

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2,6-Diisopropylphenyl)(2-thienylmethylene)amine

Wolfgang Imhof

Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University, August-Bebel-Strasse 2, 07743 Jena, Germany Correspondence e-mail: wolfgang.imhof@uni-jena.de

Received 19 February 2009; accepted 20 February 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.028; wR factor = 0.079; data-to-parameter ratio = 5.9.

The title compound, $C_{17}H_{21}NS$, was prepared by the condensation of thiophene-2-carbaldehyde with 2,6-diiso-propylaniline. It crystallizes with two molecules in the asymmetric unit. The molecules are interconnected *via* a $C-H\cdots N$ hydrogen bond. The dihedral angles between the thiophene and phenyl rings are 81.7 (7) and 85.5 (7)°.

Related literature

For the synthetic procedure, see: Drisko & McKennis (1952); Wang *et al.* (2007). For related structures, see: Kazak *et al.* (2000); Małeki *et al.* (2007). For the organometallic chemistry of related ligands, see: Imhof (1997*a*,*b*).

Experimental

Crystal data

 $\begin{array}{l} C_{17}H_{21}\text{NS} \\ M_r = 271.42 \\ \text{Monoclinic, } P2_1 \\ a = 10.0877 \ (9) \ \text{\AA} \\ b = 14.275 \ (3) \ \text{\AA} \\ c = 11.4503 \ (9) \ \text{\AA} \\ \beta = 109.651 \ (8)^{\circ} \end{array}$

 $V = 1552.8 \text{ (4) } \text{\AA}^3$ Z = 4 Mo K\alpha radiation $\mu = 0.20 \text{ mm}^{-1}$ T = 173 K 0.51 \times 0.43 \times 0.33 mm

Data collection

```
Enraf-Nonius CAD-4
diffractometer
Absorption correction: \psi scan
(North et al., 1968)
T_{\min} = 0.884, T_{\max} = 0.939
2222 measured reflections
2096 independent reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.079$ S = 1.082096 reflections 353 parameters 2055 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 23.0^{\circ}$ 3 standard reflections frequency: 120 min intensity decay: 0.02%

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.20 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.19 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
C20−H20···N1	0.93	2.52	3.449 (8)	178

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *SET4* (de Boer *et al.*, 1984); data reduction: *MolEN* (Enraf–Nonius, 1990); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Siemens, 1990); software used to prepare material for publication: *SHELXL97*.

The author thanks the Deutsche Forschungsgemeinschaft (SFB 436) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2882).

References

- Boer, J. L. de & Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410.
- Drisko, R. W. & McKennis, H. Jr (1952). J. Am. Chem. Soc. 74, 2626-2628.
- Enraf-Nonius (1990). MolEN. Enraf-Nonius BV, Delft, The Netherlands.
- Enraf-Nonius (1994). *CAD-4 EXPRESS*. Enraf-Nonius, Delft, The Netherlands.
- Imhof, W. (1997a). J. Organomet. Chem. 533, 31–43.
- Imhof, W. (1997b). J. Organomet. Chem. 541, 109-116.
- Kazak, C., Aygün, M., Turgut, G., Odabaşoĝlu, M., Özbey, S. & Büyükgüngör, O. (2000). Acta Cryst. C56, 1044–1045.
- Małecki, J. G., Kruszynski, R. & Jarosz, G. (2007). Acta Cryst. E63, o3368o3369.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, D., Cui, D., Miao, W., Li, S. & Huang, B. (2007). *Dalton Trans.* pp. 4576–4581.

supporting information

Acta Cryst. (2009). E65, o593 [doi:10.1107/S1600536809006291]

(2,6-Diisopropylphenyl)(2-thienylmethylene)amine

Wolfgang Imhof

S1. Comment

In the course of a study on stoichiometric and catalytic C—H activation reactions of imines derived from 2- or 3-thiophene-carbaldehydes and aniline derivatives (Imhof, 1997*a*, 1997*b*) we synthesized the title compound that exhibits two bulky *ortho*-substituents at the phenyl ring. The compound crystallizes with two molecules per asymmetric unit. These molecules are interconnected by hydrogen bonds between the imine nitrogen atom as the acceptor and one of the thiophene C—H functions as the hydrogen bond donor (Table 1). Bond lengths and angles correspond to values that have been reported for related imines from 2-thiophenecarbaldehyde and aniline derivatives (Kazak *et al.*, 2000; Małeki *et al.*, 2007). The dihedral angles between the thiophene and the phenyl rings measure to 98.3 (7)° and 94.5 (7)°, respectively. These values are significantly higher than those observed for compounds without bulky *ortho*-substituents (Kazak *et al.*, 2000: 20.8 (1)°; Małeki *et al.*, 2007: 49.38 (6)°).

