

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{2,2'-[Cyclohexane-1,2-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)

Chunbao Tang

Department of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China

Correspondence e-mail: chunbao_tang@126.com

Received 11 February 2009; accepted 19 February 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.069; data-to-parameter ratio = 16.2.

In the title mononuclear nickel(II) complex, $[Ni(C_{20}H_{20}-N_2O_2)]$, the Ni atom is four-coordinated in a square-planar geometry by the four donor atoms of the Schiff base ligand. The dihedral angle between the two benzene rings is 9.4 (2)°. The cyclohexyl group adopts a *C*-form chair conformation.

Related literature

For nickel(II) complexes in bio-inorganic chemistry and coordination chemistry, see: Angulo *et al.* (2001); Dey *et al.* (2004); Edison *et al.* (2004); Ramadevi *et al.* (2005); Suh *et al.* (1996). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data $[Ni(C_{20}H_{20}N_2O_2)]$ $M_r = 379.09$ Monoclinic, $P2_1/c$ a = 7.6193 (8) Å

<i>b</i> = 19.118 (2) Å
c = 11.5459 (12) Å
$\beta = 90.907 \ (1)^{\circ}$
V = 1681.6 (3) Å ³

metal-organic compounds

 $0.30 \times 0.30 \times 0.28 \text{ mm}$

T = 298 K

Z = 4Mo $K\alpha$ radiation $\mu = 1.17 \text{ mm}^{-1}$

Data collection

9694 measured reflections
3650 independent reflections
3023 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.022$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ 226 parameters $wR(F^2) = 0.069$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.29$ e Å⁻³3650 reflections $\Delta \rho_{min} = -0.22$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

Ni1-O1	1.8897 (12)	Ni1-N1	1.9435 (15)
Ni1-O2	1.9125 (12)	Ni1-N2	1.9507 (14)
O1-Ni1-O2	89.22 (5)	O1-Ni1-N2	177.83 (6)
O1-Ni1-N1	93.76 (5)	O2-Ni1-N2	92.71 (5)
O2-Ni1-N1	175.27 (6)	N1-Ni1-N2	84.25 (6)

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Financial support from the Jiaying University research fund is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2125).

References

- Angulo, I. M., Bouwman, E., Lutz, M., Mul, W. P. & Spek, A. L. (2001). Inorg. Chem. 40, 2073–2082.
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dey, S. K., Mondal, N., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). *Inorg. Chem.* 43, 2427–2434.
- Edison, S. E., Krause Bauer, J. A. & Baldwin, M. J. (2004). Acta Cryst. E60, m1930-m1932.
- Ramadevi, P., Kumaresan, S. & Muir, K. W. (2005). Acta Cryst. E61, m1749– m1751.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suh, M. P., Oh, K. Y., Lee, J. W. & Bae, Y. Y. (1996). J. Am. Chem. Soc. 118, 777–783.

supporting information

Acta Cryst. (2009). E65, m317 [doi:10.1107/S1600536809006084]

{2,2'-[Cyclohexane-1,2-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)

Chunbao Tang

S1. Comment

Nickel(II) complexes play an important role in both bioinorganic chemistry and coordination chemistry (Suh *et al.*, 1996; Dey *et al.*, 2004; Angulo *et al.*, 2001; Ramadevi *et al.*, 2005; Edison *et al.*, 2004). As a further study of the structures of such complexes, the title mononuclear nickel(II) complex, (I), is reported in this paper.

In (I), the Ni atom is four-coordinated in a square planar geometry by the four donor atoms of the Schiff base ligand. The dihedral angle between the two benzene rings is 9.4 (2)°. The cyclohexyl group adopts C-form chair conformation with the generalized puckering coordinates; q(3)=-0.569 (1)Å, q(2)=0.009 (1)Å and $\varphi=96.288$ (1)° (Cremer & Pople, 1975) (Fig. 1).

S2. Experimental

Salicylaldehyde (0.2 mmol, 24.5 mg) and cyclohexyl-1,2-diamine (0.1 mmol, 11.4 mg) were dissolved in 10 ml methanol. To the mixture was added dropwise a 5 ml me thanol solution of nickel(II) nitrate hexahydrate (0.2 mmol, 58.2 mg) with stirring. The final solution was allowed to stand in air for two weeks, yielding red block-shaped crystals of (I).

