

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 3,3,6,6,9,9-Hexamethyl-2,3,4,5,6,7,8,9octahydro-1*H*-xanthene-1,8-dione

### Xiaofen Xie, Yuying Zhang, Jiefeng Liang and Yulin Zhu\*

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: yulinzhu2002@yahoo.com.cn

Received 3 November 2008; accepted 11 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.058; wR factor = 0.165; data-to-parameter ratio = 19.2.

The title compound,  $C_{19}H_{26}O_3$ , was synthesized directly from the condensation of 5,5-dimethylcyclohexane-1,3-dione with malononitrile catalysed by palladium chloride: there are two molecules in the asymmetric unit.

### **Related literature**

For previous reports of the title compound, see: Hirsjarvi (1946); Sellstedt (1972).



### **Experimental**

#### Crystal data

| $C_{19}H_{26}O_3$               | $V = 3373.4 (9) \text{ Å}^3$   |
|---------------------------------|--------------------------------|
| $M_r = 302.40$                  | Z = 8                          |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation         |
| a = 12.1688 (19)  Å             | $\mu = 0.08 \text{ mm}^{-1}$   |
| b = 11.7055 (18)  Å             | T = 298 (2) K                  |
| c = 24.365 (4)  Å               | $0.30 \times 0.20 \times 0.15$ |
| $\beta = 103.595 \ (2)^{\circ}$ |                                |
|                                 |                                |

## Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004)  $T_{\rm min} = 0.970, T_{\rm max} = 0.981$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$  $wR(F^2) = 0.165$ S = 1.057856 reflections 20408 measured reflections 7856 independent reflections 4312 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.042$ 

mm

410 parameters H-atom parameters constrained  $\Delta \rho_{max} = 0.22$  e Å<sup>-3</sup>  $\Delta \rho_{min} = -0.16$  e Å<sup>-3</sup>

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank South China Normal University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2156).

### References

Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hirsjarvi, V. P. (1946). Chemica, 23, 108.

Sellstedt, J. H. (1972). J. Org. Chem. 37, 1337-1340.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2009). E65, o219 [doi:10.1107/S1600536808042189]

# 3,3,6,6,9,9-Hexamethyl-2,3,4,5,6,7,8,9-octahydro-1*H*-xanthene-1,8-dione

# Xiaofen Xie, Yuying Zhang, Jiefeng Liang and Yulin Zhu

# S1. Comment

The title compound, 3,4,5,6,7,9-hexahydro-3,3,6,6,9,9-hexamethyl-1*H*-xanthene-1,8(2*H*)-dione, was reported in 1946 (Hirsjarvi,1946; Sellstedt,1972). In our experiment, The reaction between 5,5-dimethyl-1,3-cyclohexanedione with malononitrile afforded 3,4,5,6,7,9-hexahydro-3,3,6,6,9,9-hexamethyl-1*H*-xanthene-1,8(2*H*)-dione in excellent yield in the presence of palladium chloride at 353 K for 5 h. (Fig. 1). The single crystals of the compound were obtained from ethanol as colourless block-shaped and crystallized in the space group P 21/c. There are no unusual bond lengths and angles in the compound. The O1—C11—C10—C1 torsion angle of 171.8 together with the O1—C12—C13—C8 torsion angle of 173.1 comfirms the bonds around the O1 atom are not coplanar. The O2—C8—C13—C12 torsion angle of 177.0 together with normal O2=C8 and C12=C13 bond lengths and the O3—C1—C10—C11 torsion angle of 177.0 together with normal O3=C1 and C10=C11 bond lengths indicate the presence of conjugation between these two double bonds. The C7—C8—C13—C12 torsion angle of -6.7 (3) together with the C1—C10—C11—C4 torsion angle of -5.9 (3) and the C2—C1—C10—C11 torsion angle of -0.3 (3) together with the C1—C10—C11—C4 torsion angle of -8.0 (3) exhibited the two rings are in a half-chair or envelope conformation. The C16 and C17 methyls were on the opposite to the C18 and C19 methyls, together with the C35 and C36 methyls were on the opposite to the C37 and C38 methyls, these confirmed the molecules conformation were *trans.* X-ray single-crystal diffraction reveals that there are crystallographically two independent mirror-image structures in the asymmetric unit.

# **S2. Experimental**

A mixture of 5,5-dimethyl-1,3-cyclohexanedione (10 mmol), malononitrile (10 mmol), and palladium chloride (0.01 mmol) was refluxed in acetonitrile(12 ml) under 353 K for 5 h. After being cooled to room temperature, the reaction mixture was poured into water. The residue was filtered through a silica pad, washed twice with water, and then dried under vacuum to yield the product in yield 92%. The crystalloid product was dissolved in ethanol. Colourless block-shaped single crystals suitable for X-ray structure analysis were obtained by slow evaporation from ethanol at room temperature.

### **S3. Refinement**

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, and  $U_{iso}$  = 1.2–1.5  $U_{eq}$ (parent atom).



# Figure 1

Palladium-catalyzed Synthesis of 3,4,5,6,7,9-hexahydro-3,3,6,6,9,9-hexamethyl-1*H*-xanthene-1,8(2*H*)-dione.



# Figure 2

View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.