S2. Experimental

The title compound was prepared in analogy to a literature method (Drisko & McKennis, 1952). The synthesis of the compound has also been recently described as an intermediate in the synthesis of the corresponding amine (Wang *et al.*, 2007). The ¹H-NMR spectrum of the title compound is identical to the one described in the latter publication. Single crystals are produced from a solution of the compound in light petroleum (b.p. 40–60°) and dichloromethane (20:1) at -20°. MS (EI) [m/z, %]: 271 (M^+ , 76), 256 (M^+ - Me, 59), 214 ($C_{13}H_{12}NS^+$, 100), 199 ($C_{12}H_9NS^+$, 17), 172 ($C_{10}H_6NS^+$, 25), 146 ($C_9H_6S^+$, 33), 132 ($C_8H_4S^+$, 25), 115 ($C_9H_7^+$, 15), 97 ($C_5H_5S^+$, 36), 91 ($C_7H_7^+$, 19), 77 ($C_6H_5^+$, 13), 53 ($C_4H_5^+$, 8), 41 ($C_3H_5^+$, 14); IR (nujol mull) [cm⁻¹]: 1629 (CH=N); ¹³C-NMR (CDCl₃, 298 K) [p.p.m.]: 23.5 (CH₃), 28.0 (CH), 123.0 ($C_{ar}H$), 124.3 ($C_{ar}H$), 127.7 ($C_{ar}H$), 130.2 ($C_{ar}H$), 131.6 ($C_{ar}H$), 137.9 (C_{ar}), 142.6 (C_{ar}), 148.6 (C_{ar}), 154.9 (N=CH).

S3. Refinement

Hydrogen atoms were positioned geometrically at distances of 0.93 Å for aromatic C—H functions and the imine C—H group, 0.98 Å for aliphatic C—H bonds and 0.96 Å for methyl groups and were refined riding on their parent atoms with isotropic displacement parameters of 1.2 times the corresponding values of their parent atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Figure 1

The molecular structure of the title compound, presenting the labelling scheme and 30% probability displacement ellipsoids for non-H atoms.

(2,6-Diisopropylphenyl)(2-thienylmethylene)amine

Crystal	data
---------	------

C ₁₇ H ₂₁ NS	F(000) = 584
$M_r = 271.42$	$D_{\rm x} = 1.161 {\rm Mg m^{-3}}$
Monoclinic, $P2_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 25 reflections
a = 10.0877 (9) Å	$\theta = 36.5 - 42.8^{\circ}$
b = 14.275 (3) Å	$\mu=0.20~\mathrm{mm^{-1}}$
c = 11.4503 (9) Å	T = 173 K
$\beta = 109.651 (8)^{\circ}$	Cube, yellow
V = 1552.8 (4) Å ³	$0.51 \times 0.43 \times 0.33$ mm
Z = 4	
Data collection	
Enraf-Nonius CAD-4	2096 independent reflections
diffractometer	2055 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.023$
Graphite monochromator	$\theta_{\rm max} = 23.0^\circ, \ \theta_{\rm min} = 1.9^\circ$
$\omega/2\theta$ scans	$h = -11 \rightarrow 10$
Absorption correction: ψ scan	$k = 0 \rightarrow 15$
(North <i>et al.</i> , 1968)	$l = 0 \rightarrow 12$
$T_{\min} = 0.884, \ T_{\max} = 0.939$	3 standard reflections every 120 min
