

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hexakis(2-aminopyridinium) di- μ_6 -oxidotetra- μ_3 -oxido-tetradeca- μ_2 -oxido-octaoxidodecavanadium(V) dihydrate

Caixia Yuan, Liping Lu, Miaoli Zhu,* Qi Ma and Yanbo Wu

Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: miaoli@sxu.edu.cn

Received 12 January 2009; accepted 6 February 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.011 Å; R factor = 0.074; wR factor = 0.128; data-to-parameter ratio = 11.7.

In the title compound, $(C_5H_7N_2)_6[V_{10}O_{28}]\cdot 2H_2O$, the $[V_{10}O_{28}]^{6-}$ anion is generated by crystallographic inversion symmetry and each of the five vanadium centres adopts a distorted VO₆ octahedral geometry. In the crystal structure, a network of N-H···O, N-H···(O,O) and O-H···O hydrogen bonds helps to establish the packing.

Related literature

For a related structure, see: Gong et al. (2006). For background to the biological activity of oxovanadates and peroxovanadium compounds, see: Pacigová et al. (2007).

Experimental

Crystal data

 $(C_5H_7N_2)_6[V_{10}O_{28}]\cdot 2H_2O$ $M_{\rm w} = 1564.19$ Monoclinic, $P2_1/c$ a = 9.840(3) Å b = 18.180 (6) Å c = 14.299 (5) Å $\beta = 97.416 \ (4)^{\circ}$

 $V = 2536.6 (14) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 1.86 \text{ mm}^{-1}$ T = 298 (2) K $0.40 \times 0.20 \times 0.20$ mm $R_{\rm int} = 0.042$

9858 measured reflections

4341 independent reflections

3949 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART 1K CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\rm min} = 0.523, T_{\rm max} = 0.707$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.074$	370 parameters
$wR(F^2) = 0.128$	H-atom parameters constrained
S = 1.29	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
4341 reflections	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

	e ()		
V1-07	1.616 (4)	V3-O6	1.891 (4)
V1-O3	1.767 (4)	V3-O5	2.045 (4)
V1-08	1.842 (4)	V3-01	2.305 (4)
V1-O2	1.991 (4)	V4-O4	1.676 (4)
V1-O12	2.038 (4)	V4-O5 ⁱ	1.680 (4)
V1-01	2.250 (4)	V4-O12 ⁱ	1.921 (4)
V2-O9	1.608 (4)	V4-O2	1.953 (4)
V2-O6	1.794 (4)	V4-O1 ⁱ	2.097 (4)
V2-O10	1.823 (4)	V4-01	2.111 (4)
V2-O12 ⁱ	2.015 (4)	V5-O13	1.590 (5)
$V2-O2^{i}$	2.017 (4)	V5-O14	1.835 (4)
V2-01	2.243 (4)	V5-O10	1.864 (4)
V3-011	1.594 (4)	V5-O3	1.881 (4)
V3-014	1.827 (4)	V5-O4	2.045 (4)
V3-O8	1.871 (4)	V5-O1	2.318 (4)

Symmetry code: (i) -x + 2, -y + 2, -z + 2.

Table 2 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D - H \cdots A$ $D \cdot \cdot \cdot A$ $N1 - H1A \cdots O4^{ii}$ 0.86 2.44 3.217 (9) 150 $N1 - H1A \cdots O5^{iii}$ 0.86 2.55 3.286 (8) 144 $N1 - H1B \cdot \cdot \cdot O10^{iv}$ 0.86 2.21 3.058 (8) 169 2.697 (7) 0.86 1.85 $N_2 = H_2 A \cdots O_2^{ii}$ 168 N3-H3A···O9^{iv} 0.86 2.17 2.969 (7) 155 $N3 - H3A \cdots O7^{v}$ 0.86 2.48 3.017 (7) 122 N3−H3B···O14 0.86 2.09 2.908(7)158 N4-H4A···O12 0.86 2.698 (6) 174 1.84 0.86 3.085 (8) $N5 - H5A \cdots O7^{V}$ 2.23 175 $N5 - H5B \cdot \cdot \cdot O9$ 0.86 2 22 3.057 (8) 164 $N6 - H6 \cdot \cdot \cdot O8^{v}$ 0.86 1.87 2.709 (7) 166 O15-H15A···O6^{vi} 0.85 2.09 2.926 (8) 166 $O15-H15B\cdots O7^{ii}$ 0.85 2.13 2.977 (8) 180