### 3,3,6,6,9,9-Hexamethyl-2,3,4,5,6,7,8,9-octahydro-1*H*-xanthene-1,8-dione

| Crystal data                             |                                                       |
|------------------------------------------|-------------------------------------------------------|
| $C_{19}H_{26}O_3$                        | F(000) = 1312.0                                       |
| $M_r = 302.40$                           | $D_{\rm x} = 1.191 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Monoclinic, $P2_1/c$                     | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc                     | Cell parameters from 3174 reflections                 |
| a = 12.1688 (19)  Å                      | $\theta = 2.5 - 21.9^{\circ}$                         |
| b = 11.7055 (18)  Å                      | $\mu=0.08~\mathrm{mm}^{-1}$                           |
| c = 24.365 (4)  Å                        | T = 298  K                                            |
| $\beta = 103.595 \ (2)^{\circ}$          | Block, colourless                                     |
| $V = 3373.4 (9) Å^3$                     | $0.30 \times 0.20 \times 0.15 \text{ mm}$             |
| Z = 8                                    |                                                       |
| Data collection                          |                                                       |
| Bruker APEXII area-detector              | Absorption correction: multi-scan                     |
| diffractometer                           | (SADABS; Sheldrick, 2004)                             |
| Radiation source: fine-focus sealed tube | $T_{\rm min} = 0.970, \ T_{\rm max} = 0.981$          |
| Graphite monochromator                   | 20408 measured reflections                            |
| $\varphi$ and $\omega$ scans             | 7856 independent reflections                          |
|                                          |                                                       |

| $h = -15 \rightarrow 16$                                                                                          |
|-------------------------------------------------------------------------------------------------------------------|
| $k = -15 \rightarrow 15$                                                                                          |
| $l = -28 \rightarrow 32$                                                                                          |
|                                                                                                                   |
| Hydrogen site location: inferred from                                                                             |
| neighbouring sites                                                                                                |
| H-atom parameters constrained                                                                                     |
| $w = 1/[\sigma^2(F_o^2) + (0.0568P)^2 + 0.7487P]$                                                                 |
| where $P = (F_o^2 + 2F_c^2)/3$                                                                                    |
| $(\Delta/\sigma)_{\rm max} < 0.001$                                                                               |
| $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$                                                         |
| $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$                                                          |
| Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Extinction coefficient: 0.0012 (4)                                                                                |
|                                                                                                                   |
|                                                                                                                   |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| C1  | 0.46830 (19) | 0.7292 (2)   | 0.14266 (11) | 0.0522 (6)                  |  |
| C2  | 0.4840 (2)   | 0.8027 (2)   | 0.09431 (11) | 0.0595 (7)                  |  |
| H2A | 0.4396       | 0.8718       | 0.0935       | 0.071*                      |  |
| H2B | 0.4545       | 0.7621       | 0.0593       | 0.071*                      |  |
| C3  | 0.60593 (19) | 0.83619 (19) | 0.09702 (9)  | 0.0467 (6)                  |  |
| C4  | 0.64836 (19) | 0.89530 (18) | 0.15383 (9)  | 0.0435 (5)                  |  |
| H4A | 0.7297       | 0.9045       | 0.1609       | 0.052*                      |  |
| H4B | 0.6151       | 0.9709       | 0.1521       | 0.052*                      |  |
| C5  | 0.76147 (19) | 0.8708 (2)   | 0.34933 (9)  | 0.0458 (5)                  |  |
| H5A | 0.7522       | 0.9529       | 0.3454       | 0.055*                      |  |
| H5B | 0.8388       | 0.8527       | 0.3483       | 0.055*                      |  |
| C6  | 0.74147 (19) | 0.8344 (2)   | 0.40666 (9)  | 0.0457 (5)                  |  |
| C7  | 0.7276 (2)   | 0.7050 (2)   | 0.40465 (10) | 0.0546 (6)                  |  |
| H7A | 0.7977       | 0.6705       | 0.4006       | 0.066*                      |  |
| H7B | 0.7135       | 0.6790       | 0.4402       | 0.066*                      |  |
| C8  | 0.6324 (2)   | 0.6646 (2)   | 0.35692 (11) | 0.0514 (6)                  |  |
| C9  | 0.53208 (17) | 0.67934 (18) | 0.25027 (10) | 0.0428 (5)                  |  |
| C10 | 0.54395 (17) | 0.74911 (18) | 0.19899 (9)  | 0.0408 (5)                  |  |
| C11 | 0.62087 (17) | 0.83152 (17) | 0.20159 (9)  | 0.0369 (5)                  |  |
| C12 | 0.68309 (17) | 0.81411 (18) | 0.30053 (9)  | 0.0379 (5)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C13           | 0.61809 (17)             | 0.72250 (17) | 0.30206 (9)           | 0.0404 (5) |
|---------------|--------------------------|--------------|-----------------------|------------|
| C14           | 0.41224 (19)             | 0.6936 (2)   | 0.26027 (12)          | 0.0615 (7) |
| H14A          | 0.3957                   | 0.7734       | 0.2626                | 0.092*     |
| H14B          | 0.4084                   | 0.6566       | 0.2949                | 0.092*     |
| H14C          | 0.3580                   | 0.6597       | 0.2295                | 0.092*     |
| C15           | 0,5559 (2)               | 0.55184(19)  | 0.23925(12)           | 0.0607(7)  |
| H15A          | 0.5040                   | 0.5265       | 0.2054                | 0.0007 (7) |
|               | 0.5040                   | 0.5205       | 0.2054                | 0.091      |
|               | 0.5403                   | 0.5005       | 0.2700                | 0.091*     |
| HISC          | 0.6320                   | 0.5440       | 0.2350                | 0.091*     |
| C16           | 0.8430 (2)               | 0.8683 (2)   | 0.45361 (10)          | 0.0656 (7) |
| H16A          | 0.8306                   | 0.8446       | 0.4894                | 0.098*     |
| H16B          | 0.8525                   | 0.9497       | 0.4536                | 0.098*     |
| H16C          | 0.9098                   | 0.8320       | 0.4474                | 0.098*     |
| C17           | 0.6351 (2)               | 0.8909 (2)   | 0.41695 (10)          | 0.0584 (7) |
| H17A          | 0.5718                   | 0.8723       | 0.3865                | 0.088*     |
| H17B          | 0.6453                   | 0.9723       | 0.4189                | 0.088*     |
| H17C          | 0.6213                   | 0.8637       | 0.4519                | 0.088*     |
| C18           | 0.6127 (2)               | 0.9184 (2)   | 0.04973 (10)          | 0.0707 (8) |
| H18A          | 0.5837                   | 0.8820       | 0.0140                | 0.106*     |
| H18B          | 0.6900                   | 0.9400       | 0.0529                | 0.106*     |
| HISC          | 0.5686                   | 0.9853       | 0.0525                | 0.106*     |
| C10           | 0.5000                   | 0.7093       | 0.0025<br>0.00236(11) | 0.0636 (7) |
|               | 0.0700 (2)               | 0.7294 (2)   | 0.09230 (11)          | 0.0050 (7) |
| П19А          | 0.0739                   | 0.0784       | 0.1229                | 0.093      |
| HI9B          | 0.7528                   | 0./512       | 0.0941                | 0.095*     |
| HI9C          | 0.6452                   | 0.6918       | 0.0571                | 0.095*     |
| C20           | 0.0368 (2)               | 0.67067 (19) | 0.14075 (11)          | 0.0510 (6) |
| C21           | 0.0876 (2)               | 0.7132 (2)   | 0.09394 (10)          | 0.0540 (6) |
| H21A          | 0.0415                   | 0.6872       | 0.0581                | 0.065*     |
| H21B          | 0.1624                   | 0.6804       | 0.0984                | 0.065*     |
| C22           | 0.0969 (2)               | 0.84297 (19) | 0.09278 (9)           | 0.0479 (6) |
| C23           | 0.16921 (19)             | 0.87919 (19) | 0.15058 (9)           | 0.0465 (6) |
| H23A          | 0.2480                   | 0.8635       | 0.1518                | 0.056*     |
| H23B          | 0.1614                   | 0.9609       | 0.1550                | 0.056*     |
| C24           | 0.23595 (19)             | 0.89884 (18) | 0.34621 (9)           | 0.0430 (5) |
| H24A          | 0.2042                   | 0.9745       | 0.3475                | 0.052*     |
| H24B          | 0.3116                   | 0.9077       | 0.3404                | 0.052*     |
| C25           | 0.24293(19)              | 0.83916 (18) | 0.40265 (9)           | 0.022      |
| C26           | 0.24293(19)<br>0.1227(2) | 0.8058(2)    | 0.40203(0)            | 0.0440(5)  |
|               | 0.1227(2)                | 0.0050 (2)   | 0.40555 (10)          | 0.0545 (0) |
| П20А<br>112(D | 0.1230                   | 0.7003       | 0.4383                | 0.005*     |
| H20B          | 0.0782                   | 0.8/48       | 0.4026                | 0.065*     |
| C27           | 0.06587 (19)             | 0.7305(2)    | 0.35496 (10)          | 0.0488 (6) |
| C28           | 0.03382 (17)             | 0.68151 (17) | 0.24750 (10)          | 0.0422 (5) |
| C29           | 0.07195 (17)             | 0.72731 (17) | 0.19632 (9)           | 0.0406 (5) |
| C30           | 0.13723 (17)             | 0.81928 (17) | 0.19853 (9)           | 0.0383 (5) |
| C31           | 0.16534 (17)             | 0.83464 (17) | 0.29759 (9)           | 0.0360 (5) |
| C32           | 0.09154 (17)             | 0.75143 (17) | 0.29926 (9)           | 0.0394 (5) |
| C33           | -0.09545 (18)            | 0.6935 (2)   | 0.23688 (11)          | 0.0588 (7) |
| H33A          | -0.1209                  | 0.6584       | 0.2673                | 0.088*     |