2222 measured reflections	intensity decay: 0.02%

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.079$	$w = 1/[\sigma^2(F_o^2) + (0.0606P)^2 + 0.2045P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
2096 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
353 parameters	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0222 (27)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F^2 for ALL reflections except for 0 with very negative F^2 or flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating _R_factor_obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.92670 (8)	0.27773 (6)	0.17143 (7)	0.0403 (2)	
C1	0.8043 (4)	0.3644 (2)	0.1137 (3)	0.0455 (8)	
H1	0.8191	0.4169	0.0716	0.055*	
C2	0.6842 (4)	0.3472 (2)	0.1367 (3)	0.0441 (8)	
H2	0.6065	0.3868	0.1122	0.053*	
C3	0.6886 (3)	0.2627 (2)	0.2017 (3)	0.0373 (7)	
H3	0.6143	0.2407	0.2250	0.045*	
C4	0.8135 (3)	0.2166 (2)	0.2268 (2)	0.0304 (7)	
C5	0.8510 (3)	0.1257 (2)	0.2850 (2)	0.0290 (6)	
H5	0.7887	0.0959	0.3170	0.035*	
N1	0.9657 (2)	0.08570 (16)	0.2936 (2)	0.0307 (6)	
C6	0.9982 (3)	-0.0052 (2)	0.3474 (3)	0.0303 (6)	
C7	1.0936 (3)	-0.0118 (2)	0.4707 (3)	0.0332 (7)	
C8	1.1362 (3)	-0.1004 (2)	0.5183 (3)	0.0402 (7)	
H8	1.1975	-0.1061	0.5994	0.048*	
C9	1.0900 (4)	-0.1802 (2)	0.4487 (3)	0.0459 (8)	
H9	1.1204	-0.2389	0.4822	0.055*	
C10	0.9987 (4)	-0.1719 (2)	0.3292 (3)	0.0481 (9)	
H10	0.9695	-0.2259	0.2820	0.058*	
C11	0.9485 (3)	-0.0855 (2)	0.2764 (3)	0.0371 (7)	
C12	1.1462 (3)	0.0744 (2)	0.5499 (3)	0.0425 (8)	
H12	1.1123	0.1299	0.4980	0.051*	

C13	1.3055 (5)	0.0779 (4)	0.6001 (6)	0.0936 (16)
H13A	1.3415	0.0749	0.5326	0.112*
H13B	1.3405	0.0258	0.6547	0.112*
H13C	1.3353	0.1354	0.6449	0.112*
C14	1.0880 (6)	0.0770 (3)	0.6541 (5)	0.0860 (15)
H14A	1.1285	0.1288	0.7079	0.103*
H14B	1.1105	0.0196	0.7002	0.103*
H14C	0.9876	0.0844	0.6211	0.103*
C15	0.8490 (4)	-0.0815(2)	0.1424 (3)	0.0483 (9)
H15	0.8103	-0.0180	0.1261	0.058*
C16	0.7261 (4)	-0.1501(3)	0.1206 (4)	0.0586 (10)
H16A	0.6602	-0.1416	0.0384	0.070*
H16R	0.6800	-0.1386	0.1802	0.070*
H16C	0.7611	-0.2132	0.1296	0.070*
C17	0.9284(4)	-0.1013(3)	0.0537(3)	0.070
H17A	0.9204 (4)	-0.1017	-0.0299	0.071*
H17R	0.0037	-0.1611	0.0299	0.071*
H17C	0.9759	-0.0534	0.0728	0.071*
\$2	1.45567(7)	0.0334	0.0021 0.12971 (7)	0.071
C18	1.3736(3)	0.01922(0)	0.12971(7) 0.0597(3)	0.0362(2)
H18	1.3730 (3)	0.1261 (2)	0.00577(3)	0.0304 (7)
C19	1.7598 (3)	0.1303 0.1407 (2)	0.0004	0.044 0.0376(7)
H10	1.2027	0.1927	0.0505 (3)	0.045*
C20	1.2027	0.1727 0.0744 (2)	0.1739 (3)	0.0338 (7)
H20	1.2500 (5)	0.0785	0.2052	0.041*