Symmetry codes: (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x - 1, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iv) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (v) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (vi) x - 1, y, z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2008.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2897).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Gong, Y., Hu, C., Li, H., Tang, W., Huang, K. & Hou, W. B. (2006). J. Mol. Struct. 784, 228–238.

Pacigová, S., Rakovský, E., Sivák, M. & Žák, Z. (2007). Acta Cryst. C63, m419– m422.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m267-m268 [doi:10.1107/S1600536809004334]

Hexakis(2-aminopyridinium) di- μ_6 -oxido-tetra- μ_3 -oxido-tetradeca- μ_2 -oxido-octaoxidodecavanadium(V) dihydrate

Caixia Yuan, Liping Lu, Miaoli Zhu, Qi Ma and Yanbo Wu

S1. Comment

Oxovanadates and peroxovanadium compounds are of great interest in biochemistry and medicine because of their diverse biological activites (Pacigová *et al.*, 2007). Of them, decavanadates have shown high affinity for selected kinases and phosphorylase and has been used to facilitate crystallization of proteins. Herein, we report the structure of the title compound, (I), containing decavanadate anions, 2-aminopyridinium cations and water molecules (Fig. 1).

Compound (I) consists of a centrosymmetric $[V_{10}O_{28}]^{6-}$ polyanion, two distinct 2-aminopyridium cations and a water molecule (Fig. 1). The $[V_{10}O_{28}]^{6-}$ unit is constructed by ten VO₆ octahedra connected with each other *via* edge-sharing oxygen atoms. The different coordination of the oxygen atoms in the molecule results in different V—O bond distances (Table 1). The V—O (one coordinated oxygen) double bond distances range from 1.590 (5) to 1.616 (4) Å; the V—O (two coordinated oxygen) single bond distances range from 1.676 (4) to 2.045 (4) Å; the V—O (three coordinated oxygen) single bond distances range from 1.676 (4) to 2.045 (4) Å; the V—O (three coordinated oxygen) single bond distances range from 1.921 (4) to 2.038 (4)Å and the V—O (six coordinated oxygen) single bond distances are even longer (2.097 (4) to 2.318 (4) Å). These V—O bond types are similar to those in related compounds (Gong *et al.*, 2006).

A three-dimensional supramolecular hydrogen-bonding network is observed in the crystal structure of (I); details are given in Table 2. All the $(C_5H_7N_2)^+$ cations and water molecules are involved in hydrogen bonds with either terminal or bridging O atoms in the $[V_{10}O_{28}]^{6-}$ anion (Fig. 2).

S2. Experimental

A hot aqueous $VOSO_4$ solution (1 mmol) was added dropwise to a stirred solution of 2-aminopyridine (1 mmol), which was dissolved in 20 ml of ethanol and refluxed for 4 h. Then the filtrate was kept open to slowly evaporate for a few days, deposition yellow blocks of (I).

S3. Refinement

The H atoms were placed in geometrically idealized positions (C—H = 0.93Å, N—H = 0.86Å, O—H = 0.85Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$.

Figure 1

A view of the structure of (I) with displacement ellipsoids drawn at the 30% probability level; H atoms and the water molecule are omitted for clarity.

Figure 2

The packing in (I), with hydrogen bonds indicated by dashed lines.