| H33B | -0.1306       | 0.6566       | 0.2020       | 0.088*     |
|------|---------------|--------------|--------------|------------|
| H33C | -0.1154       | 0.7730       | 0.2347       | 0.088*     |
| C34  | 0.0699 (2)    | 0.55488 (18) | 0.25848 (11) | 0.0587 (7) |
| H34A | 0.1502        | 0.5485       | 0.2630       | 0.088*     |
| H34B | 0.0320        | 0.5090       | 0.2270       | 0.088*     |
| H34C | 0.0499        | 0.5287       | 0.2922       | 0.088*     |
| C35  | 0.2903 (3)    | 0.9214 (2)   | 0.45098 (10) | 0.0679 (8) |
| H35A | 0.2427        | 0.9877       | 0.4476       | 0.102*     |
| H35B | 0.3653        | 0.9442       | 0.4493       | 0.102*     |
| H35C | 0.2928        | 0.8842       | 0.4864       | 0.102*     |
| C36  | 0.3184 (2)    | 0.7331 (2)   | 0.40887 (11) | 0.0617 (7) |
| H36A | 0.3189        | 0.6961       | 0.4441       | 0.093*     |
| H36B | 0.3939        | 0.7554       | 0.4081       | 0.093*     |
| H36C | 0.2895        | 0.6814       | 0.3783       | 0.093*     |
| C37  | 0.1548 (3)    | 0.8809 (3)   | 0.04655 (10) | 0.0747 (9) |
| H37A | 0.2246        | 0.8400       | 0.0504       | 0.112*     |
| H37B | 0.1700        | 0.9614       | 0.0500       | 0.112*     |
| H37C | 0.1063        | 0.8651       | 0.0102       | 0.112*     |
| C38  | -0.0209 (2)   | 0.8958 (2)   | 0.08221 (11) | 0.0671 (8) |
| H38A | -0.0663       | 0.8680       | 0.0471       | 0.101*     |
| H38B | -0.0150       | 0.9775       | 0.0805       | 0.101*     |
| H38C | -0.0555       | 0.8753       | 0.1124       | 0.101*     |
| O1   | 0.68792 (12)  | 0.86994 (12) | 0.25180 (6)  | 0.0404 (4) |
| O2   | 0.57242 (17)  | 0.58530 (16) | 0.36467 (8)  | 0.0799 (6) |
| O3   | 0.39140 (15)  | 0.65934 (16) | 0.13512 (8)  | 0.0762 (6) |
| O4   | 0.18654 (12)  | 0.87463 (11) | 0.24804 (6)  | 0.0397 (3) |
| O5   | -0.00287 (15) | 0.65889 (16) | 0.36175 (8)  | 0.0731 (6) |
| O6   | -0.02878 (17) | 0.58965 (16) | 0.13253 (8)  | 0.0789 (6) |
|      |               |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0433 (13) | 0.0515 (14) | 0.0581 (16) | 0.0010 (11)  | 0.0050 (12)  | -0.0166 (12) |
| C2  | 0.0574 (16) | 0.0614 (16) | 0.0499 (15) | 0.0057 (12)  | -0.0073 (12) | -0.0104 (13) |
| C3  | 0.0528 (14) | 0.0484 (13) | 0.0344 (12) | 0.0088 (11)  | 0.0015 (10)  | -0.0056 (10) |
| C4  | 0.0479 (13) | 0.0440 (13) | 0.0369 (12) | -0.0008 (10) | 0.0066 (10)  | -0.0031 (10) |
| C5  | 0.0502 (13) | 0.0510 (13) | 0.0354 (12) | -0.0079 (11) | 0.0082 (10)  | -0.0010 (10) |
| C6  | 0.0504 (13) | 0.0521 (14) | 0.0348 (12) | 0.0028 (11)  | 0.0104 (10)  | 0.0053 (10)  |
| C7  | 0.0612 (15) | 0.0549 (15) | 0.0500 (15) | 0.0085 (12)  | 0.0176 (12)  | 0.0129 (12)  |
| C8  | 0.0574 (15) | 0.0407 (13) | 0.0609 (16) | 0.0021 (11)  | 0.0235 (13)  | 0.0060 (12)  |
| C9  | 0.0393 (12) | 0.0371 (11) | 0.0535 (14) | -0.0044 (9)  | 0.0140 (11)  | -0.0071 (10) |
| C10 | 0.0368 (11) | 0.0378 (12) | 0.0467 (14) | -0.0008 (9)  | 0.0078 (10)  | -0.0111 (10) |
| C11 | 0.0353 (11) | 0.0389 (11) | 0.0351 (12) | 0.0021 (9)   | 0.0053 (9)   | -0.0082 (9)  |
| C12 | 0.0418 (12) | 0.0390 (12) | 0.0350 (12) | 0.0011 (9)   | 0.0136 (9)   | -0.0007 (9)  |
| C13 | 0.0422 (12) | 0.0349 (11) | 0.0468 (14) | 0.0015 (9)   | 0.0157 (10)  | 0.0002 (10)  |
| C14 | 0.0454 (14) | 0.0652 (17) | 0.0780 (19) | -0.0044 (12) | 0.0229 (13)  | -0.0024 (14) |
| C15 | 0.0700 (17) | 0.0360 (13) | 0.0767 (19) | -0.0017 (12) | 0.0187 (14)  | -0.0094 (13) |
| C16 | 0.0697 (18) | 0.086 (2)   | 0.0382 (14) | -0.0047 (15) | 0.0060 (13)  | 0.0042 (14)  |
|     |             |             |             |              |              |              |