C21	1.1029 1 3337 (3)	0.0705	0.2032	0.0299 (6)
C21	1.3377(3)	-0.0769(2)	0.2094(2) 0.2809(3)	0.0299(0)
H22	1.3572 (3)	-0.0816	0.3194	0.037*
N2	1 4285 (3)	-0.14133(17)	0.2987(2)	0.0330 (6)
C23	1.1203(3) 1.4182(3)	-0.2197(2)	0.2987(2) 0.3739(2)	0.0230(0) 0.0284(6)
C24	1.1102(3) 1.3357(3)	-0.2969(2)	0.3789(2) 0.3184(3)	0.0201(0)
C25	1 3289 (3)	-0.3717(2)	0.3932(3)	0.0236(0)
H25	1.3209 (3)	-0.4229	0.3582	0.040*
C26	1.2723 1 4047 (3)	-0.3717(2)	0.5302 0.5197 (3)	0.0346(7)
H26	1 3980	-0.4222	0.5688	0.041*
C27	1.3900	-0.2964(2)	0.5000	0.041 0.0351 (7)
H27	1.1099 (3)	-0.2977	0.6559	0.042*
C28	1.4983 (3)	-0.2185(2)	0.0000	0.0318 (6)
C29	1.1963 (3)	-0.3020(2)	0.3012(3) 0.1779(3)	0.0349(7)
H29	1.2000 (0)	-0.2389	0.1487	0.0349 (7)
C30	1.2522 1.3730(4)	-0.3295(3)	0.1107 0.1190(3)	0.0516 (9)
H304	1.3750 (4)	-0.3905	0.1170 (5)	0.062*
H30R	1.4090	-0.2847	0.1413	0.062*
H30C	1 3294	-0.3306	0.0304	0.062*
C31	1.1389 (3)	-0.3669(3)	0.1358 (3)	0.002
H31A	1.0931	-0.3608	0.0479	0.058*
H31R	1.0741	-0 3506	0 1777	0.058*
H31C	1 1694	-0.4305	0.1553	0.058*
11010	1,1077	0.1505	0.1000	0.000

C32	1.5953 (3)	-0.1370 (2)	0.5574 (3)	0.0417 (8)	
H32	1.5458	-0.0794	0.5207	0.050*	
C33	1.6322 (5)	-0.1290 (3)	0.6970 (3)	0.0681 (12)	
H33A	1.6913	-0.0753	0.7265	0.082*	
H33B	1.6812	-0.1844	0.7360	0.082*	
H33C	1.5475	-0.1222	0.7168	0.082*	
C34	1.7288 (4)	-0.1426 (3)	0.5227 (4)	0.0704 (12)	
H34A	1.7039	-0.1416	0.4340	0.084*	
H34B	1.7781	-0.1997	0.5546	0.084*	
H34C	1.7884	-0.0901	0.5576	0.084*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0442 (4)	0.0359 (4)	0.0387 (4)	0.0012 (4)	0.0110 (3)	0.0054 (4)
C1	0.065 (2)	0.0341 (18)	0.0314 (17)	0.0049 (17)	0.0084 (16)	0.0048 (15)
C2	0.0512 (19)	0.0363 (18)	0.0319 (17)	0.0130 (15)	-0.0027 (15)	0.0002 (15)
C3	0.0383 (15)	0.0336 (18)	0.0328 (16)	0.0051 (14)	0.0023 (13)	-0.0005 (14)
C4	0.0334 (14)	0.0325 (16)	0.0187 (14)	0.0017 (12)	0.0000 (12)	-0.0056 (13)
C5	0.0338 (14)	0.0297 (15)	0.0189 (14)	-0.0001 (13)	0.0028 (11)	-0.0028 (13)
N1	0.0334 (13)	0.0268 (13)	0.0280 (13)	0.0034 (11)	0.0051 (10)	0.0002 (11)
C6	0.0343 (14)	0.0281 (16)	0.0286 (16)	0.0019 (12)	0.0109 (12)	0.0022 (13)
C7	0.0403 (16)	0.0293 (16)	0.0282 (16)	0.0003 (13)	0.0090 (13)	0.0033 (13)
C8	0.0479 (17)	0.0363 (17)	0.0280 (16)	0.0050 (15)	0.0018 (14)	0.0030 (15)
C9	0.064 (2)	0.0281 (17)	0.0399 (19)	0.0096 (16)	0.0093 (16)	0.0048 (15)
C10	0.064 (2)	0.0284 (17)	0.044 (2)	0.0051 (16)	0.0069 (17)	-0.0067 (15)
C11	0.0416 (16)	0.0295 (16)	0.0340 (17)	0.0049 (13)	0.0045 (14)	-0.0049 (14)
C12	0.0499 (18)	0.0313 (17)	0.0337 (16)	-0.0038 (15)	-0.0023 (14)	0.0059 (15)
