Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2-Ammonioethyl)pyridinium hexachloridorhenate(IV)

Andrzej Kochel

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie Street, 50-383 Wrocław, Poland

Correspondence e-mail: andrzej@wcheto.chem.uni.wroc.pl

Received 9 October 2008; accepted 28 December 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.024; wR factor = 0.053; data-to-parameter ratio = 32.4.

In the title antiferromagnetic material, $(C_7H_{12}N_2)$ [ReCl₆], the Néel temperature is observed at 5 K. The salt is stabilized by an extensive network of N-H···Cl and C-H···Cl hydrogen bonds, where hydrogen-bonded anion chains and characteristic cation-anion motifs are present. Similar systems play an important role in crystal engineering as hydrogen bonds that can transmit magnetic interactions.

Related literature

For related literature, see: Kepert *et al.* (1997); Mrozinski *et al.* (2002); Sawusch & Schilde (1999); Kochel (2004); Koenig (1966).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_7{\rm H}_{12}{\rm N}_2)[{\rm ReCl}_6]\\ M_r=523.10\\ {\rm Triclinic}, P\overline{1}\\ a=7.371~(2)~{\rm \AA}\\ b=14.204~(3)~{\rm \AA}\\ c=15.159~(3)~{\rm \AA}\\ \alpha=66.87~(2)^\circ\\ \beta=84.74~(2)^\circ \end{array}$

$\gamma = 75.61 \ (2)^{\circ}$	
V = 1413.7 (6) Å ³	
Z = 4	
Mo $K\alpha$ radiation	
$\mu = 9.70 \text{ mm}^{-1}$	
T = 100 (2) K	
$0.14 \times 0.10 \times 0.06 \text{ mm}$	ı

Data collection

Oxford Diffraction KM-4-CCD

```
diffractometer
Absorption correction: analytical
(CrysAlis RED; Oxford
Diffraction, 2006)
T_{min} = 0.367, T_{max} = 0.559
```

Refinement

21570 measured reflections 10147 independent reflections 8098 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 2.07 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{min} = -1.31 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots Cl3^i$	0.86	2.76	3.280 (3)	120
$N1 - H1 \cdot \cdot \cdot Cl12^{ii}$	0.86	2.56	3.208 (3)	133
$N2 - H2N \cdot \cdot \cdot Cl1^{iii}$	0.93 (4)	2.47 (4)	3.313 (3)	152 (3)
$N3 - H3A \cdots Cl7^{iv}$	0.86	2.71	3.431 (3)	142
$N3-H3A\cdots Cl12^{iv}$	0.86	2.65	3.326 (3)	136
$N2 - H3N \cdot \cdot \cdot Cl1^{i}$	0.83(5)	2.50 (5)	3.328 (3)	174 (4)
$N4 - H6N \cdot \cdot \cdot Cl2$	0.93 (6)	2.43 (5)	3.291 (4)	155 (4)
$N4 - H9N \cdot \cdot \cdot Cl7$	1.04 (6)	2.70 (5)	3.199 (3)	110 (3)
$N4 - H9N \cdot \cdot \cdot Cl8$	1.04 (6)	2.52 (6)	3.541 (3)	166 (4)
N4−H10N···Cl11 ⁱⁱⁱ	0.87 (5)	2.45 (4)	3.240 (4)	152 (4)
C4−H4···Cl11	0.93	2.83	3.621 (3)	144
$C7 - H7B \cdot \cdot \cdot Cl1^{v}$	0.97	2.80	3.711 (3)	156
$C22-H22\cdots Cl2^{vi}$	0.93	2.69	3.602 (4)	166
$C26 - H26B \cdots Cl8$	0.97	2.82	3.589 (3)	137
$C27 - H27B \cdots Cl5$	0.97	2.81	3.610 (3)	140
Symmetry codes: (x = 1 $x = 1$	1 = 1 (ii)	$-\mathbf{r} + 1 - \mathbf{v}$	⊥ 1 _ 7 : (iji)

Symmetry codes: (i) x - 1, y + 1, z - 1; (ii) -x + 1, -y + 1, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) x - 1, y, z; (v) x, y + 1, z - 1; (vi) -x + 1, -y, -z + 1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

Financial support by the Polish Ministry of Science and Higher Education (grant No. N N204 016735, in years 2008– 2010) is gratefully acknowledged. The author thanks Dr A. Pochaba (Faculty of Chemistry, University of Wrocław) for the magnetic measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2112).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kepert, C. J., Kurmoo, M. & Day, P. (1997). J. Mater. Chem. 7, 221-228.
- Kochel, A. (2004). Acta Cryst. E60, m859-m860.
- Koenig, E. (1966). In Magnetic Properties of Coordination and Organometallic Transition Metal Compounds. Berlin: Springer Verlag.
- Mrozinski, J., Kochel, A. & Lis, T. (2002). J. Mol. Struct. 641, 109-117.
- Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.