| C17 | 0.0675 (17) | 0.0632 (17) | 0.0479 (15) | 0.0094 (13)  | 0.0202 (13)  | -0.0003 (12) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C18 | 0.090 (2)   | 0.080 (2)   | 0.0361 (15) | 0.0091 (16)  | 0.0020 (14)  | 0.0058 (14)  |
| C19 | 0.0747 (18) | 0.0656 (17) | 0.0505 (16) | 0.0179 (14)  | 0.0149 (14)  | -0.0094 (13) |
| C20 | 0.0508 (14) | 0.0369 (12) | 0.0601 (16) | -0.0020 (11) | 0.0028 (12)  | -0.0080 (11) |
| C21 | 0.0586 (15) | 0.0504 (14) | 0.0481 (15) | 0.0023 (12)  | 0.0026 (12)  | -0.0144 (12) |
| C22 | 0.0593 (15) | 0.0455 (13) | 0.0347 (13) | -0.0023 (11) | 0.0028 (11)  | -0.0064 (10) |
| C23 | 0.0540 (14) | 0.0470 (13) | 0.0367 (13) | -0.0097 (11) | 0.0071 (11)  | -0.0031 (10) |
| C24 | 0.0509 (13) | 0.0408 (12) | 0.0376 (12) | -0.0035 (10) | 0.0108 (10)  | 0.0011 (10)  |
| C25 | 0.0578 (14) | 0.0406 (12) | 0.0355 (12) | 0.0040 (10)  | 0.0110 (11)  | 0.0043 (10)  |
| C26 | 0.0688 (16) | 0.0521 (15) | 0.0492 (15) | 0.0086 (12)  | 0.0272 (13)  | 0.0120 (12)  |
| C27 | 0.0480 (13) | 0.0439 (13) | 0.0578 (16) | 0.0043 (11)  | 0.0189 (12)  | 0.0135 (12)  |
| C28 | 0.0379 (12) | 0.0334 (11) | 0.0535 (14) | -0.0015 (9)  | 0.0073 (10)  | 0.0046 (10)  |
| C29 | 0.0368 (11) | 0.0338 (11) | 0.0483 (14) | 0.0000 (9)   | 0.0043 (10)  | -0.0015 (10) |
| C30 | 0.0384 (11) | 0.0366 (11) | 0.0377 (12) | -0.0017 (9)  | 0.0044 (9)   | -0.0024 (10) |
| C31 | 0.0394 (11) | 0.0342 (11) | 0.0353 (12) | 0.0035 (9)   | 0.0106 (9)   | 0.0040 (9)   |
| C32 | 0.0361 (11) | 0.0345 (11) | 0.0484 (14) | 0.0035 (9)   | 0.0115 (10)  | 0.0072 (10)  |
| C33 | 0.0401 (13) | 0.0623 (16) | 0.0722 (18) | -0.0040 (11) | 0.0093 (12)  | 0.0045 (14)  |
| C34 | 0.0663 (16) | 0.0340 (12) | 0.0734 (18) | 0.0012 (11)  | 0.0113 (14)  | 0.0067 (12)  |
| C35 | 0.102 (2)   | 0.0620 (17) | 0.0390 (15) | -0.0051 (15) | 0.0151 (14)  | -0.0038 (13) |
| C36 | 0.0672 (17) | 0.0568 (16) | 0.0556 (17) | 0.0152 (13)  | 0.0033 (13)  | 0.0064 (13)  |
| C37 | 0.106 (2)   | 0.080 (2)   | 0.0388 (15) | -0.0223 (17) | 0.0170 (15)  | -0.0121 (14) |
| C38 | 0.0777 (19) | 0.0567 (16) | 0.0566 (17) | 0.0112 (14)  | -0.0052 (14) | -0.0057 (13) |
| 01  | 0.0464 (8)  | 0.0427 (8)  | 0.0314 (8)  | -0.0093 (7)  | 0.0077 (7)   | -0.0036 (7)  |
| O2  | 0.0988 (15) | 0.0631 (12) | 0.0806 (14) | -0.0254 (11) | 0.0266 (12)  | 0.0180 (10)  |
| 03  | 0.0629 (12) | 0.0746 (13) | 0.0823 (14) | -0.0251 (10) | -0.0007 (10) | -0.0200 (11) |
| O4  | 0.0473 (8)  | 0.0386 (8)  | 0.0323 (8)  | -0.0099 (6)  | 0.0074 (7)   | -0.0015 (7)  |
| O5  | 0.0756 (13) | 0.0690 (12) | 0.0833 (14) | -0.0177 (10) | 0.0358 (11)  | 0.0164 (10)  |
| O6  | 0.0907 (14) | 0.0615 (12) | 0.0799 (14) | -0.0332 (11) | 0.0106 (11)  | -0.0219 (10) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1—O3  | 1.224 (3) | C20—O6   | 1.226 (3) |  |
|--------|-----------|----------|-----------|--|
| C1-C10 | 1.480 (3) | C20—C29  | 1.478 (3) |  |
| C1—C2  | 1.507 (4) | C20—C21  | 1.504 (3) |  |
| C2—C3  | 1.521 (3) | C21—C22  | 1.524 (3) |  |
| C2—H2A | 0.9700    | C21—H21A | 0.9700    |  |
| C2—H2B | 0.9700    | C21—H21B | 0.9700    |  |
| C3—C18 | 1.518 (3) | C22—C37  | 1.528 (3) |  |
| C3—C4  | 1.525 (3) | C22—C38  | 1.527 (3) |  |
| C3—C19 | 1.532 (3) | C22—C23  | 1.535 (3) |  |
| C4—C11 | 1.485 (3) | C23—C30  | 1.491 (3) |  |
| C4—H4A | 0.9700    | C23—H23A | 0.9700    |  |
| C4—H4B | 0.9700    | C23—H23B | 0.9700    |  |
| C5—C12 | 1.493 (3) | C24—C31  | 1.493 (3) |  |
| C5—C6  | 1.533 (3) | C24—C25  | 1.527 (3) |  |
| C5—H5A | 0.9700    | C24—H24A | 0.9700    |  |
| С5—Н5В | 0.9700    | C24—H24B | 0.9700    |  |
| C6—C7  | 1.524 (3) | C25—C26  | 1.518 (3) |  |
|        |           |          |           |  |