C13	0.065 (3)	0.080 (4)	0.124 (4)	-0.029 (3)	0.016 (3)	-0.031 (3)
C14	0.140 (4)	0.055 (3)	0.081 (3)	-0.010 (3)	0.062 (3)	-0.028 (3)
C15	0.058 (2)	0.0320 (17)	0.0383 (19)	0.0107 (16)	-0.0054 (16)	-0.0065 (15)
C16	0.0452 (19)	0.062 (2)	0.056 (2)	0.0053 (17)	0.0012 (18)	-0.016 (2)
C17	0.069 (2)	0.064 (2)	0.0341 (18)	-0.008(2)	0.0018 (16)	0.0017 (19)
S2	0.0377 (4)	0.0345 (4)	0.0361 (4)	0.0016 (3)	0.0120 (3)	0.0049 (3)
C18	0.0454 (17)	0.0320 (16)	0.0280 (15)	-0.0045 (14)	0.0073 (13)	0.0094 (14)
C19	0.0380 (16)	0.0284 (16)	0.0393 (17)	0.0013 (14)	0.0034 (14)	0.0053 (15)
C20	0.0354 (15)	0.0311 (16)	0.0320 (15)	0.0005 (13)	0.0074 (12)	0.0013 (13)
C21	0.0335 (14)	0.0277 (15)	0.0216 (14)	-0.0030 (12)	0.0003 (11)	0.0013 (13)
C22	0.0325 (15)	0.0292 (15)	0.0257 (15)	-0.0037 (13)	0.0038 (12)	0.0001 (13)
N2	0.0393 (13)	0.0289 (13)	0.0270 (13)	0.0025 (11)	0.0060 (11)	0.0055 (11)
C23	0.0325 (13)	0.0270 (14)	0.0243 (14)	0.0045 (13)	0.0076 (12)	0.0066 (13)
C24	0.0343 (14)	0.0282 (15)	0.0248 (15)	0.0058 (12)	0.0070 (12)	0.0067 (13)
C25	0.0398 (15)	0.0281 (15)	0.0296 (16)	0.0006 (14)	0.0072 (13)	-0.0006 (14)
C26	0.0493 (16)	0.0261 (15)	0.0289 (16)	0.0040 (14)	0.0138 (13)	0.0061 (13)
C27	0.0437 (16)	0.0370 (17)	0.0205 (15)	0.0036 (14)	0.0053 (12)	0.0029 (14)
C28	0.0379 (13)	0.0261 (14)	0.0290 (14)	0.0035 (14)	0.0080 (11)	0.0041 (14)
C29	0.0394 (16)	0.0342 (16)	0.0240 (16)	0.0010 (13)	0.0013 (13)	0.0053 (13)
C30	0.0513 (19)	0.076 (3)	0.0222 (16)	0.0061 (18)	0.0056 (14)	0.0009 (17)

supporting information

C31	0.0544 (18)	0.051 (2)	0.0296 (16)	-0.0086 (18)	0.0019 (14)	0.0020 (17)
C32	0.0548 (19)	0.0315 (17)	0.0286 (17)	-0.0016 (15)	0.0007 (15)	0.0032 (14)
C33	0.108 (3)	0.047 (2)	0.0354 (19)	-0.028 (2)	0.005 (2)	-0.0012 (18)
C34	0.057 (2)	0.069 (3)	0.073 (3)	-0.021 (2)	0.006 (2)	-0.011 (2)

Geometric parameters (Å, °)

<u></u> S1C1	1.715 (3)	S2—C18	1.719 (3)
S1—C4	1.719 (3)	S2—C21	1.724 (3)
C1—C2	1.345 (5)	C18—C19	1.345 (4)
C1—H1	0.9300	C18—H18	0.9300
C2—C3	1.411 (5)	C19—C20	1.415 (4)
С2—Н2	0.9300	С19—Н19	0.9300
C3—C4	1.364 (4)	C20—C21	1.368 (4)
С3—Н3	0.9300	С20—Н20	0.9300
C4—C5	1.449 (4)	C21—C22	1.445 (4)
C5—N1	1.264 (3)	C22—N2	1.269 (4)
С5—Н5	0.9300	С22—Н22	0.9300
N1—C6	1.427 (4)	N2—C23	1.437 (4)
C6—C11	1.398 (4)	C23—C24	1.398 (4)
C6—C7	1.419 (4)	C23—C28	1.409 (4)
C7—C8	1.387 (5)	C24—C25	1.385 (4)
C7—C12	1.515 (4)	C24—C29	1.526 (4)
C8—C9	1.379 (5)	C25—C26	1.393 (4)
С8—Н8	0.9300	С25—Н25	0.9300
C9—C10	1.374 (5)	C26—C27	1.381 (4)
С9—Н9	0.9300	C26—H26	0.9300
C10—C11	1.392 (5)	C27—C28	1.395 (5)