Hexakis(2-aminopyridinium) di- μ_6 -oxido-tetra- μ_3 -oxido- tetradeca- μ_2 -oxido-octaoxidodecavanadium(V) dihvdrate

F(000) = 1560

 $\theta = 2.2 - 27.0^{\circ}$ $\mu = 1.86 \text{ mm}^{-1}$

Block, yellow

 $0.40 \times 0.20 \times 0.20$ mm

T = 298 K

 $D_{\rm x} = 2.048 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3889 reflections

Crystal data

 $(C_{5}H_{7}N_{2})_{6}[V_{10}O_{28}] \cdot 2H_{2}O$ $M_{r} = 1564.19$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 9.840 (3) Å b = 18.180 (6) Å c = 14.299 (5) Å $\beta = 97.416$ (4)° V = 2536.6 (14) Å³ Z = 2

Data collection

Bruker SMART 1K CCD	9858 measured reflections
diffractometer	4341 independent reflections
Radiation source: fine-focus sealed tube	3949 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
ωscans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.9^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2000)	$k = -21 \rightarrow 18$
$T_{\min} = 0.523, \ T_{\max} = 0.707$	$l = -16 \rightarrow 12$

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.074$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.29	H-atom parameters constrained
4341 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0095P)^2 + 8.6635P]$
370 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.53 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
V1	0.92911 (10)	1.06195 (6)	0.82727 (7)	0.0219 (3)	
V2	0.93856 (11)	0.85376 (6)	0.99424 (7)	0.0223 (3)	
V3	1.01726 (11)	0.90023 (6)	0.79935 (8)	0.0261 (3)	
V4	0.84711 (10)	1.01767 (6)	1.02703 (7)	0.0207 (3)	
V5	0.72947 (11)	0.93367 (6)	0.84923 (8)	0.0248 (3)	
01	0.9456 (4)	0.9637 (2)	0.9237 (3)	0.0187 (9)	
O2	0.8818 (4)	1.1018 (2)	0.9486 (3)	0.0200 (9)	
03	0.7620 (4)	1.0262 (2)	0.7977 (3)	0.0260 (10)	
04	0.6972 (4)	0.9938 (2)	0.9652 (3)	0.0257 (10)	
05	1.1928 (4)	0.9330(2)	0.8810(3)	0.0262 (10)	
06	1.0166 (4)	0.8267 (2)	0.8929 (3)	0.0258 (10)	
07	0.9299 (4)	1.1366 (2)	0.7659 (3)	0.0302 (10)	
08	1.0138 (4)	0.9970 (2)	0.7546 (3)	0.0244 (10)	
09	0.9418 (5)	0.7791 (2)	1.0547 (3)	0.0307 (11)	
O10	0.7627 (4)	0.8570 (2)	0.9357 (3)	0.0263 (10)	
011	1.0796 (5)	0.8564 (3)	0.7182 (3)	0.0357 (11)	
012	1.1132 (4)	1.0743 (2)	0.9091 (3)	0.0196 (9)	
O13	0.5753 (5)	0.9180 (3)	0.8055 (3)	0.0356 (11)	
O14	0.8326 (4)	0.8887 (2)	0.7676 (3)	0.0257 (10)	
N1	0.4744 (8)	0.6382 (4)	0.4937 (6)	0.075 (3)	
H1A	0.4151	0.6036	0.4825	0.090*	
H1B	0.5513	0.6357	0.4713	0.090*	
N2	0.3280 (5)	0.6980 (3)	0.5806 (4)	0.0319 (13)	
H2A	0.2685	0.6638	0.5665	0.038*	
N3	0.8180 (6)	0.7312 (3)	0.7329 (4)	0.0397 (15)	
H3A	0.8710	0.7189	0.6922	0.048*	
H3B	0.8259	0.7738	0.7591	0.048*	
N4	0.7146 (5)	0.6182 (3)	0.7122 (4)	0.0301 (13)	
H4A	0.7710	0.6077	0.6730	0.036*	
C1	0.4480 (7)	0.6944 (4)	0.5460 (5)	0.0361 (17)	
C2	0.5431 (7)	0.7514 (4)	0.5687 (5)	0.0387 (18)	
H2	0.6274	0.7507	0.5459	0.046*	
C3	0.5103 (8)	0.8073 (4)	0.6245 (6)	0.0442 (19)	
Н3	0.5722	0.8456	0.6388	0.053*	
C4	0.3861 (7)	0.8082 (4)	0.6606 (6)	0.0424 (19)	