Sawusch, S. & Schilde, U. (1999). Z. Kristallogr. New Cryst. Struct. 214, 79–81. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2009). E65, m245 [doi:10.1107/S1600536808044097]

2-(2-Ammonioethyl)pyridinium hexachloridorhenate(IV)

Andrzej Kochel

S1. Comment

Rhenium(IV) salts with ammonium cations are known and have been described previously (Sawusch et al., 1999, Mrozinski et al., 2002, Kochel 2004). Some of the hexachlororhenates(IV) have interesting properties, e.g. as semiconductors (Kepert *et al.*, 1997). The title salt comprises of 2-(2-aminoethyl)pyridinium cations and ReCl₆²⁻ anions. Figure 1 illustrates the two independent formula units of compound (1). The anion bond lengths are comparable to those for other anions of this type (see table in supplementary material). The crystal structure is stabilized by an extensive network of N-H···Cl and C-H···Cl hydrogen bonds (Fig. 2). Almost all amino H atoms bonded to the organic cation participate in hydrogen bonds as donors. Some of the hydrogen bonds e.g. N3-H3...Cl12, N3-H3...Cl1 are bifurcated. The hydrogen bonding parameters are included in Table 1. The use of small low-symmetry ammonium cations enable these ions to occupy general positions, so that the Re…Re distances are much smaller. In the crystal packing, two types of arrangement of molecules may be distinguished: in the [100] direction a layered arrangement [alternating anions and cations] is observed, while in the [010] direction, and the whole is stabilized by a network of hydrogen bonds. The shortest Re1···Re1_i distance is 7.371 (2)Å [symmetry code: (i) x - 1, y, z]. The magnetic susceptibility of (1) is measured in the temperature range from 2 to 300 K under the applied magnetic field of 0.5 T (Figure 3). The $\chi_m T$ values decrease slowly upon cooling. The effective magnetic moment of 3.55 B. M. at 300 K is reduced in comparison to the spin-only value (3.87 uB), and in 2 K is 0.84 B. M. Generally, the complex shows linear χ_m versus T behaviour in the 300–50 K range with C = 1.70 cm³ mol⁻¹ K, Q = -14.5 K. The susceptibility curves exhibit the maximum at 5 K, indicating directly the presence of antiferromagnetic interactions.

The $\chi_m T$ at 300 K is 1.58 cm³ K_{mol}⁻¹ and this value is expected for an isolated Re(IV) ion. As the temperature is lowered, $\chi_m T$ decreases, and the value is 0.896 cm³ K_{mol}⁻¹ at 2 K. This behaviour indicates antiferromagnetic interactions between the Re(IV) ions. The occurrence of antiferromagnetic interactions could be related to aspects of the structure. The smallest Re—Re distance is 7.371 (2) Å, and a substantial value, however, there are numerous hydrogen bonds in the crystal structure, forming a three-dimensional framework. The hydrogen bonds stabilize the crystal structure layered arrangement. Probably the hydrogen bonding system enhances the magnetic exchange interactions. Future perspectives concerning this work will involve further studies on hexachlororhenates(IV) as potential materials used as semiconductors.

S2. Experimental

 $(NH_4)_2ReCl_6$ (0.15 g) was dissolved in water (50 ml) with concentrated HCl (2 ml) and the mixture was heated under reflux at 340 K. After 30 min, 2-(2-aminoethyl)pyridine (0.25 g) was added. The mixture was heated for further 5 h. After cooling, the yellow precipitate was filtered off and washed with ethanol. Crystals for X-ray study were obtained by slow evaporation of an aqueous solution of the yellow precipitate with addition of 1 ml HCl solution. The crystals are in the form of plates. For data collection a small plate was used, cut from a larger one. Elemental analysis of C, H, Cl, and N for C7 H12 Cl6 N2 Re1: calcd. for C, 16.07; H, 2.31; Cl, 40.66; found: C, 15.03; H, 2.01; Cl, 39.12;

IR spectra were collected for samples prepared as KBr pellets on a BRUKER spectrometer.