| C6—C17            | 1.526 (3)            | C25—C35                     | 1.526 (3)            |
|-------------------|----------------------|-----------------------------|----------------------|
| C6—C16            | 1.526 (3)            | C25—C36                     | 1.530(3)             |
| C7—C8             | 1 511 (3)            | $C_{26} = C_{27}$           | 1 504 (3)            |
| C7—H7A            | 0.9700               | C26—H26A                    | 0.9700               |
| C7—H7B            | 0.9700               | C26—H26B                    | 0.9700               |
| $C_{8}$           | 1 223 (3)            | $C_{27} = 05$               | 1 223 (3)            |
| $C_{8}$ $C_{13}$  | 1.223(3)<br>1 472(3) | $C_{27} = C_{32}$           | 1.223(3)<br>1 483(3) |
| C9-C13            | 1.172(3)<br>1 524(3) | $C_{28}$ $C_{29}$           | 1.105 (3)            |
| $C_{P}$           | 1.524(3)             | $C_{28}^{28} = C_{22}^{28}$ | 1.520(3)             |
| C9-C14            | 1.526(3)<br>1 543(3) | $C_{28} = C_{33}$           | 1.529(3)<br>1 539(3) |
| $C_{0}$           | 1.556 (3)            | $C_{28}$ $C_{34}$           | 1.557(3)             |
| C10-C11           | 1 335 (3)            | $C_{20}$ $C_{30}$           | 1.331(3)             |
|                   | 1.355(3)<br>1.377(2) | $C_{2}^{30} = C_{30}^{30}$  | 1.332(3)             |
| $C_{12}$ $C_{13}$ | 1.377(2)<br>1 338(3) | $C_{30} = C_{4}$            | 1.370(2)<br>1.332(3) |
| $C_{12} = C_{13}$ | 1.350(3)             | $C_{31} = C_{32}$           | 1.332(3)             |
| C12 = O1          | 1.309(2)             | $C_{22}$ $H_{22}$           | 1.373(2)             |
| C14—H14A          | 0.9000               | C32 U22D                    | 0.9000               |
| C14—H14B          | 0.9600               | С33—Н33В                    | 0.9600               |
| C14—H14C          | 0.9600               | C34_H24A                    | 0.9600               |
| CI5—HISA          | 0.9600               | C34—H34A                    | 0.9600               |
| CI5—HI5B          | 0.9600               | C34—H34B                    | 0.9600               |
| CIS—HISC          | 0.9600               | C34—H34C                    | 0.9600               |
| CI6—HI6A          | 0.9600               | С35—Н35А                    | 0.9600               |
| CI6—HI6B          | 0.9600               | С35—Н35В                    | 0.9600               |
| C16—H16C          | 0.9600               | С35—Н35С                    | 0.9600               |
| С17—Н17А          | 0.9600               | С36—Н36А                    | 0.9600               |
| С17—Н17В          | 0.9600               | С36—Н36В                    | 0.9600               |
| C17—H17C          | 0.9600               | С36—Н36С                    | 0.9600               |
| C18—H18A          | 0.9600               | С37—Н37А                    | 0.9600               |
| C18—H18B          | 0.9600               | С37—Н37В                    | 0.9600               |
| C18—H18C          | 0.9600               | С37—Н37С                    | 0.9600               |
| C19—H19A          | 0.9600               | C38—H38A                    | 0.9600               |
| C19—H19B          | 0.9600               | C38—H38B                    | 0.9600               |
| C19—H19C          | 0.9600               | C38—H38C                    | 0.9600               |
|                   |                      |                             |                      |
| O3—C1—C10         | 122.1 (2)            | O6—C20—C21                  | 120.0 (2)            |
| O3—C1—C2          | 119.8 (2)            | C29—C20—C21                 | 117.68 (19)          |
| C10—C1—C2         | 118.0 (2)            | C20—C21—C22                 | 112.91 (19)          |
| C1—C2—C3          | 114.49 (19)          | C20—C21—H21A                | 109.0                |
| C1—C2—H2A         | 108.6                | C22—C21—H21A                | 109.0                |
| C3—C2—H2A         | 108.6                | C20—C21—H21B                | 109.0                |
| C1—C2—H2B         | 108.6                | C22—C21—H21B                | 109.0                |
| С3—С2—Н2В         | 108.6                | H21A—C21—H21B               | 107.8                |
| H2A—C2—H2B        | 107.6                | C21—C22—C37                 | 110.6 (2)            |
| C18—C3—C4         | 109.5 (2)            | C21—C22—C38                 | 109.7 (2)            |
| C18—C3—C2         | 110.9 (2)            | C37—C22—C38                 | 109.6 (2)            |
| C4—C3—C2          | 105.95 (19)          | C21—C22—C23                 | 106.69 (18)          |
| C18—C3—C19        | 109.3 (2)            | C37—C22—C23                 | 109.4 (2)            |
| C4—C3—C19         | 111.21 (19)          | C38—C22—C23                 | 110.8 (2)            |
|                   | · · · · ·            |                             |                      |