S3. Refinement

H atoms were constrained to ideal geometries, with C—H = 0.93–0.97Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

{2,2'-[Cyclohexane-1,2-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)

Crystal data

[Ni(C₂₀H₂₀N₂O₂)] $M_r = 379.09$ Monoclinic, $P2_1/c$ a = 7.6193 (8) Å b = 19.118 (2) Å c = 11.5459 (12) Å $\beta = 90.907$ (1)° V = 1681.6 (3) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.721, T_{max} = 0.735$ F(000) = 792 $D_x = 1.497 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3779 reflections $\theta = 2.6-28.6^{\circ}$ $\mu = 1.17 \text{ mm}^{-1}$ T = 298 KBlock, red $0.30 \times 0.30 \times 0.28 \text{ mm}$

9694 measured reflections 3650 independent reflections 3023 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -24 \rightarrow 24$ $l = -14 \rightarrow 9$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from
$wR(F^2) = 0.069$	neighbouring sites
S = 1.05	H-atom parameters constrained
3650 reflections	$w = 1/[\sigma^2 (F_o^2) + (0.033P)^2 + 0.2023P]$
226 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.29$ e Å ⁻³
direct methods	$\Delta \rho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Nil	0.80232 (3)	0.468244 (10)	0.481224 (17)	0.03293 (8)
O1	0.86946 (19)	0.37326 (6)	0.49143 (10)	0.0477 (3)
O2	0.89546 (18)	0.48282 (6)	0.63411 (11)	0.0484 (3)
N1	0.6899 (2)	0.45709 (7)	0.33007 (12)	0.0378 (3)
N2	0.7259 (2)	0.56527 (7)	0.46659 (12)	0.0386 (3)
C1	0.8626 (2)	0.32645 (9)	0.40841 (15)	0.0395 (4)
C2	0.9388 (3)	0.26009 (9)	0.42918 (17)	0.0472 (5)
H2	0.9899	0.2508	0.5012	0.057*
C3	0.9392 (3)	0.20924 (9)	0.34579 (18)	0.0500 (5)
Н3	0.9903	0.1661	0.3625	0.060*
C4	0.8651 (3)	0.22058 (10)	0.23682 (18)	0.0526 (5)
H4	0.8671	0.1859	0.1804	0.063*
C5	0.7887 (3)	0.28423 (9)	0.21422 (17)	0.0488 (5)
Н5	0.7383	0.2923	0.1415	0.059*
C6	0.7842 (2)	0.33781 (9)	0.29806 (15)	0.0386 (4)
C7	0.6995 (2)	0.40218 (9)	0.26570 (15)	0.0412 (4)
H7	0.6473	0.4044	0.1924	0.049*
C8	0.5917 (3)	0.52030 (8)	0.29253 (16)	0.0401 (4)
H8	0.4767	0.5185	0.3292	0.048*
C9	0.5592 (3)	0.52841 (9)	0.16326 (16)	0.0482 (5)
H9A	0.4894	0.4895	0.1346	0.058*
H9B	0.6703	0.5281	0.1233	0.058*
C10	0.4630 (3)	0.59708 (10)	0.13887 (18)	0.0565 (5)
H10A	0.4499	0.6032	0.0558	0.068*
H10B	0.3464	0.5947	0.1712	0.068*

