

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Li_3Al(MoO_2)_2O_2(AsO_4)_2$

Mounir Hajji, Mohamed Faouzi Zid* et Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, Université de Tunis ElManar, 2092 ElManar Tunis, Tunisie Correspondence e-mail: faouzi.zid@fst.rnu.tn

Recu le 12 février 2009: accepté le 20 février 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (As–O) = 0.002 Å; R factor = 0.013; wR factor = 0.039; data-to-parameter ratio = 10.4.

Single crystals of trilithium(I) aluminium(III) bis[dioxidomolybdenum(VI)] dioxide bis[arsenate(V)], Li₃Al-Mo₂As₂O₁₄, have been prepared by solid-state reaction at 788 K. The structure consists of AsO₄ tetrahedra, AlO₆ octahedra and Mo₂O₁₀ groups sharing corners to form a three-dimensional framework containing channels running respectively along the [100] and [010] directions, where the Li⁺ ions are located. This structure is compared with compounds having $(MX_2O_{12})_n$ chains (M = Mo, Al and X = P, As) and others containing M_2O_{10} (M = Mo, Fe) dimers.

Littérature associee

Pour le détail de la préparation, voir: Hajji et al. (2004, 2005); Zid et al. (1997, 1998). Pour le détail des composés avec structures reliées, voir: Lii et al. (1989); Leclaire et al. (1990); Driss & Jouini (1989); Guesdon et al. (1994); Borel et al. (1994); LeBail et al. (1995). Pour le détail des propriétés des composés reliés, voir: Manthiram & Goodenough, 1989; Tarascon et al., 1991; Sigala et al., 1997; Padhi et al., 1997; Masquelier et al., 1998. Pour le calcul des valences des liaisons, voir: Brown & Altermatt (1985)

Partie expérimentale

Données crystallines

Li ₃ Al(MoO ₂) ₂ O ₂ (AsO ₄) ₂
$M_r = 613.52$
Triclinique, P1
a = 5.213 (1) Å
b = 5.426 (1) Å
c = 9.474 (2) Å
$\alpha = 95.98 \ (2)^{\circ}$
$\beta = 102.25 \ (1)^{\circ}$

 $\gamma = 105.30 \ (1)^{\circ}$ V = 248.92 (9) Å³ Z = 1Mo $K\alpha$ radiation $\mu = 9.29 \text{ mm}^{-1}$ T = 298 K $0.20 \times 0.15 \times 0.12 \ \text{mm}$

Collection des données

Diffractomètre Enraf-Nonius TurboCAD-4 Correction d'absorption: ψ scan (North et al., 1968) $T_{\rm min} = 0.209, \ T_{\rm max} = 0.328$ 1663 réflexions mesurées

Affinement

 $R[F^2 > 2\sigma(F^2)] = 0.013$ $wR(F^2) = 0.039$ S = 1.061084 réflexions

1084 réflexions independantes 1077 réflexions avec $I > 2\sigma(I)$ $R_{\rm int} = 0.007$ 2 réflexions de référence fréquence: 120 min décroissance d'intensité: 1.1%

104 paramètres $\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Collection des données: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); affinement des paramètres de la maille: CAD-4 EXPRESS; reduction des données: XCAD4 (Harms & Wocadlo, 1995); programme(s) pour la solution de la structure: SHELXS97 (Sheldrick, 2008); programme(s) pour l'affinement de la structure: SHELXL97 (Sheldrick, 2008); graphisme moléculaire: DIAMOND (Brandenburg, 1998); logiciel utilisé pour préparer le matériel pour publication: WinGX (Farrugia, 1999).

Des documents complémentaires et figures concernant cette structure peuvent être obtenus à partir des archives électroniques de 'UICr (Référence: BR2097).