| $C_{2}$ $C_{3}$ $C_{19}$   | 110.0(2)                | $C_{30}$ $C_{23}$ $C_{22}$          | 112 98 (18)            |
|----------------------------|-------------------------|-------------------------------------|------------------------|
| $C_2 = C_3 = C_1^2$        | 110.0(2)<br>112 11 (19) | $C_{30} = C_{23} = C_{22}$          | 100.0                  |
| $C_{11}$ $C_{4}$ $U_{4A}$  | 113.11 (10)             | $C_{20} = C_{20} = H_{20} A$        | 109.0                  |
| CII - C4 - H4A             | 109.0                   | C22—C23—H23A                        | 109.0                  |
| C3—C4—H4A                  | 109.0                   | C30—C23—H23B                        | 109.0                  |
| C11—C4—H4B                 | 109.0                   | С22—С23—Н23В                        | 109.0                  |
| C3—C4—H4B                  | 109.0                   | H23A—C23—H23B                       | 107.8                  |
| H4A—C4—H4B                 | 107.8                   | C31—C24—C25                         | 112.59 (18)            |
| C12—C5—C6                  | 113.17 (18)             | C31—C24—H24A                        | 109.1                  |
| С12—С5—Н5А                 | 108.9                   | C25—C24—H24A                        | 109.1                  |
| С6—С5—Н5А                  | 108.9                   | C31—C24—H24B                        | 109.1                  |
| С12—С5—Н5В                 | 108.9                   | C25—C24—H24B                        | 109.1                  |
| C6—C5—H5B                  | 108.9                   | H24A—C24—H24B                       | 107.8                  |
| Н5А—С5—Н5В                 | 107.8                   | C26—C25—C35                         | 110.2 (2)              |
| C7—C6—C17                  | 110.1 (2)               | C26—C25—C24                         | 106.12 (18)            |
| C7 - C6 - C5               | 106 66 (19)             | C35—C25—C24                         | 109 70 (19)            |
| C17 - C6 - C5              | 110 60 (19)             | $C_{26}^{}$ $C_{25}^{}$ $C_{36}^{}$ | 110 35 (19)            |
| C7 $C6$ $C16$              | 110.3(2)                | $C_{20} = C_{20} = C_{30} = C_{30}$ | 100.33(17)             |
| $C_{17} = C_{10} = C_{10}$ | 110.3(2)<br>100.4(2)    | $C_{23} = C_{23} = C_{36}$          | 109.1(2)<br>111/12(10) |
| $C_{1} = C_{0} = C_{10}$   | 109.4(2)                | $C_{24} = C_{23} = C_{30}$          | 111.43(19)             |
| $C_{3}$                    | 109.08 (19)             | $C_2/-C_{20}-C_{23}$                | 114.10 (19)            |
|                            | 113.27 (19)             | $C_2/-C_26$ -H26A                   | 108.7                  |
| С8—С/—Н/А                  | 108.9                   | С25—С26—Н26А                        | 108.7                  |
| С6—С7—Н7А                  | 108.9                   | C27—C26—H26B                        | 108.7                  |
| С8—С7—Н7В                  | 108.9                   | C25—C26—H26B                        | 108.7                  |
| С6—С7—Н7В                  | 108.9                   | H26A—C26—H26B                       | 107.6                  |
| H7A—C7—H7B                 | 107.7                   | O5—C27—C32                          | 122.4 (2)              |
| O2—C8—C13                  | 122.8 (2)               | O5—C27—C26                          | 120.0 (2)              |
| O2—C8—C7                   | 119.8 (2)               | C32—C27—C26                         | 117.6 (2)              |
| C13—C8—C7                  | 117.4 (2)               | C29—C28—C32                         | 108.48 (17)            |
| C13—C9—C10                 | 108.75 (17)             | C29—C28—C33                         | 108.99 (18)            |
| C13—C9—C14                 | 108.91 (19)             | C32—C28—C33                         | 110.06 (18)            |
| C10—C9—C14                 | 110.23 (19)             | C29—C28—C34                         | 110.38 (19)            |
| C13—C9—C15                 | 109.97 (19)             | C32—C28—C34                         | 108.23 (18)            |
| C10-C9-C15                 | 108 33 (19)             | $C_{33} = C_{28} = C_{34}$          | 110.68 (18)            |
| $C_{14} - C_{9} - C_{15}$  | 110.63 (18)             | $C_{30}$ $C_{29}$ $C_{20}$          | 116.00(10)             |
|                            | 115.7(2)                | $C_{30}$ $C_{29}$ $C_{20}$          | 110.2(2)<br>123.0(2)   |
| $C_{11} = C_{10} = C_{10}$ | 113.7(2)<br>123.2(2)    | $C_{30} = C_{29} = C_{28}$          | 123.0(2)<br>120.87(18) |
| C1 = C10 = C9              | 123.2(2)<br>121.10(10)  | $C_{20} = C_{29} = C_{28}$          | 120.87(18)             |
| C1 - C10 - C9              | 121.10(19)              | $C_{29} = C_{30} = C_{29}$          | 125.5(2)               |
|                            | 122.7(2)                | $C_{29} = C_{30} = C_{23}$          | 127.7(2)               |
| C10—C11—C4                 | 127.6 (2)               | 04-030-023                          | 108.98 (17)            |
| O1—C11—C4                  | 109.66 (17)             | C32—C31—O4                          | 122.88 (19)            |
| C13—C12—O1                 | 123.57 (19)             | C32—C31—C24                         | 127.6 (2)              |
| C13—C12—C5                 | 127.2 (2)               | O4—C31—C24                          | 109.50 (17)            |
| O1—C12—C5                  | 109.20 (17)             | C31—C32—C27                         | 115.9 (2)              |
| C12—C13—C8                 | 116.7 (2)               | C31—C32—C28                         | 123.3 (2)              |
| С12—С13—С9                 | 122.6 (2)               | C27—C32—C28                         | 120.78 (18)            |
| C8—C13—C9                  | 120.74 (19)             | С28—С33—Н33А                        | 109.5                  |
| C9—C14—H14A                | 109.5                   | С28—С33—Н33В                        | 109.5                  |
| C9—C14—H14B                | 109.5                   | H33A—C33—H33B                       | 109.5                  |

