 109.63 (3)^{\circ}$ $\gamma = 108.01 (3)^{\circ}$ $V = 802.7 (4) \text{ Å}^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.774, T_{\max} = 0.871$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.103$	neighbouring sites
S = 1.14	H-atom parameters constrained
3633 reflections	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 0.1742P]$
225 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.5000	0.5000	0.5000	0.02371 (11)	
F1	0.82563 (18)	0.16415 (13)	0.12581 (17)	0.0524 (4)	
01	0.59169 (18)	0.69304 (14)	0.50180 (16)	0.0337 (3)	

O3 $0.63511(17)$ $0.45479(13)$ $0.39993(15)$ $0.0302(3)$ N1 $1.09849(19)$ $0.72064(15)$ $0.39047(16)$ $0.0239(3)$ N2 $1.1346(2)$ $0.33064(16)$ $0.10980(17)$ $0.0291(3)$ N3 $1.3578(2)$ $0.24538(19)$ $-0.00270(19)$ $0.0353(4)$ C1 $0.7358(3)$ $0.76677(19)$ $0.4892(2)$ $0.0294(4)$ C2 $0.8370(2)$ $0.69045(18)$ $0.44045(19)$ $0.0244(4)$ C3 $0.7735(2)$ $0.54329(18)$ $0.39289(18)$ $0.0231(3)$ C4 $0.8738(2)$ $0.49016(18)$ $0.32802(19)$ $0.0233(3)$ C5 $0.8070(2)$ $0.34754(19)$ $0.2611(2)$ $0.0297(4)$ H5A 0.7014 0.2864 0.2617 $0.036*$ C6 $0.8976(3)$ $0.30001(19)$ $0.1959(2)$ $0.0215(4)$ C7 $1.0598(2)$ $0.52630(19)$ $0.2581(2)$ $0.0227(3)$ C7 $1.0346(2)$ $0.57967(18)$ $0.32596(18)$ $0.0227(3)$ C10 $0.9982(2)$ $0.77176(18)$ $0.43938(19)$ $0.0254(4)$ H10A 1.0400 0.8680 0.4748 $0.031*$ C11 $1.2746(2)$ $0.81963(19)$ $0.4025(2)$ $0.0307(4)$	
N11.09849 (19)0.72064 (15)0.39047 (16)0.0239 (3)N21.1346 (2)0.33064 (16)0.10980 (17)0.0291 (3)N31.3578 (2)0.24538 (19)-0.00270 (19)0.0353 (4)C10.7358 (3)0.76677 (19)0.4892 (2)0.0294 (4)C20.8370 (2)0.69045 (18)0.44045 (19)0.0224 (4)C30.7735 (2)0.54329 (18)0.39289 (18)0.0231 (3)C40.8738 (2)0.49016 (18)0.32802 (19)0.0233 (3)C50.8070 (2)0.34754 (19)0.2611 (2)0.0297 (4)H5A0.70140.28640.26170.036*C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)C71.0598 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
N21.1346 (2)0.33064 (16)0.10980 (17)0.0291 (3)N31.3578 (2)0.24538 (19)-0.00270 (19)0.0353 (4)C10.7358 (3)0.76677 (19)0.4892 (2)0.0294 (4)C20.8370 (2)0.69045 (18)0.44045 (19)0.0244 (4)C30.7735 (2)0.54329 (18)0.39289 (18)0.0231 (3)C40.8738 (2)0.49016 (18)0.32802 (19)0.0233 (3)C50.8070 (2)0.34754 (19)0.2611 (2)0.0297 (4)H5A0.70140.28640.26170.036*C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)C71.0598 (2)0.38636 (19)0.1906 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