Références

- Borel, M. M., Guesdon, A., Leclaire, A., Grandin, A. & Raveau, B. (1994). Z. Anorg. Allg. Chem. 620, 569-573.
- Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Driss, A. & Jouini, T. (1989). Acta Cryst. C45, 356-360.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Guesdon, A., Borel, M. M., Leclaire, A., Grandin, A. & Raveau, B. (1994). J. Solid State Chem. 109, 145-151.
- Hajji, M., Zid, M. F., Driss, A. & Jouini, T. (2004). Acta Cryst. C60, i76-i78.
- Hajji, M., Zid, M. F. & Jouini, T. (2005). Acta Cryst. C61, i57-i58.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. LeBail, A., Permier, L. & Laligant, Y. (1995). Eur. J. Solid State Inorg. Chem. 32, 883-892.
- Leclaire, A., Borel, M. M., Grandin, A. & Raveau, B. (1990). Acta Cryst. C46, 1368-1370

Lii, K.-H., Chen, J. J. & Wang, S.-L. (1989). J. Solid State Chem. 78, 178-183. Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.

Manthiram, A. & Goodenough, J. B. (1989). J. Power Sources, 26, 403-408.

- Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228-234.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C. & Goodenough, J. B. (1997). J. Electrochem. Soc. 144, 2581-2586.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sigala, C., Verbaere, A., Mansot, J. L., Guyomard, D., Piffard, Y. & Tournoux, M. (1997). J. Solid State Chem. 132, 372-381.

Tarascon, J.-M., Wang, E., Shokoohi, F. K., McKinnon, W. R. & Colson, S. (1991). J. Electrochem. Soc. 138, 2859-2864.

- Zid, M. F., Driss, A. & Jouini, T. (1997). J. Solid State Chem. 133, 386-390.
- Zid, M. F., Driss, A. & Jouini, T. (1998). J. Solid State Chem. 141, 500-507.

supporting information

Acta Cryst. (2009). E65, i21 [doi:10.1107/S160053680900631X]

$Li_{3}Al(MoO_{2})_{2}O_{2}(AsO_{4})_{2}$

Mounir Hajji, Mohamed Faouzi Zid et Ahmed Driss

S1. Comment

Les oxydes mixtes au lithium présentent un intérêt pratique potentiel du fait de leurs utilisations comme électrolytes solides ou électrodes positives dans les batteries au lithium (Manthiram & Goodenough, 1989; Tarascon *et al.*, 1991; Sigala *et al.*, 1997; Padhi *et al.*, 1997; Masquelier *et al.*, 1998). Dans ce cadre, nous avons entrepris l'exploration du diagramme Li–Mo–As–O dans lequel nous avons précédemment caractérisé les composés β -LiMoO₂AsO₄ (Hajji *et al.*, 2004) et Li(MoO₂)₂OAsO₄ (Hajji *et al.*, 2005). Un nouvel oxyde mixte de formulation Li₃AlMo₂As₂O₁₄ a été également obtenu par réaction à l'état solide au cours de la synthèse de la phase visée Li₂MoO₂As₂O₇ de formulation analogue à K₂MoO₂As₂O₇ (Zid *et al.*, 1997) ou bien Rb₂MoO₂As₂O₇ (Zid *et al.*, 1998) ayant des structures à charpentes anioniques bidimensionnelles.

L'unité asymétrique dans le composé Li₃AlMo₂As₂O₁₄ est constituée de deux octaèdres MoO₆ reliés par une arête, de deux tétraèdres AsO₄ et d'un octaèdre AlO₆ partageant des sommets (Fig. 1). La structure peut être décrite à partir de chaînes infinies (AlAs₂O₁₂), parallèles à la direction [100], reliées entre elles par des bioctaèdres Mo₂O₁₀ pour former une charpente tridimensionnelle délimitant des tunnels, disposés respectivement selon *a* (Fig. 2) et suivant la direction *b* (Fig. 3), où résident les cations Li⁺. Le calcul des différentes valences des liaisons utilisant la formule empirique de Brown (Brown & Altermatt, 1985) vérifie bien les valeurs de charges des ions Mo (5,95), As (4,88), Al (3,02) et Li (1,05) dans la phase étudiée.