| H14A—C14—H14B | 109.5      | С28—С33—Н33С    | 109.5       |
|---------------|------------|-----------------|-------------|
| C9—C14—H14C   | 109.5      | Н33А—С33—Н33С   | 109.5       |
| H14A—C14—H14C | 109.5      | H33B—C33—H33C   | 109.5       |
| H14B—C14—H14C | 109.5      | C28—C34—H34A    | 109.5       |
| С9—С15—Н15А   | 109.5      | C28—C34—H34B    | 109.5       |
| С9—С15—Н15В   | 109.5      | H34A—C34—H34B   | 109.5       |
| H15A—C15—H15B | 109.5      | C28—C34—H34C    | 109.5       |
| С9—С15—Н15С   | 109.5      | H34A—C34—H34C   | 109.5       |
| H15A—C15—H15C | 109.5      | H34B—C34—H34C   | 109.5       |
| H15B—C15—H15C | 109.5      | С25—С35—Н35А    | 109.5       |
| C6—C16—H16A   | 109.5      | С25—С35—Н35В    | 109.5       |
| C6C16H16B     | 109.5      | H35A—C35—H35B   | 109.5       |
| H16A—C16—H16B | 109.5      | С25—С35—Н35С    | 109.5       |
| C6—C16—H16C   | 109.5      | Н35А—С35—Н35С   | 109.5       |
| H16A—C16—H16C | 109.5      | H35B—C35—H35C   | 109.5       |
| H16B—C16—H16C | 109.5      | С25—С36—Н36А    | 109.5       |
| С6—С17—Н17А   | 109.5      | С25—С36—Н36В    | 109.5       |
| С6—С17—Н17В   | 109.5      | H36A—C36—H36B   | 109.5       |
| H17A—C17—H17B | 109.5      | С25—С36—Н36С    | 109.5       |
| C6—C17—H17C   | 109.5      | H36A—C36—H36C   | 109.5       |
| H17A—C17—H17C | 109.5      | H36B—C36—H36C   | 109.5       |
| H17B—C17—H17C | 109.5      | С22—С37—Н37А    | 109.5       |
| C3—C18—H18A   | 109.5      | С22—С37—Н37В    | 109.5       |
| C3—C18—H18B   | 109.5      | Н37А—С37—Н37В   | 109.5       |
| H18A—C18—H18B | 109.5      | С22—С37—Н37С    | 109.5       |
| C3—C18—H18C   | 109.5      | Н37А—С37—Н37С   | 109.5       |
| H18A—C18—H18C | 109.5      | Н37В—С37—Н37С   | 109.5       |
| H18B—C18—H18C | 109.5      | C22—C38—H38A    | 109.5       |
| С3—С19—Н19А   | 109.5      | С22—С38—Н38В    | 109.5       |
| C3—C19—H19B   | 109.5      | H38A—C38—H38B   | 109.5       |
| H19A—C19—H19B | 109.5      | С22—С38—Н38С    | 109.5       |
| С3—С19—Н19С   | 109.5      | H38A—C38—H38C   | 109.5       |
| H19A—C19—H19C | 109.5      | H38B—C38—H38C   | 109.5       |
| H19B—C19—H19C | 109.5      | C12—O1—C11      | 118.53 (16) |
| O6—C20—C29    | 122.3 (2)  | C31—O4—C30      | 118.45 (16) |
|               |            |                 |             |
| O3—C1—C2—C3   | -148.9 (2) | C20—C21—C22—C23 | 58.0 (3)    |
| C10—C1—C2—C3  | 34.3 (3)   | C38—C22—C23—C30 | 74.9 (3)    |
| C1—C2—C3—C18  | -174.9 (2) | C21—C22—C23—C30 | -44.4 (3)   |
| C1—C2—C3—C4   | -56.2 (3)  | C37—C22—C23—C30 | -164.1 (2)  |
| C1—C2—C3—C19  | 64.1 (3)   | C31—C24—C25—C26 | -47.1 (2)   |
| C18—C3—C4—C11 | 166.9 (2)  | C31—C24—C25—C35 | -166.0 (2)  |
| C2-C3-C4-C11  | 47.2 (2)   | C31—C24—C25—C36 | 73.1 (2)    |
| C19—C3—C4—C11 | -72.1 (3)  | C35—C25—C26—C27 | 176.28 (19) |
| C12—C5—C6—C7  | 44.7 (3)   | C24—C25—C26—C27 | 57.6 (2)    |
| C12—C5—C6—C16 | 164.3 (2)  | C36—C25—C26—C27 | -63.2 (3)   |
| C12—C5—C6—C17 | -75.0 (3)  | C25—C26—C27—O5  | 147.3 (2)   |
| C16—C6—C7—C8  | -176.7 (2) | C25—C26—C27—C32 | -36.1 (3)   |