C10—H10	0.9300	С27—Н27	0.9300
C11—C15	1.527 (4)	C28—C32	1.517 (4)
C12—C14	1.498 (6)	C29—C30	1.511 (5)
C12—C13	1.514 (5)	C29—C31	1.518 (5)
C12—H12	0.9800	С29—Н29	0.9800
C13—H13A	0.9600	С30—Н30А	0.9600
С13—Н13В	0.9600	С30—Н30В	0.9600
С13—Н13С	0.9600	С30—Н30С	0.9600
C14—H14A	0.9600	C31—H31A	0.9600
C14—H14B	0.9600	C31—H31B	0.9600
C14—H14C	0.9600	С31—Н31С	0.9600
C15—C17	1.517 (5)	C32—C33	1.519 (5)
C15—C16	1.533 (5)	C32—C34	1.530 (5)
C15—H15	0.9800	С32—Н32	0.9800
C16—H16A	0.9600	С33—Н33А	0.9600
C16—H16B	0.9600	С33—Н33В	0.9600
C16—H16C	0.9600	С33—Н33С	0.9600
С17—Н17А	0.9600	C34—H34A	0.9600
C17—H17B	0.9600	C34—H34B	0.9600
С17—Н17С	0.9600	C34—H34C	0.9600

C1—S1—C4	91.53 (16)	C18—S2—C21	91.46 (14)
C2—C1—S1	111.8 (3)	C19—C18—S2	112.3 (2)
C2—C1—H1	124.1	C19—C18—H18	123.8
S1—C1—H1	124.1	S2—C18—H18	123.8
C1—C2—C3	112.9 (3)	C18—C19—C20	112.3 (3)
C1—C2—H2	123.6	C18—C19—H19	123.8
С3—С2—Н2	123.6	С20—С19—Н19	123.8
C4—C3—C2	112.8 (3)	C21—C20—C19	113.2 (3)
С4—С3—Н3	123.6	C21—C20—H20	123.4
С2—С3—Н3	123.6	С19—С20—Н20	123.4
C3—C4—C5	127.5 (3)	C20—C21—C22	127.3 (3)
C3—C4—S1	111.0 (2)	C20—C21—S2	110.7 (2)
C5—C4—S1	121.4 (2)	C22—C21—S2	121.9 (2)
N1—C5—C4	122.0 (3)	N2—C22—C21	122.8 (3)
N1—C5—H5	119.0	N2—C22—H22	118.6
С4—С5—Н5	119.0	C21—C22—H22	118.6
C5—N1—C6	121.0 (3)	C22—N2—C23	117.8 (2)
C11—C6—C7	121.0 (3)	C24—C23—C28	121.8 (3)
C11—C6—N1	120.6 (2)	C24—C23—N2	119.5 (2)
C7—C6—N1	118.1 (2)	C28—C23—N2	118.6 (3)
C8—C7—C6	117.9 (3)	C25—C24—C23	118.1 (3)
C8—C7—C12	120.4 (2)	C25—C24—C29	120.8 (3)
C6—C7—C12	121.7 (3)	C23—C24—C29	120.8 (3)
C9—C8—C7	121.8 (3)	C24—C25—C26	121.3 (3)
С9—С8—Н8	119.1	C24—C25—H25	119.3
С7—С8—Н8	119.1	С26—С25—Н25	119.3
С10—С9—С8	119.2 (3)	C27—C26—C25	119.6 (3)
С10—С9—Н9	120.4	С27—С26—Н26	120.2
С8—С9—Н9	120.4	C25—C26—H26	120.2
C9—C10—C11	122.2 (3)	C26—C27—C28	121.3 (3)
С9—С10—Н10	118.9	С26—С27—Н27	119.3
C11—C10—H10	118.9	С28—С27—Н27	119.3
C10—C11—C6	117.9 (3)	C27—C28—C23	117.7 (3)
C10—C11—C15	119.4 (3)	C27—C28—C32	121.5 (3)
C6—C11—C15	122.7 (3)	C23—C28—C32	120.8 (3)
C14—C12—C7	110.2 (3)	C30—C29—C31	110.7 (3)
C14—C12—C13	110.3 (4)	C30—C29—C24	109.5 (2)
C7—C12—C13	111.6 (3)	C31—C29—C24	114.1 (3)
C14—C12—H12	108.2	С30—С29—Н29	107.4
C7—C12—H12	108.2	С31—С29—Н29	107.4
C13—C12—H12	108.2	С24—С29—Н29	107.4
C12—C13—H13A	109.5	С29—С30—Н30А	109.5
C12—C13—H13B	109.5	C29—C30—H30B	109.5
H13A—C13—H13B	109.5	H30A—C30—H30B	109.5
C12—C13—H13C	109.5	С29—С30—Н30С	109.5
H13A—C13—H13C	109.5	H30A—C30—H30C	109.5
H13B—C13—H13C	109.5	H30B-C30-H30C	109.5

C12—C14—H14A	109.5	C29—C31—H31A	109.5
C12—C14—H14B	109.5	C29—C31—H31B	109.5