La comparaison de la structure du composé étudié avec celles des travaux antérieurs montre quelques points communs. En effet, les chaînes de type $(MX_2O_{12})_n$ sont rencontrées dans les composés de formulation $AM_2(X_2O_{7})_2$ (M = Mo, Al; X =P, As; A = Na et K) (Lii et al., 1989; Leclaire et al., 1990; Driss & Jouini, 1989). Dans ces derniers un octaèdre MO₆ partage ses sommets avec quatre groupements X_2O_7 . Par contre, il met en commun dans la phase étudiée, ses six sommets avec seulement quatre unités AsMoO₉ différentes. Cette différence est essentiellement due au remplacement d'un tétraèdre XO_4 par un octaèdre MoO₆. De même, les groupements M_2O_{10} sont rencontrés dans les composés de formulation $AMo_3P_2O_{14}$ (A = Na, K) sous forme de Mo_2O_{10} (Guesdon *et al.*, 1994; Borel *et al.*, 1994) ou bien dans la structure du FeVMoO₇ sous forme de Fe₂O₁₀ (LeBail et al., 1995). Ces derniers phosphates présentent des structures bidimensionnelles dont les groupements Mo_2O_{10} partagent leurs sommets avec les polyèdres PO_4 et MoO_6 . Dans le composé FeVMoO₇, chaque dimère Fe₂O₁₀ partage ses dix sommets avec quatre tétraèdres MoO₄ et six tétraèdres VO₄. Une différence nette est donc observée dans le comportement des dimères M_2O_{10} rencontrés dans notre structure et celles de la bibliographie. En effet, chaque groupement Mo_2O_{10} dans la charpente de Li₃AlMo₂As₂O₁₄ ne partage ses sommets qu'avec seulement deux tétraèdres AsO_4 et deux octaèdres AlO_6 et conduit, contrairement aux autres composés, à une structure très ouverte. Cette caractéristique structurale, ainsi que la disposition des cations Li⁺ dans des larges canaux (Fig. 2 et 3), favorisent la mobilité de ces ions Li⁺ et laisse présager la propriété de conductivité ionique pour le composé Li₃AlMo₂As₂O₁₄. Afin d'utiliser ces données structurales et les relier aux propriétés physico-chimiques, en particulier de conduction ionique, et dès l'obtention d'une phase polycristalline pure du Li₃AlMo₂As₂O₁₄, des mesures électriques

moyennant un pont d'impédance complexe de type HP4192A seront réalisées.

S2. Experimental

La stoechiométrie du mélange réactionnel est destinée en premier à la synthèse du composé Li₂MoAs₂O₉. Les réactifs de départ NH₄H₂AsO₄ (préparé au laboratoire, ASTM 01-0775), (NH₄)₂Mo₄O₁₃ (Fluka, 85%), Li₂CO₃ (Fluka, 99%) ont été pris dans les proportions Li:Mo:As = 2:1:2. Le mélange, finement broyé, a été mis dans un creuset en porcelaine, placé dans un four puis préchauffé à l'air à 623 K pendant 24 heures en vue d'éliminer les composés volatils. Le résidu final est porté à la fusion (813 K) par accident, où une attaque du creuset en porcelaine a eu lieu, puis refroidi lentement jusqu'à 778 K. Il est abondonné à cette température durant trois jours pour favoriser la cristallisation. Le résidu final a subi en premier un refroidissement lent (5°/h) jusqu'à 738 K puis un second rapide (50°/h) jusqu'à la température ambiante. Quelques cristaux jaunâtres, de taille suffisante pour les mesures des intensités, ont été séparés du flux par l'eau bouillante. L'analyse des données de diffraction des rayons-X sur monocristal, les paramètres géométriques ainsi que la qualité des résultats trouvés confirment la présence de l'aluminium dans la structure. Cet élément est probablement diffusé dans le cristal choisi, à partir du creuset en porcelaine.