N31.3578 (2)0.24538 (19)-0.00270 (19)0.0353 (4)C10.7358 (3)0.76677 (19)0.4892 (2)0.0294 (4)C20.8370 (2)0.69045 (18)0.44045 (19)0.0244 (4)C30.7735 (2)0.54329 (18)0.39289 (18)0.0231 (3)C40.8738 (2)0.49016 (18)0.32802 (19)0.0233 (3)C50.8070 (2)0.34754 (19)0.2611 (2)0.0297 (4)H5A0.70140.28640.26170.036*C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)C71.0598 (2)0.38636 (19)0.1906 (2)0.0267 (4)C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C10.7358 (3)0.76677 (19)0.4892 (2)0.0294 (4)C20.8370 (2)0.69045 (18)0.44045 (19)0.0244 (4)C30.7735 (2)0.54329 (18)0.39289 (18)0.0231 (3)C40.8738 (2)0.49016 (18)0.32802 (19)0.0233 (3)C50.8070 (2)0.34754 (19)0.2611 (2)0.0297 (4)H5A0.70140.28640.26170.036*C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)C71.0598 (2)0.38636 (19)0.1906 (2)0.0267 (4)C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C20.8370 (2)0.69045 (18)0.44045 (19)0.0244 (4)C30.7735 (2)0.54329 (18)0.39289 (18)0.0231 (3)C40.8738 (2)0.49016 (18)0.32802 (19)0.0233 (3)C50.8070 (2)0.34754 (19)0.2611 (2)0.0297 (4)H5A0.70140.28640.26170.036*C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)C71.0598 (2)0.38636 (19)0.1906 (2)0.0267 (4)C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C30.7735 (2)0.54329 (18)0.39289 (18)0.0231 (3)C40.8738 (2)0.49016 (18)0.32802 (19)0.0233 (3)C50.8070 (2)0.34754 (19)0.2611 (2)0.0297 (4)H5A0.70140.28640.26170.036*C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)C71.0598 (2)0.38636 (19)0.1906 (2)0.0267 (4)C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C40.8738 (2)0.49016 (18)0.32802 (19)0.0233 (3)C50.8070 (2)0.34754 (19)0.2611 (2)0.0297 (4)H5A0.70140.28640.26170.036*C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)C71.0598 (2)0.38636 (19)0.1906 (2)0.0267 (4)C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C50.8070 (2)0.34754 (19)0.2611 (2)0.0297 (4)H5A0.70140.28640.26170.036*C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)C71.0598 (2)0.38636 (19)0.1906 (2)0.0267 (4)C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
H5A0.70140.28640.26170.036*C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)C71.0598 (2)0.38636 (19)0.1906 (2)0.0267 (4)C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)C71.0598 (2)0.38636 (19)0.1906 (2)0.0267 (4)C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C71.0598 (2)0.38636 (19)0.1906 (2)0.0267 (4)C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
H8A1.23360.58610.25870.031*C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