H14A—C14—H14B	109.5	H31A—C31—H31B	109.5
C12—C14—H14C	109.5	С29—С31—Н31С	109.5
H14A— $C14$ — $H14C$	109.5	H_{31A} $-C_{31}$ $-H_{31C}$	109.5
H_{14B} C_{14} H_{14C}	109.5	$H_{31}B_{}C_{31}H_{31}C$	109.5
C_{17} C_{15} C_{11}	109.5 110.4 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5 113 5 (3)
$C_{17} = C_{15} = C_{16}$	110.7(3)	$C_{26} = C_{32} = C_{33}$	110.3(3)
$C_{11} = C_{15} = C_{16}$	110.7(3) 111.2(2)	$C_{20} = C_{32} = C_{34}$	110.4(3)
C17 - C15 - C10	111.2 (3)	$C_{33} = C_{32} = C_{34}$	107.4
С17—С15—Н15	100.1	$C_{20} = C_{32} = H_{32}$	107.4
	108.1	C33—C32—H32	107.4
С16—С15—Н15	108.1	C34—C32—H32	107.4
С15—С16—Н16А	109.5	С32—С33—Н33А	109.5
C15—C16—H16B	109.5	С32—С33—Н33В	109.5
H16A—C16—H16B	109.5	H33A—C33—H33B	109.5
C15—C16—H16C	109.5	С32—С33—Н33С	109.5
H16A—C16—H16C	109.5	H33A—C33—H33C	109.5
H16B—C16—H16C	109.5	H33B—C33—H33C	109.5
C15—C17—H17A	109.5	С32—С34—Н34А	109.5
C15—C17—H17B	109.5	С32—С34—Н34В	109.5
H17A—C17—H17B	109.5	H34A—C34—H34B	109.5
C15—C17—H17C	109.5	С32—С34—Н34С	109.5
H17A—C17—H17C	109.5	H34A—C34—H34C	109.5
H17B—C17—H17C	109.5	H34B—C34—H34C	109.5
C4 - S1 - C1 - C2	0.4(3)	C21—S2—C18—C19	0.1(2)
S1-C1-C2-C3	-0.2(4)	S2-C18-C19-C20	0.3 (3)
C1 - C2 - C3 - C4	-0.2(4)	C_{18} C_{19} C_{20} C_{21}	-0.5(4)
$C_2 - C_3 - C_4 - C_5$	-1760(3)	C19 - C20 - C21 - C22	-1772(3)
$C_2 = C_3 = C_4 = S_1$	0.5(3)	C19 - C20 - C21 - S2	0.6(3)
$C_1 = S_1 = C_4 = C_3$	-0.5(2)	$C_{18} = S_{2} = C_{21} = C_{20}$	-0.4(2)
$C_1 = S_1 = C_4 = C_5$	176.2(2)	$C_{18} = S_2 = C_{21} = C_{20}$	177.6(2)
$C_1 = S_1 = C_2 = C_3$	170.2(2) 173.4(3)	$C_{10} = 52 = C_{21} = C_{22}$	177.0(2)
$C_3 = C_4 = C_5 = N_1$	173.4(3)	$C_{20} = C_{21} = C_{22} = N_2$	170.8(3)
SI = C4 = C5 = NI	-2.8(4)	$S_2 = C_2 I = C_2 Z_2 = N_2$	-0.8(4)
C4 - C3 - N1 - C0	-1/7.8(2)	$C_{21} = C_{22} = N_2 = C_{23}$	-1/1.7(2)
C5—N1—C6—C11	84.0 (3)	C_{22} N2 C_{23} C_{24}	88.5 (3)
C5—NI—C6—C7	-102.3(3)		-94 9 (3)
CIIC6C7C8		C_{22} N2 C_{23} C_{28}	\mathcal{I}
	0.1 (4)	C22—N2—C23—C28 C28—C23—C24—C25	3.0 (4)
N1—C6—C7—C8	0.1 (4) -173.5 (3)	C22—N2—C23—C28 C28—C23—C24—C25 N2—C23—C24—C25	3.0 (4) 179.5 (2)
N1—C6—C7—C8 C11—C6—C7—C12	0.1 (4) -173.5 (3) -178.7 (3)	C22—N2—C23—C28 C28—C23—C24—C25 N2—C23—C24—C25 C28—C23—C24—C25	3.0 (4) 179.5 (2) -172.0 (3)
N1—C6—C7—C8 C11—C6—C7—C12 N1—C6—C7—C12	0.1 (4) -173.5 (3) -178.7 (3) 7.6 (4)	C22-N2-C23-C28 C28-C23-C24-C25 N2-C23-C24-C25 C28-C23-C24-C29 N2-C23-C24-C29	3.0 (4) 179.5 (2) -172.0 (3) 4.5 (4)
N1C6C7C8 C11C6C7C12 N1C6C7C12 C6C7C8C9	0.1 (4) -173.5 (3) -178.7 (3) 7.6 (4) 1.0 (5)	C22—N2—C23—C28 C28—C23—C24—C25 N2—C23—C24—C25 C28—C23—C24—C29 N2—C23—C24—C29 C23—C24—C29 C23—C24—C25—C26	3.0 (4) 179.5 (2) -172.0 (3) 4.5 (4) -1.7 (4)