(1) 3456 (*s*), 3010 (*s*), 2574 (*m*), 2015 (*m*), 1610 (*m*), 1545 (*s*), 1431 (*s*), 1403 (*m*), 1321 (*s*), 1120 (*s*), 935 (*s*), 715 (*versus*), 645 (*versus*), 554 (*versus*), 435 (*versus*), 303 (*m*), 295 (*versus*), 211 (*versus*), 174 (*versus*), 160 (*versus*).

The magnetic measurements of polycrystalline samples were carried out over the temperature range of 2–300 K using a Quantum design SQUID-Based Magnetometer MPMSXL5. The SQUID magnetometer was calibrated with a palladium rod sample, for which the gram susceptibility was assumed as $5.30 \times 10^{-6} \text{ cm}^3\text{g}^{-1}$ at 293 K (National Bureau of Standards, USA). The susceptibility measurements were made in the field of 0.5 T. Corrections were done for the diamagnetic response of the sample rod and of the sample using Pascal's constants (Koenig, 1966).

S3. Refinement

The structure (1) was solved by direct methods using *SHELXS97* software (Sheldrick, 2008) and refined using *SHELXL97* (Sheldrick, 2008). In case of (1) *DFIX* restraints were used for all C—H bond lengths (0.93–0.97 Å with the allowed deviation of 0.002 Å. All H atoms were refined with U_{eq} set at 1.2 U_{eq} (parent atom). H atoms associated with N atoms were located on difference maps and then freely refined. In the final difference maps the following highest peaks were found: for (1) the maximum of -1.30 and 2.07 e/Å³ at 0.68 and 0.78 Å from the Re(2) atom

Figure 1

Molecular structure of (1). Thermal ellipsoids are drawn at 50% probability level.

Figure 2

Figure 3

The χ_m and $\chi_m T$ temperature dependence (χ_m - the molar magnetic susceptibility) for compund (1).

2-(2-Ammonioethyl)pyridinium hexachloridorhenate(IV)

Crystal data

 $(C_{7}H_{12}N_{2})[\text{ReCl}_{6}]$ $M_{r} = 523.10$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.371 (2) Å b = 14.204 (3) Å c = 15.159 (3) Å a = 66.87 (2)° $\beta = 84.74$ (2)° $\gamma = 75.61$ (2)° V = 1413.7 (6) Å³

Data collection

Oxford Diffraction KM-4-CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator /w scans Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2006) $T_{min} = 0.367, T_{max} = 0.559$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0289P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta ho_{ m max} = 2.07 \ m e \ m \AA^{-3}$
$\Delta \rho_{\rm min} = -1.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 4

F(000) = 980

 $\theta = 2.7 - 36.9^{\circ}$

 $\mu = 9.70 \text{ mm}^{-1}$ T = 100 K

Needle, yellow

 $R_{\rm int} = 0.023$

 $h = -12 \rightarrow 10$

 $k = -23 \rightarrow 18$

 $l = -25 \rightarrow 25$

 $0.14 \times 0.10 \times 0.06 \text{ mm}$

21570 measured reflections

 $\theta_{\rm max} = 36.9^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$

10147 independent reflections

8098 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 2.458 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7350 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.0792 (4)	0.6798 (2)	-0.06898 (17)	0.0146 (5)
H1	0.1179	0.7004	-0.1273	0.018*
N2	0.2688 (4)	0.9123 (2)	-0.05025 (19)	0.0160 (5)