C11	0.5588 (3)	0.65940 (10)	0.18949 (17)	0.0555 (5)
H11A	0.4900	0.7013	0.1755	0.067*
H11B	0.6703	0.6649	0.1512	0.067*
C12	0.5911 (3)	0.65080 (9)	0.31981 (16)	0.0488 (5)
H12A	0.6590	0.6901	0.3490	0.059*
H12B	0.4797	0.6502	0.3594	0.059*
C13	0.6899 (2)	0.58284 (9)	0.34426 (15)	0.0419 (4)
H13	0.8032	0.5860	0.3056	0.050*
C14	0.7157 (2)	0.60977 (9)	0.54952 (16)	0.0423 (4)
H14	0.6733	0.6541	0.5315	0.051*
C15	0.7650(2)	0.59611 (9)	0.66825 (15)	0.0397 (4)
C16	0.7300 (3)	0.64851 (10)	0.75078 (17)	0.0478 (5)
H16	0.6726	0.6890	0.7268	0.057*
C17	0.7777 (3)	0.64176 (10)	0.86443 (17)	0.0551 (5)
H17	0.7512	0.6766	0.9175	0.066*
C18	0.8670 (3)	0.58153 (11)	0.89957 (17)	0.0547 (5)
H18	0.9010	0.5764	0.9768	0.066*
C19	0.9054 (3)	0.52957 (10)	0.82153 (16)	0.0478 (5)
H19	0.9663	0.4902	0.8469	0.057*
C20	0.8544 (2)	0.53471 (8)	0.70409 (15)	0.0398 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.03599 (14)	0.03109 (12)	0.03155 (13)	0.00174 (9)	-0.00469 (9)	-0.00265 (8)
01	0.0670 (9)	0.0363 (6)	0.0396 (7)	0.0052 (6)	-0.0079 (6)	-0.0018 (5)
O2	0.0549 (9)	0.0475 (7)	0.0424 (7)	0.0133 (6)	-0.0129 (6)	-0.0091 (6)
N1	0.0390 (9)	0.0359 (7)	0.0382 (8)	-0.0005 (6)	-0.0033 (6)	-0.0002 (6)
N2	0.0408 (9)	0.0366 (7)	0.0383 (8)	0.0000 (6)	-0.0041 (6)	-0.0020 (6)
C1	0.0409 (10)	0.0362 (9)	0.0415 (10)	-0.0038 (7)	0.0029 (8)	0.0004 (7)
C2	0.0541 (12)	0.0384 (9)	0.0491 (11)	0.0025 (8)	-0.0001 (9)	0.0025 (8)
C3	0.0547 (13)	0.0345 (9)	0.0609 (13)	0.0020 (8)	0.0081 (10)	0.0003 (8)
C4	0.0640 (14)	0.0391 (10)	0.0548 (13)	-0.0022 (9)	0.0059 (10)	-0.0113 (9)
C5	0.0580 (13)	0.0442 (10)	0.0442 (11)	-0.0040 (9)	-0.0020 (9)	-0.0057 (8)
C6	0.0406 (10)	0.0365 (9)	0.0388 (9)	-0.0046 (7)	0.0013 (8)	-0.0021 (7)
C7	0.0441 (11)	0.0425 (9)	0.0369 (10)	-0.0049 (8)	-0.0055 (8)	-0.0036 (8)
C8	0.0400 (10)	0.0393 (9)	0.0410 (10)	0.0001 (7)	-0.0040 (8)	0.0013 (7)
C9	0.0525 (12)	0.0489 (11)	0.0429 (11)	0.0013 (9)	-0.0084 (9)	-0.0008 (8)
C10	0.0652 (14)	0.0527 (11)	0.0511 (12)	0.0051 (10)	-0.0157 (10)	0.0055 (9)
C11	0.0613 (14)	0.0498 (11)	0.0550 (12)	0.0024 (10)	-0.0072 (10)	0.0114 (9)
C12	0.0562 (13)	0.0391 (10)	0.0507 (11)	0.0022 (9)	-0.0070 (9)	0.0029 (8)
C13	0.0437 (11)	0.0412 (9)	0.0408 (10)	-0.0031 (8)	-0.0016 (8)	0.0030 (7)
C14	0.0443 (11)	0.0349 (9)	0.0476 (11)	-0.0004 (8)	-0.0023 (8)	-0.0030 (8)
C15	0.0389 (10)	0.0396 (9)	0.0406 (10)	-0.0043 (8)	0.0003 (8)	-0.0051 (7)
C16	0.0510 (12)	0.0420 (10)	0.0506 (12)	-0.0018 (9)	0.0021 (9)	-0.0090 (8)
C17	0.0660 (14)	0.0536 (11)	0.0458 (12)	-0.0066 (10)	0.0056 (10)	-0.0159 (9)
C18	0.0616 (14)	0.0647 (13)	0.0377 (11)	-0.0109 (10)	-0.0017 (9)	-0.0072 (9)
C19	0.0515 (12)	0.0506 (11)	0.0413 (11)	-0.0033 (9)	-0.0053 (9)	-0.0010 (8)