Figure 1

Unité structurale dans Li₃AlMo₂As₂O₁₄. Les ellipsoïdes d'agitation thermique ont 50% de probabilité. [Codes de symétrie: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y + 2, -z + 1; (iv) x - 1, y, z; (v) -x + 1, -y, -z; (vi) x, y - 1, z; (vii) -x + 1, -y + 1, -z + 1; (iv) x - 1, y, z; (v) -x + 1, -y, -z; (vi) x, y - 1, z; (vii) -x + 1, -y + 1, -z + 1; (vii) -x + 1, -y + 1, -z + 1; (vii) -x + 1, -y + 1, -z + 1; (viii) -x + 1, -y + 1, -z + 1; (viii) -x + 1, -y + 1, -z + 1; (viii) -x + 1, -y + 1, -z + 1; (viii) -x + 1, -y + 1, -z + 1; (viii) -x + 1, -y + 1, -z + 1; (viii) -x + 1, -y + 1, -z + 1; (viii) -x + 1, -y + 1, -z + 1; (viii) -x + 1, -z + 1; (

Figure 2

Projection de la structure de Li₃AlMo₂As₂O₁₄ selon *a* montrant les deux types de canaux où logent les cations Li⁺.

Figure 3

Projection de la structure de Li₃AlMo₂As₂O₁₄ selon b montrant les larges canaux où résident les cations Li⁺.

trilithium(I) aluminium(III) bis[dioxidomolybdenum(VI)] dioxide bis[arsenate(V)]

Crystal data

Li₃Al(MoO₂)₂O₂(AsO₄)₂ $M_r = 613.52$ Triclinic, *P*I Hall symbol: -P 1 a = 5.213 (1) Å b = 5.426 (1) Å c = 9.474 (2) Å a = 95.98 (2)° $\beta = 102.25$ (1)° $\gamma = 105.30$ (1)° V = 248.92 (9) Å³

Data collection

Enraf–Nonius TurboCAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.209, T_{\max} = 0.328$ 1663 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.013$ $wR(F^2) = 0.039$ S = 1.061084 reflections 104 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Z = 1 F(000) = 284 $D_x = 4.093 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-16^{\circ}$ $\mu = 9.29 \text{ mm}^{-1}$ T = 298 K Prism, yellow $0.20 \times 0.15 \times 0.12 \text{ mm}$

1084 independent reflections 1077 reflections with $I > 2\sigma(I)$ $R_{int} = 0.007$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -2 \rightarrow 6$ $k = -6 \rightarrow 6$ $l = -12 \rightarrow 12$ 2 standard reflections every 120 min intensity decay: 1.1%

Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.021P)^2 + 0.6735P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.64 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.41 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0263 (14)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Мо	0.49876 (4)	0.84099 (4)	0.35495 (2)	0.00633 (9)	
As	0.15020 (5)	0.23501 (5)	0.17692 (3)	0.00601 (10)	
Al	0.5000	0.0000	0.0000	0.0026 (2)	
Li1	0.0000	0.5000	0.5000	0.0225 (16)	
Li2	0.8077 (14)	0.6121 (14)	0.1486 (9)	0.0392 (16)	
01	0.6756 (4)	0.1635 (4)	0.4618 (2)	0.0099 (4)	
O2	0.7195 (4)	0.6684 (4)	0.4132 (2)	0.0132 (4)	
03	0.4158 (4)	0.2923 (4)	0.0959 (2)	0.0109 (4)	
O4	0.8654 (4)	0.2067 (4)	0.0441 (2)	0.0110 (4)	
05	0.5596 (4)	0.8659 (4)	0.1781 (2)	0.0098 (4)	
06	0.1363 (4)	-0.0156 (4)	0.2672 (2)	0.0101 (4)	
07	0.1633 (4)	0.5095 (4)	0.2895 (2)	0.0106 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Мо	0.00695 (13)	0.00664 (13)	0.00518 (13)	0.00175 (8)	0.00146 (8)	0.00074 (8)
As	0.00626 (14)	0.00629 (14)	0.00524 (14)	0.00179 (10)	0.00123 (10)	0.00057 (9)
Al	0.0027 (5)	0.0038 (4)	0.0011 (4)	0.0005 (4)	0.0004 (3)	0.0002 (3)
Li1	0.018 (4)	0.018 (4)	0.031 (4)	0.007 (3)	-0.001 (3)	0.011 (3)
Li2	0.031 (3)	0.031 (3)	0.063 (5)	0.017 (3)	0.014 (3)	0.017 (3)
01	0.0108 (9)	0.0086 (9)	0.0086 (8)	0.0001 (7)	0.0024 (7)	0.0012 (7)
O2	0.0137 (10)	0.0127 (9)	0.0146 (10)	0.0055 (8)	0.0035 (8)	0.0044 (8)
O3	0.0115 (9)	0.0094 (9)	0.0126 (9)	0.0020 (7)	0.0067 (7)	0.0010 (7)
O4	0.0086 (9)	0.0135 (9)	0.0092 (9)	0.0025 (7)	-0.0009 (7)	0.0025 (7)
05	0.0093 (9)	0.0115 (9)	0.0083 (9)	0.0020 (7)	0.0025 (7)	0.0020 (7)
O6	0.0099 (9)	0.0110 (9)	0.0114 (9)	0.0044 (7)	0.0032 (7)	0.0061 (7)
07	0.0109 (9)	0.0086 (9)	0.0108 (9)	0.0004 (7)	0.0048 (7)	-0.0023 (7)

Geometric parameters (Å, °)

Мо—О2	1.707 (2)	Al—O3 ^v	1.942 (2)
Mo—O5	1.782 (2)	Al-03	1.942 (2)
Mo-O1 ⁱ	1.822 (2)	Li1—O2 ⁱⁱ	2.000 (2)
Mo—O7	2.080 (2)	Li1—O2 ^{iv}	2.000 (2)
Mo-O1 ⁱⁱ	2.123 (2)	Li1—O1 ⁱⁱ	2.073 (2)
Mo-O6 ⁱ	2.261 (2)	Li1—O1 ^{iv}	2.073 (2)
Mo-Mo ⁱⁱⁱ	3.0849 (8)	Li1—O7 ^{viii}	2.328 (2)
As—O6	1.6737 (19)	Li1—O7	2.328 (2)
As-O4 ^{iv}	1.6903 (19)	Li2—O5	2.159 (7)
As—O3	1.6960 (19)	Li2—O3	2.225 (7)
As—O7	1.7164 (19)	Li2—O6 ^{ix}	2.272 (8)
Al—O4 ^v	1.870 (2)	Li2—O7 ^x	2.275 (7)
Al—O4	1.870 (2)	Li2—O4	2.435 (7)
Al— $O5^{vi}$	1.905 (2)	Li2—O3 ^{vii}	2.533 (8)