C1	-0.0762 (4)	0.6422 (3)	-0.0503 (2)	0.0182 (6)
H1A	-0.1404	0.6400	-0.0992	0.022*
C2	-0.1379 (4)	0.6072 (3)	0.0424 (2)	0.0189 (7)
H2	-0.2442	0.5798	0.0575	0.023*
C3	-0.0401 (4)	0.6128 (3)	0.1141 (2)	0.0177 (6)
H3	-0.0806	0.5888	0.1773	0.021*
C4	0.1171 (4)	0.6543 (3)	0.0911 (2)	0.0160 (6)
H4	0.1809	0.6597	0.1384	0.019*
C5	0.1791 (4)	0.6877 (2)	-0.0029 (2)	0.0126 (5)
C6	0.3564 (4)	0.7241 (3)	-0.0333 (2)	0.0161 (6)
H6A	0.3593	0.7542	-0.1028	0.019*
H6B	0.4610	0.6633	-0.0116	0.019*
C7	0.3845 (4)	0.8048 (3)	0.0037 (2)	0.0160 (6)
H7A	0.3516	0.7832	0.0711	0.019*
H7B	0.5157	0.8070	-0.0017	0.019*
N3	0.0641 (4)	0.2257 (2)	0.46864 (18)	0.0164 (5)
H3A	-0.0082	0.2847	0.4348	0.020*
N4	0.3743 (4)	0.3282 (3)	0.6043 (2)	0.0194 (6)
C21	0.1078 (5)	0.1501 (3)	0.4337 (2)	0.0213 (7)
H21	0.0610	0.1621	0.3744	0.026*
C22	0.2226 (5)	0.0542 (3)	0.4860 (2)	0.0188 (6)
H22	0.2526	0.0003	0.4631	0.023*
C23	0.2926 (4)	0.0396 (3)	0.5741 (2)	0.0164 (6)
H23	0.3720	-0.0240	0.6101	0.020*
C24	0.2437 (4)	0.1201 (3)	0.6074 (2)	0.0145 (6)
H24	0.2901	0.1102	0.6662	0.017*
C25	0.1265 (4)	0.2152 (2)	0.55434 (19)	0.0136 (6)
C26	0.0569 (4)	0.3072 (3)	0.5838 (2)	0.0144 (6)
H26A	-0.0620	0.3012	0.6162	0.017*
H26B	0.0338	0.3712	0.5264	0.017*
C27	0.1872 (4)	0.3179 (3)	0.6489 (2)	0.0155 (6)
H27A	0.1309	0.3793	0.6637	0.019*
H27B	0.2037	0.2566	0.7086	0.019*
Re1	0.774116 (15)	0.011796 (9)	0.795978 (7)	0.00979 (3)
Cl1	0.82082 (10)	-0.09836 (6)	0.96174 (4)	0.01273 (13)
Cl2	0.72966 (10)	0.12498 (6)	0.63386 (5)	0.01403 (13)
C13	1.05734 (10)	-0.08752 (6)	0.75988 (5)	0.01415 (13)
Cl4	0.93941 (10)	0.12262 (6)	0.82086 (5)	0.01445 (14)
C15	0.48903 (10)	0.10735 (6)	0.83435 (5)	0.01483 (14)
Cl6	0.61222 (10)	-0.10277 (6)	0.77706 (5)	0.01580 (14)
Re2	0.540061 (16)	0.419170 (10)	0.306599 (7)	0.01145 (3)
Cl7	0.66713 (10)	0.42137 (6)	0.44425 (5)	0.01578 (14)
C18	0.23337 (11)	0.46658 (7)	0.36098 (5)	0.02068 (16)
C19	0.54298 (12)	0.24161 (7)	0.38861 (6)	0.02359 (17)
C110	0.43132 (12)	0.42195 (7)	0.16505 (6)	0.02313 (17)
Cl11	0.53303 (10)	0.60222 (6)	0.22842 (5)	0.01651 (14)
C112	0.85405 (10)	0.37428 (7)	0.25762 (5)	0.01766 (15)
H2N	0.290 (5)	0.961 (3)	-0.028 (3)	0.019 (9)*