H4	0.3651	0.8458	0.7003	0.051*	
C5	0.2971 (7)	0.7535 (4)	0.6369 (5)	0.0355 (17)	
Н5	0.2127	0.7538	0.6597	0.043*	
C6	0.7244 (7)	0.6848 (4)	0.7549 (5)	0.0291 (15)	
C7	0.6326 (7)	0.7000 (4)	0.8184 (5)	0.0418 (19)	
H7	0.6362	0.7453	0.8489	0.050*	
C8	0.5373 (7)	0.6501 (5)	0.8361 (5)	0.045 (2)	
H8	0.4777	0.6604	0.8798	0.054*	
C9	0.5284 (8)	0.5829 (5)	0.7885 (6)	0.048 (2)	
H9	0.4607	0.5490	0.7979	0.057*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C10	0.6201 (7)	0.5680 (4)	0.7286 (5)	0.0387 (18)
H10	0.6179	0.5226	0.6983	0.046*
N5	0.9609 (7)	0.6459 (4)	0.9265 (5)	0.0518 (18)
H5A	0.9958	0.6421	0.8746	0.062*
H5B	0.9708	0.6859	0.9587	0.062*
N6	0.8778 (6)	0.5280 (3)	0.9057 (4)	0.0324 (13)
H6	0.9138	0.5261	0.8540	0.039*
C11	0.8923 (7)	0.5903 (4)	0.9568 (5)	0.0301 (15)
C12	0.8313 (8)	0.5922 (4)	1.0402 (5)	0.0388 (18)
H12	0.8382	0.6344	1.0773	0.047*
C13	0.7629 (8)	0.5333 (5)	1.0668 (5)	0.049 (2)
H13	0.7232	0.5351	1.1224	0.058*
C14	0.7509 (9)	0.4700 (5)	1.0124 (6)	0.052 (2)
H14	0.7034	0.4293	1.0305	0.062*
C15	0.8107 (8)	0.4690 (4)	0.9313 (6)	0.046 (2)
H15	0.8048	0.4270	0.8939	0.055*
015	0.2400 (7)	0.7219 (4)	0.8838 (5)	0.083 (2)
H15A	0.1820	0.7567	0.8795	0.125*
H15B	0.1917	0.6976	0.8409	0.125*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.0254 (6)	0.0199 (6)	0.0200 (6)	-0.0005 (4)	0.0013 (4)	0.0038 (4)
V2	0.0268 (6)	0.0164 (5)	0.0237 (6)	-0.0012 (4)	0.0038 (5)	0.0001 (4)
V3	0.0308 (6)	0.0240 (6)	0.0242 (6)	-0.0007 (5)	0.0068 (5)	-0.0047 (5)
V4	0.0211 (5)	0.0193 (5)	0.0223 (6)	0.0022 (4)	0.0047 (4)	0.0013 (4)
V5	0.0229 (6)	0.0272 (6)	0.0238 (6)	-0.0033 (5)	0.0008 (5)	-0.0018 (5)
01	0.019 (2)	0.018 (2)	0.020 (2)	-0.0005 (16)	0.0022 (17)	0.0005 (17)
O2	0.022 (2)	0.018 (2)	0.021 (2)	0.0030 (17)	0.0057 (17)	0.0021 (17)
O3	0.025 (2)	0.028 (2)	0.024 (2)	0.0028 (18)	-0.0015 (19)	0.0031 (19)
O4	0.019 (2)	0.028 (2)	0.031 (3)	0.0003 (18)	0.0050 (18)	0.0031 (19)
O5	0.023 (2)	0.027 (2)	0.030 (3)	0.0042 (18)	0.0085 (19)	-0.0017 (19)
06	0.034 (2)	0.016 (2)	0.029 (3)	0.0033 (18)	0.008 (2)	-0.0041 (18)
O7	0.032 (2)	0.029 (3)	0.030 (3)	-0.001 (2)	0.003 (2)	0.008 (2)
08	0.032 (2)	0.024 (2)	0.018 (2)	-0.0013 (19)	0.0040 (18)	-0.0012 (18)
09	0.044 (3)	0.022 (2)	0.027 (3)	-0.005 (2)	0.006 (2)	0.0011 (19)
O10	0.030 (2)	0.022 (2)	0.028 (3)	-0.0047 (19)	0.0069 (19)	-0.0013 (19)
011	0.048 (3)	0.033 (3)	0.028 (3)	-0.001 (2)	0.014 (2)	-0.005 (2)
012	0.024 (2)	0.017 (2)	0.019 (2)	-0.0020 (17)	0.0035 (17)	0.0010 (17)
013	0.031 (3)	0.040 (3)	0.033 (3)	0.000(2)	-0.006(2)	-0.003 (2)
014	0.032 (2)	0.021 (2)	0.023 (2)	-0.0006 (19)	0.0014 (19)	-0.0029 (18)
N1	0.053 (4)	0.072 (6)	0.109 (7)	-0.026 (4)	0.043 (4)	-0.056 (5)
N2	0.026 (3)	0.032 (3)	0.038 (4)	-0.011 (2)	0.005 (3)	-0.013 (3)
N3	0.040 (3)	0.034 (3)	0.047 (4)	-0.002 (3)	0.013 (3)	-0.013 (3)
N4	0.025 (3)	0.036 (3)	0.032 (3)	0.002 (2)	0.011 (2)	-0.002 (3)
C1	0.033 (4)	0.040 (4)	0.037 (4)	-0.005 (3)	0.008 (3)	-0.009 (3)
C2	0.032 (4)	0.049 (5)	0.036 (4)	-0.018 (3)	0.008 (3)	0.002 (4)