N1—C6—C7—C8 C11—C6—C7—C12 N1—C6—C7—C12 C6—C7—C8—C9 C12—C7—C8—C9	0.1 (4) -173.5 (3) -178.7 (3) 7.6 (4) 1.0 (5) 179.9 (3)	C22—N2—C23—C28 C28—C23—C24—C25 N2—C23—C24—C25 C28—C23—C24—C29 N2—C23—C24—C29 C23—C24—C25—C26 C29—C24—C25—C26	3.0 (4) $179.5 (2)$ $-172.0 (3)$ $4.5 (4)$ $-1.7 (4)$ $173.2 (3)$
N1—C6—C7—C8 C11—C6—C7—C12 N1—C6—C7—C12 C6—C7—C8—C9 C12—C7—C8—C9 C7—C8—C9—C10	$\begin{array}{c} 0.1 \ (4) \\ -173.5 \ (3) \\ -178.7 \ (3) \\ 7.6 \ (4) \\ 1.0 \ (5) \\ 179.9 \ (3) \\ -0.5 \ (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0 (4) $179.5 (2)$ $-172.0 (3)$ $4.5 (4)$ $-1.7 (4)$ $173.2 (3)$ $-0.8 (4)$
N1C6C7C8 C11C6C7C12 N1C6C7C12 C6C7C8C9 C12C7C8C9 C7C8C9C10 C8C9C10C11	$\begin{array}{c} 0.1 \ (4) \\ -173.5 \ (3) \\ -178.7 \ (3) \\ 7.6 \ (4) \\ 1.0 \ (5) \\ 179.9 \ (3) \\ -0.5 \ (5) \\ -1.4 \ (6) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0 (4) $179.5 (2)$ $-172.0 (3)$ $4.5 (4)$ $-1.7 (4)$ $173.2 (3)$ $-0.8 (4)$ $2.2 (4)$
N1C6C7C8 C11C6C7C12 N1C6C7C12 C6C7C8C9 C12C7C8C9 C7C8C9C10 C8C9C10C11 C9C10C11C6	$\begin{array}{c} 0.1 \ (4) \\ -173.5 \ (3) \\ -178.7 \ (3) \\ 7.6 \ (4) \\ 1.0 \ (5) \\ 179.9 \ (3) \\ -0.5 \ (5) \\ -1.4 \ (6) \\ 2.5 \ (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0 (4) $179.5 (2)$ $-172.0 (3)$ $4.5 (4)$ $-1.7 (4)$ $173.2 (3)$ $-0.8 (4)$ $2.2 (4)$ $-0.9 (4)$
N1C6C7C8 C11C6C7C12 N1C6C7C12 C6C7C8C9 C12C7C8C9 C7C8C9C10 C8C9C10C11 C9C10C11C6 C9C10C11C15	$\begin{array}{c} 0.1 \ (4) \\ -173.5 \ (3) \\ -178.7 \ (3) \\ 7.6 \ (4) \\ 1.0 \ (5) \\ 179.9 \ (3) \\ -0.5 \ (5) \\ -1.4 \ (6) \\ 2.5 \ (5) \\ 179.1 \ (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0 (4) $179.5 (2)$ $-172.0 (3)$ $4.5 (4)$ $-1.7 (4)$ $173.2 (3)$ $-0.8 (4)$ $2.2 (4)$ $-0.9 (4)$ $-178.1 (3)$

N1 C6 C11 C10	1717(2)	N2 $C22$ $C29$ $C27$	178 2 (2)
NI-C0-CII-CIU	1/1./(3)	$N_2 - C_{23} - C_{26} - C_{27}$	-1/8.2(3)
C7—C6—C11—C15	-178.3 (3)	C24—C23—C28—C32	175.5 (3)
N1-C6-C11-C15	-4.8 (5)	N2-C23-C28-C32	-1.0 (4)
C8—C7—C12—C14	-67.3 (4)	C25—C24—C29—C30	-97.0 (3)
C6-C7-C12-C14	111.6 (4)	C23—C24—C29—C30	77.8 (4)
C8—C7—C12—C13	55.6 (5)	C25—C24—C29—C31	27.7 (4)
C6—C7—C12—C13	-125.6 (4)	C23—C24—C29—C31	-157.5 (3)
C10-C11-C15-C17	-72.7 (4)	C27—C28—C32—C33	-23.4 (5)
C6-C11-C15-C17	103.7 (4)	C23—C28—C32—C33	159.5 (3)
C10-C11-C15-C16	50.5 (4)	C27—C28—C32—C34	101.4 (4)
C6-C11-C15-C16	-133.1 (3)	C23—C28—C32—C34	-75.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C20—H20…N1	0.93	2.52	3.449 (8)	178