H10A1.04000.86800.47480.031*C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)	
C11 1.2746 (2) 0.81963 (19) 0.4025 (2) 0.0307 (4)	
H11A 1.3593 0.7721 0.4229 0.037*	
H11B 1.3171 0.8985 0.4797 0.037*	
C12 1.2671 (3) 0.8743 (2) 0.2716 (3) 0.0470 (6)	
H12A 1.2253 0.7967 0.1948 0.071*	
H12B 1.3839 0.9358 0.2840 0.071*	
H12C 1.1873 0.9249 0.2530 0.071*	
C13 1.2615 (3) 0.4313 (2) 0.0678 (2) 0.0326 (4)	
H13A 1.3746 0.4760 0.1459 0.039*	
H13B 1.2165 0.5036 0.0366 0.039*	
C14 1.2866 (3) 0.3524 (2) -0.0493 (2) 0.0333 (4)	
H14A 1.1732 0.3084 -0.1272 0.040*	
H14B 1.3677 0.4179 -0.0803 0.040*	
C15 1.2292 (3) 0.1448 (2) 0.0361 (2) 0.0352 (4)	
H15A 1.2732 0.0716 0.0657 0.042*	
H15B 1.1178 0.1013 -0.0439 0.042*	
C16 1.1970 (3) 0.2168 (2) 0.1528 (2) 0.0332 (4)	
H16A 1.1085 0.1490 0.1757 0.040*	
H16B 1.3065 0.2551 0.2349 0.040*	
C17 1.3936 (4) 0.1748 (3) -0.1120 (3) 0.0563 (7)	
H17A 1.4481 0.1096 -0.0768 0.084*	
H17B 1.4724 0.2435 -0.1407 0.084*	
H17C 1.2838 0.1252 -0.1900 0.084*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02365 (17)	0.02145 (17)	0.03097 (19)	0.00834 (12)	0.01668 (13)	0.00415 (12)
F1	0.0481 (7)	0.0230 (6)	0.0834 (10)	-0.0009 (5)	0.0416 (7)	-0.0160 (6)
01	0.0325 (7)	0.0262 (7)	0.0559 (9)	0.0138 (5)	0.0299 (7)	0.0110 (6)

O2	0.0654 (11)	0.0217 (7)	0.1127 (16)	0.0147 (7)	0.0680 (12)	0.0092 (9)
03	0.0283 (6)	0.0214 (6)	0.0445 (8)	0.0039 (5)	0.0246 (6)	0.0008 (6)
N1	0.0220 (7)	0.0178 (7)	0.0334 (8)	0.0060 (5)	0.0139 (6)	0.0034 (6)
N2	0.0363 (8)	0.0222 (8)	0.0393 (9)	0.0123 (6)	0.0254 (7)	0.0066 (7)
N3	0.0379 (9)	0.0391 (10)	0.0392 (10)	0.0191 (7)	0.0234 (8)	0.0049 (8)
C1	0.0347 (9)	0.0217 (9)	0.0419 (11)	0.0126 (7)	0.0242 (8)	0.0078 (8)
C2	0.0278 (8)	0.0210 (8)	0.0297 (9)	0.0104 (7)	0.0162 (7)	0.0049 (7)
C3	0.0244 (8)	0.0214 (8)	0.0263 (9)	0.0083 (6)	0.0131 (7)	0.0053 (7)
C4	0.0248 (8)	0.0192 (8)	0.0292 (9)	0.0077 (6)	0.0147 (7)	0.0048 (7)
C5	0.0291 (9)	0.0207 (9)	0.0405 (11)	0.0047 (7)	0.0200 (8)	0.0020 (8)
C6	0.0329 (9)	0.0179 (8)	0.0440 (11)	0.0041 (7)	0.0218 (8)	-0.0016 (8)
C7	0.0295 (9)	0.0224 (9)	0.0329 (9)	0.0102 (7)	0.0177 (8)	0.0037 (7)
C8	0.0247 (8)	0.0219 (8)	0.0345 (9)	0.0083 (6)	0.0162 (7)	0.0056 (7)
C9	0.0246 (8)	0.0185 (8)	0.0271 (9)	0.0088 (6)	0.0119 (7)	0.0041 (7)
C10	0.0287 (8)	0.0179 (8)	0.0319 (9)	0.0086 (7)	0.0148 (7)	0.0027 (7)
C11	0.0219 (8)	0.0205 (8)	0.0489 (12)	0.0038 (6)	0.0178 (8)	0.0007 (8)
C12	0.0486 (12)	0.0361 (12)	0.0679 (16)	0.0106 (10)	0.0388 (12)	0.0182 (11)