C3	0.039 (4)	0.033 (4)	0.058 (5)	-0.017 (3)	-0.003 (4)	-0.001 (4)
C4	0.037 (4)	0.031 (4)	0.057 (5)	0.001 (3)	0.000 (4)	-0.012 (4)
C5	0.035 (4)	0.031 (4)	0.041 (4)	-0.002 (3)	0.006 (3)	-0.002 (3)
C6	0.027 (3)	0.033 (4)	0.027 (4)	0.005 (3)	-0.001 (3)	0.000 (3)
C7	0.036 (4)	0.048 (5)	0.042 (5)	0.012 (4)	0.010 (4)	-0.014 (4)
C8	0.030 (4)	0.067 (6)	0.042 (5)	0.001 (4)	0.019 (3)	-0.010 (4)
C9	0.040 (4)	0.049 (5)	0.057 (5)	-0.013 (4)	0.015 (4)	-0.010 (4)
C10	0.045 (4)	0.032 (4)	0.038 (4)	-0.008 (3)	0.003 (4)	-0.014 (3)
N5	0.068 (5)	0.035 (4)	0.054 (5)	-0.001 (3)	0.016 (4)	-0.005 (3)
N6	0.039 (3)	0.037 (3)	0.022 (3)	0.008 (3)	0.008 (3)	-0.008 (3)
C11	0.027 (3)	0.037 (4)	0.024 (4)	0.011 (3)	-0.008(3)	-0.005 (3)
C12	0.049 (5)	0.044 (5)	0.024 (4)	0.016 (4)	0.008 (3)	-0.006 (3)
C13	0.051 (5)	0.066 (6)	0.033 (5)	0.007 (4)	0.019 (4)	-0.001 (4)
C14	0.056 (5)	0.051 (5)	0.052 (5)	-0.009 (4)	0.021 (4)	0.003 (4)
C15	0.056 (5)	0.036 (4)	0.047 (5)	-0.004 (4)	0.009 (4)	-0.014 (4)
015	0.062 (4)	0.098 (6)	0.086 (5)	0.022 (4)	-0.004 (4)	-0.013 (4)

Geometric parameters (Å, °)