supporting information

H3N	0.155 (6)	0.915 (3)	-0.050 (3)	0.029 (11)*
H4N	0.298 (5)	0.933 (3)	-0.107 (3)	0.024 (10)*
H6N	0.444 (6)	0.262 (4)	0.610 (3)	0.035 (12)*
H9N	0.346 (6)	0.378 (4)	0.533 (4)	0.047 (14)*
H10N	0.440 (6)	0.341 (3)	0.641 (3)	0.024 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0165 (12)	0.0168 (13)	0.0139 (11)	-0.0070 (11)	0.0019 (9)	-0.0079 (10)
N2	0.0175 (14)	0.0154 (14)	0.0168 (12)	-0.0064 (12)	0.0007 (10)	-0.0066 (11)
C1	0.0161 (15)	0.0213 (17)	0.0184 (13)	-0.0066 (14)	-0.0016 (11)	-0.0071 (13)
C2	0.0172 (15)	0.0171 (16)	0.0214 (14)	-0.0071 (14)	0.0024 (11)	-0.0048 (13)
C3	0.0172 (15)	0.0170 (16)	0.0178 (13)	-0.0030 (13)	0.0001 (11)	-0.0059 (12)
C4	0.0167 (14)	0.0161 (15)	0.0146 (12)	-0.0040 (13)	-0.0007 (10)	-0.0048 (12)
C5	0.0132 (13)	0.0104 (14)	0.0135 (12)	-0.0015 (12)	0.0006 (10)	-0.0046 (11)
C6	0.0129 (14)	0.0154 (15)	0.0217 (14)	-0.0023 (13)	0.0009 (11)	-0.0096 (13)
C7	0.0143 (14)	0.0149 (15)	0.0194 (13)	-0.0019 (13)	-0.0042 (10)	-0.0071 (12)
N3	0.0154 (12)	0.0187 (14)	0.0151 (11)	-0.0031 (11)	-0.0031 (9)	-0.0063 (11)
N4	0.0157 (13)	0.0189 (15)	0.0286 (14)	-0.0056 (12)	0.0005 (11)	-0.0135 (13)
C21	0.0271 (17)	0.0229 (18)	0.0180 (14)	-0.0059 (15)	-0.0026 (12)	-0.0115 (14)
C22	0.0197 (15)	0.0181 (16)	0.0218 (14)	-0.0040 (14)	0.0000 (12)	-0.0112 (13)
C23	0.0166 (14)	0.0141 (15)	0.0181 (13)	-0.0042 (13)	-0.0003 (11)	-0.0053 (12)
C24	0.0141 (14)	0.0172 (16)	0.0115 (11)	-0.0075 (13)	0.0016 (10)	-0.0027 (11)
C25	0.0126 (14)	0.0158 (15)	0.0136 (12)	-0.0047 (13)	0.0008 (10)	-0.0062 (12)
C26	0.0126 (13)	0.0145 (15)	0.0171 (12)	-0.0038 (12)	-0.0008 (10)	-0.0064 (12)
C27	0.0157 (14)	0.0167 (16)	0.0156 (12)	-0.0028 (13)	0.0005 (10)	-0.0083 (12)
Re1	0.01005 (5)	0.01098 (6)	0.00933 (4)	-0.00349 (5)	0.00008 (3)	-0.00430 (4)
Cl1	0.0146 (3)	0.0142 (3)	0.0096 (3)	-0.0050 (3)	0.0005 (2)	-0.0040 (2)
Cl2	0.0158 (3)	0.0139 (3)	0.0114 (3)	-0.0034 (3)	-0.0010 (2)	-0.0037 (3)
C13	0.0135 (3)	0.0146 (3)	0.0139 (3)	-0.0017 (3)	0.0017 (2)	-0.0063 (3)
Cl4	0.0148 (3)	0.0152 (3)	0.0159 (3)	-0.0069 (3)	-0.0001 (2)	-0.0065 (3)
C15	0.0118 (3)	0.0171 (4)	0.0168 (3)	-0.0028 (3)	0.0013 (2)	-0.0084 (3)
Cl6	0.0183 (3)	0.0174 (4)	0.0159 (3)	-0.0087 (3)	-0.0002 (2)	-0.0079 (3)
Re2	0.01206 (6)	0.01075 (6)	0.01218 (5)	-0.00259 (5)	-0.00074 (4)	-0.00493 (4)
Cl7	0.0174 (3)	0.0174 (4)	0.0127 (3)	-0.0018 (3)	-0.0019 (2)	-0.0069 (3)
C18	0.0133 (3)	0.0242 (4)	0.0225 (3)	-0.0029 (3)	0.0022 (3)	-0.0081 (3)
C19	0.0262 (4)	0.0128 (4)	0.0297 (4)	-0.0066 (3)	-0.0014 (3)	-0.0044 (3)
Cl10	0.0263 (4)	0.0244 (4)	0.0228 (4)	0.0010 (4)	-0.0093 (3)	-0.0155 (3)
Cl11	0.0193 (3)	0.0126 (3)	0.0170 (3)	-0.0048 (3)	-0.0037 (2)	-0.0034 (3)
C112	0.0151 (3)	0.0214 (4)	0.0140 (3)	-0.0007 (3)	0.0017 (2)	-0.0066 (3)

Geometric parameters (Å, °)