C13	0.0386 (10)	0.0251 (9)	0.0428 (11)	0.0110 (8)	0.0265 (9)	0.0077 (8)
C14	0.0374 (10)	0.0336 (10)	0.0347 (10)	0.0115 (8)	0.0220 (8)	0.0069 (8)
C15	0.0459 (11)	0.0307 (10)	0.0407 (11)	0.0203 (9)	0.0249 (9)	0.0079 (8)
C16	0.0454 (11)	0.0308 (10)	0.0370 (11)	0.0198 (8)	0.0258 (9)	0.0100 (8)
C17	0.0764 (18)	0.0512 (15)	0.0686 (17)	0.0307 (13)	0.0547 (15)	0.0096 (13)

Geometric parameters (Å, °)

Cu1—O1 ⁱ	1.8858 (15)	C6—C7	1.419 (3)
Cu1—O1	1.8858 (15)	C7—C8	1.387 (3)
Cu1—O3	1.9247 (13)	C8—C9	1.411 (2)
Cu1—O3 ⁱ	1.9247 (13)	C8—H8A	0.9300
F1—C6	1.356 (2)	C10—H10A	0.9300
01—C1	1.288 (2)	C11—C12	1.517 (3)
O2—C1	1.215 (2)	C11—H11A	0.9700
O3—C3	1.279 (2)	C11—H11B	0.9700
N1-C10	1.341 (2)	C12—H12A	0.9600
N1—C9	1.389 (2)	C12—H12B	0.9600
N1-C11	1.490 (2)	C12—H12C	0.9600
N2—C7	1.397 (2)	C13—C14	1.517 (3)
N2-C13	1.465 (2)	C13—H13A	0.9700
N2—C16	1.473 (2)	C13—H13B	0.9700
N3—C15	1.454 (3)	C14—H14A	0.9700
N3—C14	1.458 (3)	C14—H14B	0.9700
N3—C17	1.465 (3)	C15—C16	1.516 (3)
C1—C2	1.505 (2)	C15—H15A	0.9700
C2-C10	1.378 (2)	C15—H15B	0.9700
C2—C3	1.412 (2)	C16—H16A	0.9700
C3—C4	1.451 (2)	C16—H16B	0.9700
C4—C9	1.406 (2)	C17—H17A	0.9600
C4—C5	1.408 (3)	C17—H17B	0.9600

C5—C6	1.354 (3)	C17—H17C	0.9600
С5—Н5А	0.9300		
Ol ⁱ —Cul—Ol	180.0	N1-C10-H10A	118.0
O1 ⁱ —Cu1—O3	87.35 (6)	C2-C10-H10A	118.0
O1—Cu1—O3	92.65 (6)	N1—C11—C12	112.76 (17)
$O1^{i}$ —Cu1—O3 ⁱ	92.65 (6)	N1—C11—H11A	109.0
O1—Cu1—O3 ⁱ	87.35 (6)	C12—C11—H11A	109.0
O3—Cu1—O3 ⁱ	180.0	N1—C11—H11B	109.0
C1—O1—Cu1	130.33 (12)	C12—C11—H11B	109.0
C3—O3—Cu1	124.62 (12)	H11A—C11—H11B	107.8
C10—N1—C9	119.95 (15)	C11—C12—H12A	109.5
C10—N1—C11	118.31 (15)	C11—C12—H12B	109.5
C9—N1—C11	121.70 (14)	H12A—C12—H12B	109.5
C7—N2—C13	116.83 (15)	C11—C12—H12C	109.5
C7—N2—C16	117.25 (15)	H12A - C12 - H12C	109.5
$C_{13} = N_{2} = C_{16}$	111.04 (15)	H12B-C12-H12C	109.5
C15 - N2 - C14	108 25 (16)	N2-C13-C14	108.39 (16)
C15 - N3 - C17	110 58 (18)	N2	110.0
C14 - N3 - C17	110.99 (18)	C_{14} C_{13} H_{13A}	110.0
$0^{2}-1^{-1}$	122 66 (17)	N2-C13-H13B	110.0
02 - C1 - C2	122.00(17) 119.20(17)	C_{14} C_{13} H_{13B}	110.0
01 - C1 - C2	119.20 (17)	$H_{13} = C_{13} = H_{13} B$	108.4
$C_1 C_1 C_2 C_3$	110.13 (10)	N3 C14 C13	100.4
$C_{10} = C_2 = C_3$	119.32 (10)	$N_3 = C_1 + C_{13}$	100.51 (17)
$C_{10} = C_{2} = C_{1}$	110.01(15) 122.84(16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C_{3} C_{2} C_{1}	125.04(10) 125.72(16)	$N_{2} = C_{14} = H_{14}$	109.5