V1-07	1.616 (4)	N2—H2A	0.8600
V1—O3	1.767 (4)	N3—C6	1.316 (9)
V1—O8	1.842 (4)	N3—H3A	0.8600
V1—O2	1.991 (4)	N3—H3B	0.8599
V1-012	2.038 (4)	N4—C10	1.345 (9)
V1-01	2.250 (4)	N4—C6	1.353 (8)
V2—O9	1.608 (4)	N4—H4A	0.8599
V2—O6	1.794 (4)	C1—C2	1.405 (9)
V2—O10	1.823 (4)	C2—C3	1.357 (11)
V2-012 ⁱ	2.015 (4)	C2—H2	0.9299
$V2-O2^i$	2.017 (4)	C3—C4	1.387 (11)
V201	2.243 (4)	С3—Н3	0.9300
V3—011	1.594 (4)	C4—C5	1.339 (10)
V3—O14	1.827 (4)	C4—H4	0.9300
V3—O8	1.871 (4)	С5—Н5	0.9300
V3—O6	1.891 (4)	C6—C7	1.389 (9)
V3—O5	2.045 (4)	C7—C8	1.352 (11)
V3—O1	2.305 (4)	C7—H7	0.9300
V4—O4	1.676 (4)	C8—C9	1.396 (11)
V4—O5 ⁱ	1.680 (4)	C8—H8	0.9300
V4-012 ⁱ	1.921 (4)	C9—C10	1.349 (10)
V4—O2	1.953 (4)	С9—Н9	0.9300
V4—O1 ⁱ	2.097 (4)	C10—H10	0.9300
V4—O1	2.111 (4)	N5—C11	1.319 (9)
V5—O13	1.590 (5)	N5—H5A	0.8600
V5—O14	1.835 (4)	N5—H5B	0.8601
V5—O10	1.864 (4)	N6—C15	1.335 (9)
V5—O3	1.881 (4)	N6—C11	1.346 (8)
V5—O4	2.045 (4)	N6—H6	0.8600