N1—C1	1.342 (4)	N4—H10N	0.87 (4)
N1—C5	1.349 (4)	C21—C22	1.379 (5)
N1—H1	0.8600	C21—H21	0.9300
N2—C7	1.492 (4)	C22—C23	1.396 (4)

N2—H2N	0.94 (4)	С22—Н22	0.9300
N2—H3N	0.83 (4)	C23—C24	1.381 (5)
N2—H4N	0.82 (4)	С23—Н23	0.9300
C1—C2	1.370 (4)	C24—C25	1.383 (4)
C1—H1A	0.9300	C24—H24	0.9300
$C^2 - C^3$	1 396 (4)	$C_{25} - C_{26}$	1 501 (4)
C2H2	0.9300	C_{26} C_{27}	1.501(1) 1 511(4)
$C_2 C_2$	1 383 (4)	C_{26} H_{26A}	0.0700
C_{2} H_{3}	0.0300	C26 H26P	0.9700
C_{3}	1.3300	C27 H27A	0.9700
C4 - C3	1.360 (4)	$C_2/-H_2/A$	0.9700
C4—H4	0.9300	$C_2/-H_2/B$	0.9700
C5—C6	1.492 (4)	Rel—Cl2	2.3480 (9)
C6—C7	1.522 (4)	Rel—Cl6	2.3556 (8)
С6—Н6А	0.9700	Re1—Cl5	2.3611 (10)
С6—Н6В	0.9700	Re1—Cl3	2.3624 (10)
С7—Н7А	0.9700	Re1—Cl4	2.3682 (8)
С7—Н7В	0.9700	Re1—Cl1	2.3839 (9)
N3—C21	1.333 (4)	Re2—C19	2.3284 (10)
N3—C25	1.359 (4)	Re2—C110	2.3412 (9)
N3—H3A	0.8600	Re2—C18	2.3624 (10)
N4—C27	1.495 (4)	Re2—Cl12	2.3744 (10)
N4—H6N	0.92 (5)	Re2—C17	2.3783 (8)
N4—H9N	1.04(5)	Re2—C111	2 3856 (10)
			210000 (10)
C1 - N1 - C5	124.7(2)	C_{24} C_{23} C_{22}	1197(3)
C1 N1 H1	117.6	$C_{24} = C_{23} = C_{22}$	120.1
C_{5} N1 H1	117.6	$C_{24} = C_{23} = H_{23}$	120.1
C7 N2 H2N	117.0	$C_{22} = C_{23} = H_{23}$	120.1
C7 = N2 = H2N	111(2) 114(2)	$C_{23} = C_{24} = C_{23}$	120.7 (5)
C/—N2—H3N	114 (5)	C25—C24—H24	119.6
H2N—N2—H3N	110 (4)	C25—C24—H24	119.6
C7—N2—H4N	111 (3)	N3—C25—C24	117.1 (3)
H2N—N2—H4N	106 (4)	N3—C25—C26	116.7 (3)
H3N—N2—H4N	105 (4)	C24—C25—C26	126.1 (3)
N1—C1—C2	118.5 (3)	C25—C26—C27	115.2 (3)
N1—C1—H1A	120.8	С25—С26—Н26А	108.5
C2—C1—H1A	120.8	С27—С26—Н26А	108.5
C1—C2—C3	119.5 (3)	С25—С26—Н26В	108.5
C1—C2—H2	120.3	C27—C26—H26B	108.5
С3—С2—Н2	120.3	H26A—C26—H26B	107.5
C4—C3—C2	120.0 (3)	N4—C27—C26	112.1 (2)
C4—C3—H3	120.0	N4—C27—H27A	109.2
C2_C3_H3	120.0	$C_{26} = C_{27} = H_{27A}$	109.2
$C_{2} = C_{3} = C_{4} = C_{5}$	110.7(3)	N4_C27_H27B	109.2
$C_3 C_4 H_4$	120.2	C26 C27 H27P	109.2
$C_5 = C_4 = H_4$	120.2	$\begin{array}{c} 120 \\ - \\ 127 \\ 1$	109.2
C_{3}	120.2	$\Pi \angle / A \longrightarrow \Box \angle / \Box \Pi \angle / D$	107.9
N1	11/./ (3)	C12 - Ke1 - C15	92.04 (3)
NI-C5-C6	118.6 (2)	CI2—Rel—CI5	89.96 (4)
C4—C5—C6	123.6 (3)	Cl6—Re1—Cl5	89.52 (3)