supporting information

Al—O5 ^{vii}	1.905 (2)	Li2—O2	2.645 (8)
O2—Mo—O5	98.47 (9)	O2 ⁱⁱ —Li1—O2 ^{iv}	180.000 (1)
O2-Mo-O1 ⁱ	102.62 (9)	O2 ⁱⁱ —Li1—O1 ⁱⁱ	86.18 (8)
O5—Mo—O1 ⁱ	104.19 (9)	O2 ^{iv} —Li1—O1 ⁱⁱ	93.82 (8)
O2—Mo—O7	92.53 (9)	O2 ⁱⁱ —Li1—O1 ^{iv}	93.82 (8)
O5—Mo—O7	96.70 (8)	O2 ^{iv} —Li1—O1 ^{iv}	86.18 (8)
O1 ⁱ —Mo—O7	151.88 (8)	O1 ⁱⁱ —Li1—O1 ^{iv}	180.0
O2—Mo—O1 ⁱⁱ	96.79 (9)	O2 ⁱⁱ —Li1—O7 ^{viii}	90.24 (8)
O5—Mo—O1 ⁱⁱ	163.86 (8)	O2 ^{iv} —Li1—O7 ^{viii}	89.76 (8)
O1 ⁱ —Mo—O1 ⁱⁱ	77.39 (9)	O1 ⁱⁱ —Li1—O7 ^{viii}	106.95 (7)
O7—Mo—O1 ⁱⁱ	77.39 (7)	O1 ^{iv} —Li1—O7 ^{viii}	73.05 (7)
O2—Mo—O6 ⁱ	167.49 (8)	O2 ⁱⁱ —Li1—O7	89.76 (8)
O5—Mo—O6 ⁱ	83.83 (8)	O2 ^{iv} —Li1—O7	90.24 (7)
O1 ⁱ —Mo—O6 ⁱ	88.62 (8)	Ol ⁱⁱ —Li1—O7	73.05 (7)
O7—Mo—O6 ⁱ	74.97 (8)	O1 ^{iv} —Li1—O7	106.95 (7)
O1 ⁱⁱ —Mo—O6 ⁱ	80.14 (7)	O7 ^{viii} —Li1—O7	180.0
O6—As—O4 ^{iv}	115.31 (9)	O5—Li2—O3	85.6 (3)
O6—As—O3	112.28 (9)	O5—Li2—O6 ^{ix}	79.0 (2)
O4 ^{iv} —As—O3	106.27 (9)	O3—Li2—O6 ^{ix}	158.9 (4)
O6—As—O7	111.28 (10)	O5—Li2—O7 ^x	136.7 (4)
O4 ^{iv} —As—O7	100.31 (10)	O3—Li2—O7 ^x	112.7 (3)
O3—As—O7	110.70 (9)	$O6^{ix}$ —Li2— $O7^{x}$	71.1 (2)
O4 ^v —Al—O4	180.00 (15)	O5—Li2—O4	151.9 (4)
$O4^{v}$ —Al— $O5^{vi}$	88.07 (8)	O3—Li2—O4	68.8 (2)
O4—Al—O5 ^{vi}	91.93 (8)	O6 ^{ix} —Li2—O4	128.6 (3)
O4 ^v —Al—O5 ^{vii}	91.93 (8)	O7 ^x —Li2—O4	67.36 (19)
O4—Al—O5 ^{vii}	88.07 (8)	O5—Li2—O3 ^{vii}	69.4 (2)
O5 ^{vi} —Al—O5 ^{vii}	180.00 (10)	O3—Li2—O3 ^{vii}	81.2 (3)
$O4^{v}$ —Al— $O3^{v}$	87.61 (9)	O6 ^{ix} —Li2—O3 ^{vii}	106.3 (3)
O4—Al—O3 ^v	92.39 (9)	O7 ^x —Li2—O3 ^{vii}	148.8 (4)
$O5^{vi}$ —Al— $O3^{v}$	88.69 (8)	O4—Li2—O3 ^{vii}	94.6 (3)
$O5^{vii}$ —Al— $O3^{v}$	91.31 (8)	O5—Li2—O2	65.9 (2)
O4 ^v —Al—O3	92.39 (9)	O3—Li2—O2	84.0 (2)
O4—Al—O3	87.61 (9)	O6 ^{ix} —Li2—O2	76.6 (3)
O5 ^{vi} —Al—O3	91.31 (8)	O7 ^x —Li2—O2	77.0 (2)
O5 ^{vii} —Al—O3	88.69 (8)	O4—Li2—O2	120.1 (3)
O3 ^v —Al—O3	180.00 (12)	O3 ^{vii} —Li2—O2	133.7 (3)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) *x*-1, *y*, *z*; (v) -*x*+1, -*y*, -*z*; (vi) *x*, *y*-1, *z*; (vii) -*x*+1, -*y*+1, -*z*; (viii) -*x*, -*y*+1, -*z*; (viii) -*x*+1, -*y*+1, -*z*; (viii) -*x*, -*y*+1, -*z*+1; (ix) *x*+1, *y*+1, *z*; (x) *x*+1, *y*, *z*.