N/5 01	2 210 (4)	G11 G12	1 402 (0)
V501	2.318 (4)		1.403 (9)
	2.097 (4)	C12—C13	1.346 (11)
$02-V2^{i}$	2.017 (4)	С12—Н12	0.9300
O5—V4 ¹	1.680 (4)	C13—C14	1.386 (11)
O12—V4 ⁱ	1.921 (4)	C13—H13	0.9300
O12—V2 ⁱ	2.015 (4)	C14—C15	1.366 (11)
N1—C1	1.312 (9)	C14—H14	0.9300
N1—H1A	0.8599	С15—Н15	0.9300
N1—H1B	0.8600	O15—H15A	0.8499
N2—C1	1.339 (8)	O15—H15B	0.8496
N2—C5	1.350 (8)		
07—V1—03	104.4 (2)	V1—01—V3	85.95 (14)
07—V1—08	101.4 (2)	$V4^{i}$ —O1—V5	170.8 (2)
03—V1—08	95 96 (19)	V4-01-V5	87 36 (14)
07—V1—02	100.7(2)	$V_{2}=01=V_{5}$	85 25 (13)
0^{3} V1 02	100.7(2)	$V_2 = 01 = V_3$	85.16 (14)
$03 - \sqrt{1 - 02}$	154.05(18)	$V_1 = 0_1 = V_2$ $V_2 = 0_1 = V_2$	83.10(14) 83.10(13)
08 - 1 - 02	134.03(10)	$V_3 = 01 = V_3$	107.04(10)
$0^{-1} - 0$	90.0(2)	V4 - 02 - V1	107.04(19)
$03 - \sqrt{1 - 012}$	155.2/(18)	$V4-02-V2^{-}$	100.87 (19)
$08 - \sqrt{1 - 012}$	8/.81 (1/)	$V1 = 02 = V2^{\circ}$	101.98 (17)
02-1-012	/5.49 (16)	V1-03-V5	115.8 (2)
0/01	173.8 (2)	V4—O4—V5	110.3 (2)
O3—V1—O1	81.16 (17)	$V4^{i}$ — $O5$ — $V3$	109.7 (2)
08—V1—01	80.48 (16)	V2—O6—V3	114.8 (2)
O2—V1—O1	76.19 (15)	V1—O8—V3	113.5 (2)
012—V1—01	75.36 (15)	V2—O10—V5	113.8 (2)
O9—V2—O6	102.8 (2)	$V4^{i}$ — $O12$ — $V2^{i}$	107.03 (18)
O9—V2—O10	103.1 (2)	V4 ⁱ	106.72 (18)
O6—V2—O10	96.7 (2)	V2 ⁱ	100.42 (17)
09—V2—012 ⁱ	99.71 (19)	V3—O14—V5	113.9 (2)
O6-V2-O12 ⁱ	154.72 (18)	C1—N1—H1A	119.8
O10-V2-O12 ⁱ	89.15 (18)	C1—N1—H1B	120.1
$O9-V2-O2^{i}$	99.5 (2)	H1A—N1—H1B	120.0
$O6$ — $V2$ — $O2^i$	89.59 (18)	C1—N2—C5	122.3 (6)
O10—V2—O2 ⁱ	154.54 (18)	C1—N2—H2A	119.0
012^{i} V2 02^{i}	75.43 (16)	C5—N2—H2A	118.7
09—V2—01	173.9 (2)	C6—N3—H3A	120.0
06-V2-01	80.77 (17)	C6—N3—H3B	120.0
$010 - V^2 - 01$	81 23 (16)	$H_3A = N_3 = H_3B$	120.0
012^{i} V2 01	75 85 (15)	C10 NA $C6$	120.0
O^{2i} V2 O1	75.47 (15)	C10 NA HAA	112.0 (0)
011 - V3 - 014	103.77(13)	C6 M4 H4A	118.6
$011 V_2 O_2$	103.0(2) 102.2(2)	V_{1} V_{1} V_{2} V_{1} V_{2}	110.0 (7)
$011 - \sqrt{3} - 00$	102.3(2)	$\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} $	117.0(7)
014 - V3 - 08	92.79 (19) 101 5 (2)	N1 - C1 - C2	122.0 (7)
V11 - V3 - U6	101.5 (2)	$N_2 - C_1 - C_2$	118.1 (6)
U14—V3—U6	90.05 (19)	$C_3 - C_2 - C_1$	119.1 (7)
08—V3—06	154.81 (18)	C3—C2—H2	120.5