C20	0.0376 (10)	0.0426 (9)	0.0391 (10)	-0.0050 (8)	-0.0010 (8)	-0.0047 (8)		
Geome	Geometric parameters (Å, °)							
Ni1—0	Jii-O1 1.8897 (12) C9-C10 1.528 (2)							
Ni1—C	02	1.9125	(12)	С9—Н9А		0.9700		
Ni1—N	N1	1.9435	(15)	С9—Н9В		0.9700		
Ni1—N	N2	1.9507	(14)	C10-C11		1.510 (3)		
01—C	1	1.312 (2	2)	C10—H10A		0.9700		
02—С	20	1.320 (2	2)	C10—H10B		0.9700		
N1—C	7	1.289 (2	2)	C11—C12		1.530 (3)		
N1—C	8	1.483 (2	2)	C11—H11A		0.9700		
N2—C	14	1.284 (2	2)	C11—H11B		0.9700		
N2—C	13	1.473 (2	2)	C12—C13		1.526 (2)		
C1C	2	1.414 (2	2)	C12—H12A		0.9700		
C1—C	6	1.415 (2	2)	C12—H12B		0.9700		
С2—С	3	1.368 (2	2)	С13—Н13		0.9800		
С2—Н	2	0.9300		C14—C15		1.439 (2)		
С3—С	4	1.388 (3	3)	C14—H14		0.9300		
С3—Н	3	0.9300		C15—C16		1.411 (2)		
C4—C	5	1.372 (3	3)	C15—C20		1.416 (2)		
С4—Н	4	0.9300		C16—C17		1.362 (3)		
С5—С	6	1.410 (2	2)	C16—H16		0.9300		
С5—Н	5	0.9300		C17—C18		1.394 (3)		
С6—С	7	1.437 (2	2)	C17—H17		0.9300		
С7—Н	7	0.9300		C18—C19		1.376 (3)		
С8—С	9	1.517 (2	2)	C18—H18		0.9300		
С8—С	13	1.527 (2	2)	C19—C20		1.408 (3)		
С8—Н	8	0.9800		C19—H19		0.9300		
01—N	i1—02	89.22 (5	5)	Н9А—С9—Н9В		108.2		
01—N	i1—N1	93.76 (5	5)	C11—C10—C9		112.26 (17)		
02—N	i1—N1	175.27	(6)	C11—C10—H10A		109.2		
01—N	i1—N2	177.83	(6)	C9—C10—H10A		109.2		
02—N	i1—N2	92.71 (5	5)	C11—C10—H10B		109.2		
N1—N	i1—N2	84.25 (6	5)	C9—C10—H10B		109.2		
C1—0	1—Nil	127.04	(11)	H10A—C10—H10	В	107.9		
C20—0	02—Ni1	125.90	(11)	C10—C11—C12		111.42 (16)		
C7—N	1—C8	121.87	(15)	C10-C11-H11A		109.3		
C7—N	1—Ni1	125.39	(12)	C12—C11—H11A		109.3		
C8—N	1—Nil	112.73	(10)	C10—C11—H11B		109.3		
C14—1	N2—C13	123.45	(15)	C12—C11—H11B	_	109.3		
C14—1	N2—Nil	125.94	(13)	H11A—C11—H11H	3	108.0		
C13—1	N2—Nil	110.53	(10)	C13—C12—C11		110.17 (16)		
01—C	1—C2	118.46	(16)	C13—C12—H12A		109.6		
01—C	1—C6	124.38	(16)	C11—C12—H12A		109.6		
C2—C	I—C6	117.16 ((16)	C13—C12—H12B		109.6		
С3—С	2—C1	121.58	(18)	C11—C12—H12B		109.6		

supporting information

C_2 C_2 U_2	110.2	1112A C12 1112D	100.1
$C_3 - C_2 - H_2$	119.2	H12A - U12 - H12B	108.1
С1—С2—Н2	119.2	N2-C13-C12	117.09 (15)
C2—C3—C4	121.41 (18)	N2—C13—C8	106.20 (13)
С2—С3—Н3	119.3	C12—C13—C8	110.91 (15)
С4—С3—Н3	119.3	N2—C13—H13	107.4
C5—C4—C3	118.45 (18)	С12—С13—Н13	107.4
C5—C4—H4	120.8	C8—C13—H13	107.4
C3—C4—H4	120.8	N2—C14—C15	124.88 (16)
C4—C5—C6	121.89 (19)	N2—C14—H14	117.6
С4—С5—Н5	119.1	C15—C14—H14	117.6
С6—С5—Н5	119.1	C16—C15—C20	119.10 (16)
C5—C6—C1	119.49 (16)	C16—C15—C14	117.73 (16)
C5—C6—C7	117.35 (16)	C20—C15—C14	123.08 (15)
C1—C6—C7	123.16 (15)	C17—C16—C15	122.23 (18)
N1—C7—C6	125.24 (16)	C17—C16—H16	118.9
N1—C7—H7	117.4	C15—C16—H16	118.9
С6—С7—Н7	117.4	C16—C17—C18	118.67 (18)
N1—C8—C9	116.41 (14)	С16—С17—Н17	120.7
N1—C8—C13	106.37 (14)	C18—C17—H17	120.7
C9—C8—C13	112.08 (15)	C19—C18—C17	120.90 (19)
N1—C8—H8	107.2	C19—C18—H18	119.5
С9—С8—Н8	107.2	C17—C18—H18	119.5
С13—С8—Н8	107.2	C18—C19—C20	121.48 (18)
C8—C9—C10	109.85 (15)	C18—C19—H19	119.3
С8—С9—Н9А	109.7	С20—С19—Н19	119.3
С10—С9—Н9А	109.7	O2—C20—C19	118.21 (16)
С8—С9—Н9В	109.7	O2—C20—C15	124.17 (16)
С10—С9—Н9В	109.7	C19—C20—C15	117.61 (16)
			× /