03 - 03 - 02	123.72(10) 118.07(15)	$N_{3} = C_{14} = H_{14} D$	109.5
$C_{3} = C_{4}$	116.07(13) 116.10(15)	H_{14} H_{14} H_{14} H_{14}	109.5
$C_2 = C_3 = C_4$	110.19(13)	H14A - C14 - H14B	106.1
$C_{9} - C_{4} - C_{5}$	118.//(10)	$N_{3} = C_{15} = C_{16}$	110.62 (17)
C_{9} C_{4} C_{3} C_{5} C_{4} C_{2}	121.23 (16)	N3 - C15 - H15A	109.5
C_{3}	119.96 (16)	C16—C15—H15A	109.5
C_{0}	119.63 (17)	N3-CI5-HI5B	109.5
C6—C5—H5A	120.2	CI6—CI5—HI5B	109.5
C4—C5—H5A	120.2	HI5A—CI5—HI5B	108.1
C5—C6—F1	118.45 (17)	N2	109.86 (16)
C5—C6—C7	123.62 (17)	N2—C16—H16A	109.7
F1 - C6 - C/	117.85 (16)	C15—C16—H16A	109.7
C8—C7—N2	123.85 (16)	N2—C16—H16B	109.7
C8—C/—C6	116.62 (16)	С15—С16—Н16В	109.7
N2	119.30 (16)	H16A—C16—H16B	108.2
C7—C8—C9	121.24 (16)	N3—C17—H17A	109.5
C/C8H8A	119.4	N3—C17—H17B	109.5
С9—С8—Н8А	119.4	H17A—C17—H17B	109.5
N1—C9—C4	118.52 (15)	N3—C17—H17C	109.5
N1—C9—C8	121.36 (15)	H17A—C17—H17C	109.5
C4—C9—C8	120.11 (16)	H17B—C17—H17C	109.5
N1—C10—C2	124.01 (16)		

O3—Cu1—O1—C1	-22.51 (19)	C5—C6—C7—N2	-174.06 (19)
O3 ⁱ —Cu1—O1—C1	157.49 (19)	F1—C6—C7—N2	2.6 (3)
O1 ⁱ —Cu1—O3—C3	-160.14 (16)	N2	173.18 (17)
O1—Cu1—O3—C3	19.86 (16)	C6—C7—C8—C9	-1.2 (3)
Cu1—O1—C1—O2	-168.97 (18)	C10—N1—C9—C4	-7.3 (3)
Cu1—O1—C1—C2	12.5 (3)	C11—N1—C9—C4	175.07 (17)
O2-C1-C2-C10	6.8 (3)	C10—N1—C9—C8	171.97 (17)
O1—C1—C2—C10	-174.60 (18)	C11—N1—C9—C8	-5.6 (3)
O2—C1—C2—C3	-171.3 (2)	C5-C4-C9-N1	179.12 (17)
O1—C1—C2—C3	7.3 (3)	C3—C4—C9—N1	1.4 (3)
Cu1—O3—C3—C2	-8.9 (3)	C5—C4—C9—C8	-0.2 (3)
Cu1—O3—C3—C4	172.47 (12)	C3—C4—C9—C8	-177.85 (16)
C10—C2—C3—O3	173.24 (17)	C7—C8—C9—N1	-178.24 (17)
C1—C2—C3—O3	-8.7 (3)	C7—C8—C9—C4	1.0 (3)
C10—C2—C3—C4	-8.1 (3)	C9—N1—C10—C2	5.5 (3)
C1—C2—C3—C4	169.88 (17)	C11—N1—C10—C2	-176.84 (18)
O3—C3—C4—C9	-175.10 (16)	C3—C2—C10—N1	2.7 (3)
C2—C3—C4—C9	6.2 (3)	C1-C2-C10-N1	-175.49 (17)
O3—C3—C4—C5	7.3 (3)	C10-N1-C11-C12	-95.8 (2)
C2—C3—C4—C5	-171.48 (17)	C9—N1—C11—C12	81.9 (2)
C9—C4—C5—C6	-0.4 (3)	C7—N2—C13—C14	-164.32 (17)
C3—C4—C5—C6	177.27 (18)	C16—N2—C13—C14	57.6 (2)
C4—C5—C6—F1	-176.44 (19)	C15—N3—C14—C13	62.2 (2)
C4—C5—C6—C7	0.2 (3)	C17—N3—C14—C13	-176.26 (18)
C13—N2—C7—C8	-15.2 (3)	N2-C13-C14-N3	-60.8 (2)
C16—N2—C7—C8	120.3 (2)	C14—N3—C15—C16	-60.3 (2)
C13—N2—C7—C6	159.03 (19)	C17—N3—C15—C16	178.0 (2)
C16—N2—C7—C6	-65.5 (2)	C7—N2—C16—C15	165.57 (17)
C5—C6—C7—C8	0.6 (3)	C13—N2—C16—C15	-56.5 (2)
F1—C6—C7—C8	177.28 (18)	N3-C15-C16-N2	57.7 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.