O11—V3—O5	100.7 (2)	C1—C2—H2	120.4
O14—V3—O5	156.20 (18)	C2—C3—C4	121.0 (7)
O8—V3—O5	84.18 (18)	С2—С3—Н3	119.4
O6—V3—O5	83.21 (18)	С4—С3—Н3	119.6
011—V3—01	175.1 (2)	C5—C4—C3	118.5 (7)
014—V3—01	81.71 (16)	С5—С4—Н4	120.8
08—V3—01	78.46 (16)	C3—C4—H4	120.8
06—V3—01	77.20 (16)	C4—C5—N2	121.0 (7)
05-V3-01	74.55 (15)	C4-C5-H5	119.5
$04 - V4 - 05^{i}$	105.8 (2)	N2-C5-H5	119.5
$04-V4-012^{i}$	97.83 (19)	N3—C6—N4	118 4 (6)
$05^{i} - V4 - 012^{i}$	98 45 (19)	N3—C6—C7	1243(7)
04 - V4 - 02	96.17 (19)	N4	1173(6)
$05^{i} - V4 - 02$	96.17 (19)	C8 - C7 - C6	120.9(7)
$012^{i} V4 02$	156.20(17)	C8—C7—H7	119.4
$04 - V4 - 01^{i}$	166.03(18)	C6 - C7 - H7	119.1
$05^{i} - V4 - 01^{i}$	88 08 (18)	C7 - C8 - C9	119.7
$012^{i} V4 01^{i}$	81 50 (16)	C7 - C8 - H8	120.3
$02 - V4 - 01^{i}$	80.29 (16)	C9 - C8 - H8	119.9
04 - V4 - 01	87.89 (18)	C_{10} C_{9} C_{8}	119.9
$05^{i} - V4 - 01$	166 22 (19)	C10-C9-H9	120.7
$012^{i} V4 01$	81.02 (16)	C8—C9—H9	120.6
02 - V4 - 01	80.36(16)	N4-C10-C9	120.5(7)
01^{i} V4 01	78 21 (17)	N4—C10—H10	119 7
013 - V5 - 014	1044(2)	C9 - C10 - H10	119.7
013 - V5 - 010	101.8(2)	C_{11} N_{5} H_{5A}	120.0
014 - V5 - 010	91.43 (19)	C11—N5—H5B	120.0
013 - V5 - 03	102.0(2)	H5A—N5—H5B	120.0
014 - V5 - 03	90 73 (19)	C15 - N6 - C11	123.3 (6)
010 - V5 - 03	154 79 (19)	C15 - N6 - H6	118.4
013 - V5 - 04	100.0(2)	C11—N6—H6	118.3
014 - V5 - 04	155.60(18)	N5-C11-N6	119.3 (6)
010 - V5 - 04	83 94 (18)	N5-C11-C12	123.6(7)
03 - V5 - 04	83 79 (18)	N_{6} C11 C12	123.0(7) 117.1(7)
013 - V5 - 01	1744(2)	C_{13} C_{12} C_{11}	1204(7)
014 - V5 - 01	81 21 (17)	C13 - C12 - H12	119.8
010 - V5 - 01	78 41 (16)	C11 - C12 - H12	119.8
03 - V5 - 01	77.12 (16)	C12 - C13 - C14	120.8 (7)
04 - V5 - 01	74 39 (15)	C12 - C13 - H13	119.6
$V4^{i}$ 01 V4	101 79 (16)	C12 C13 H13	119.6
$V4^{i}$ 01 V1	94 50 (15)	C15-C14-C13	118.2 (8)
V4-01-V2	93 22 (15)	C15-C14-H14	120.9
V4 ⁱ	93.87 (15)	C13-C14-H14	120.9
V4-01-V1	93.23 (15)	N6-C15-C14	120.3 (7)
V2-01-V1	168.2 (2)	N6—C15—H15	119.9
$V4^{i}$ O1 V3	87.65 (14)	C14-C15-H15	119.9
			/ •/

supporting information

V4—O1—V3	170.6 (2)	H15A—O15—H15B	91.4
V2—O1—V3	86.07 (14)		

Symmetry code: (i) -x+2, -y+2, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1A····O4 ⁱⁱ	0.86	2.44	3.217 (9)	150
N1—H1A····O5 ⁱⁱⁱ	0.86	2.55	3.286 (8)	144
N1—H1 <i>B</i> ····O10 ^{iv}	0.86	2.21	3.058 (8)	169
N2—H2A···O2 ⁱⁱ	0.86	1.85	2.697 (7)	168
N3—H3 <i>A</i> ···O9 ^{iv}	0.86	2.17	2.969 (7)	155
N3—H3 <i>A</i> ···O7 ^v	0.86	2.48	3.017 (7)	122
N3—H3 <i>B</i> …O14	0.86	2.09	2.908 (7)	158
N4—H4 <i>A</i> ···O12 ^v	0.86	1.84	2.698 (6)	174
N5—H5 <i>A</i> ···O7 ^v	0.86	2.23	3.085 (8)	175
N5—H5 <i>B</i> ···O9	0.86	2.22	3.057 (8)	164
N6—H6…O8 ^v	0.86	1.87	2.709 (7)	166
O15—H15A····O6 ^{vi}	0.85	2.09	2.926 (8)	166
O15—H15 <i>B</i> ···O7 ⁱⁱ	0.85	2.13	2.977 (8)	180

Symmetry codes: (ii) -x+1, y-1/2, -z+3/2; (iii) x-1, -y+3/2, z-1/2; (iv) x, -y+3/2, z-1/2; (v) -x+2, y-1/2, -z+3/2; (vi) x-1, y, z.