C5—C6—C7	115.3 (3)	Cl2—Re1—Cl3	90.99 (4)
С5—С6—Н6А	108.4	Cl6—Re1—Cl3	89.50 (3)
С7—С6—Н6А	108.4	Cl5—Re1—Cl3	178.66 (2)
С5—С6—Н6В	108.4	Cl2—Re1—Cl4	90.04 (3)
С7—С6—Н6В	108.4	Cl6—Re1—Cl4	177.91 (2)
Н6А—С6—Н6В	107.5	Cl5—Re1—Cl4	90.64 (3)
N2—C7—C6	112.2 (2)	Cl3—Re1—Cl4	90.31 (3)
N2—C7—H7A	109.2	Cl2—Re1—Cl1	178.08 (3)
С6—С7—Н7А	109.2	Cl6—Re1—Cl1	89.74 (3)
N2—C7—H7B	109.2	Cl5—Re1—Cl1	89.34 (4)
С6—С7—Н7В	109.2	Cl3—Re1—Cl1	89.74 (4)
H7A—C7—H7B	107.9	Cl4—Re1—Cl1	88.17 (3)
C21—N3—C25	124.1 (3)	Cl9—Re2—Cl10	92.44 (4)
C21—N3—H3A	118.0	Cl9—Re2—Cl8	90.47 (4)
C25—N3—H3A	118.0	Cl10—Re2—Cl8	92.67 (4)
C27—N4—H6N	109 (3)	Cl9—Re2—Cl12	90.34 (4)
C27—N4—H9N	105 (2)	Cl10—Re2—Cl12	90.12 (3)
H6N—N4—H9N	111 (4)	C18—Re2—C112	177.06 (3)
C27—N4—H10N	109 (3)	Cl9—Re2—Cl7	89.92 (4)
H6N—N4—H10N	100 (4)	Cl10—Re2—Cl7	176.13 (3)
H9N—N4—H10N	122 (4)	C18—Re2—C17	90.37 (3)
N3—C21—C22	119.7 (3)	Cl12—Re2—Cl7	86.80 (3)
N3—C21—H21	120.1	Cl9—Re2—Cl11	177.67 (3)
C22—C21—H21	120.1	Cl10—Re2—Cl11	89.43 (4)
C21—C22—C23	118.6 (3)	Cl8—Re2—Cl11	88.05 (4)
C21—C22—H22	120.7	Cl12—Re2—Cl11	91.05 (4)
С23—С22—Н22	120.7	Cl7—Re2—Cl11	88.28 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···Cl3 ⁱ	0.86	2.76	3.280 (3)	120
N1—H1···Cl12 ⁱⁱ	0.86	2.56	3.208 (3)	133
N2—H2N···Cl1 ⁱⁱⁱ	0.93 (4)	2.47 (4)	3.313 (3)	152 (3)
N3—H3A···Cl7 ^{iv}	0.86	2.71	3.431 (3)	142
N3—H3A···Cl12 ^{iv}	0.86	2.65	3.326 (3)	136
N2—H3 <i>N</i> ···Cl1 ⁱ	0.83 (5)	2.50 (5)	3.328 (3)	174 (4)
N4—H6 <i>N</i> ···Cl2	0.93 (6)	2.43 (5)	3.291 (4)	155 (4)
N4—H9 <i>N</i> ···C17	1.04 (6)	2.70 (5)	3.199 (3)	110 (3)
N4—H9 <i>N</i> ···Cl8	1.04 (6)	2.52 (6)	3.541 (3)	166 (4)
N4—H10N····Cl11 ⁱⁱⁱ	0.87 (5)	2.45 (4)	3.240 (4)	152 (4)
C4—H4···Cl11	0.93	2.83	3.621 (3)	144
C7—H7 <i>B</i> ···Cl1 ^v	0.97	2.80	3.711 (3)	156
C22—H22···Cl2 ^{vi}	0.93	2.69	3.602 (4)	166
C26—H26B···Cl8	0.97	2.82	3.589 (3)	137
C27—H27 <i>B</i> ···Cl5	0.97	2.81	3.610 (3)	140

Symmetry codes: (i) *x*-1, *y*+1, *z*-1; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*-1, *y*, *z*; (v) *x*, *y*+1, *z*-1; (vi) -*x*+1, -*y*, -*z*+1.