| C17—C6—C7—C8    | 62.4 (3)     | O6—C20—C29—C30  | -175.4 (2)   |
|-----------------|--------------|-----------------|--------------|
| C5—C6—C7—C8     | -57.6 (2)    | C21—C20—C29—C30 | 6.6 (3)      |
| C6—C7—C8—O2     | -140.9 (2)   | O6—C20—C29—C28  | 4.2 (3)      |
| C6—C7—C8—C13    | 40.3 (3)     | C21—C20—C29—C28 | -173.7 (2)   |
| O3—C1—C10—C11   | -177.1 (2)   | C32—C28—C29—C30 | -5.1 (3)     |
| C2-C1-C10-C11   | -0.3 (3)     | C33—C28—C29—C30 | 114.7 (2)    |
| O3—C1—C10—C9    | 2.4 (3)      | C34—C28—C29—C30 | -123.5 (2)   |
| C2-C1-C10-C9    | 179.08 (19)  | C32—C28—C29—C20 | 175.29 (18)  |
| C13—C9—C10—C11  | 1.6 (3)      | C33—C28—C29—C20 | -64.9 (2)    |
| C14—C9—C10—C11  | 120.9 (2)    | C34—C28—C29—C20 | 56.8 (3)     |
| C15—C9—C10—C11  | -117.9 (2)   | C20—C29—C30—O4  | -173.07 (18) |
| C13—C9—C10—C1   | -177.80 (18) | C28—C29—C30—O4  | 7.3 (3)      |
| C14—C9—C10—C1   | -58.5 (3)    | C20—C29—C30—C23 | 7.0 (3)      |
| C15—C9—C10—C1   | 62.7 (3)     | C28—C29—C30—C23 | -172.6 (2)   |
| C1-C10-C11-O1   | 171.77 (18)  | C22—C23—C30—C29 | 13.8 (3)     |
| C9—C10—C11—O1   | -7.6 (3)     | C22—C23—C30—O4  | -166.12 (18) |
| C1—C10—C11—C4   | -8.0 (3)     | C25—C24—C31—C32 | 16.4 (3)     |
| C9—C10—C11—C4   | 172.54 (19)  | C25—C24—C31—O4  | -163.89 (17) |
| C3—C4—C11—C10   | -17.6 (3)    | O4—C31—C32—C27  | -171.10 (18) |
| C3—C4—C11—O1    | 162.54 (17)  | C24—C31—C32—C27 | 8.5 (3)      |
| C6—C5—C12—C13   | -15.0 (3)    | O4—C31—C32—C28  | 8.0 (3)      |
| C6-C5-C12-O1    | 165.85 (17)  | C24—C31—C32—C28 | -172.42 (19) |
| O1—C12—C13—C8   | 173.11 (18)  | O5—C27—C32—C31  | 177.8 (2)    |
| C5—C12—C13—C8   | -5.9 (3)     | C26—C27—C32—C31 | 1.3 (3)      |
| O1—C12—C13—C9   | -7.5 (3)     | O5—C27—C32—C28  | -1.2 (3)     |
| C5—C12—C13—C9   | 173.5 (2)    | C26—C27—C32—C28 | -177.77 (19) |
| O2—C8—C13—C12   | 174.5 (2)    | C29—C28—C32—C31 | -2.3 (3)     |
| C7—C8—C13—C12   | -6.7 (3)     | C33—C28—C32—C31 | -121.5 (2)   |
| O2—C8—C13—C9    | -5.0 (3)     | C34—C28—C32—C31 | 117.5 (2)    |
| C7—C8—C13—C9    | 173.8 (2)    | C29—C28—C32—C27 | 176.71 (18)  |
| C10-C9-C13-C12  | 5.7 (3)      | C33—C28—C32—C27 | 57.6 (2)     |
| C14—C9—C13—C12  | -114.5 (2)   | C34—C28—C32—C27 | -63.5 (2)    |
| C15—C9—C13—C12  | 124.2 (2)    | C13-C12-O1-C11  | 1.3 (3)      |
| C10—C9—C13—C8   | -174.88 (18) | C5-C12-O1-C11   | -179.51 (17) |
| C14—C9—C13—C8   | 65.0 (2)     | C10-C11-O1-C12  | 6.4 (3)      |
| C15—C9—C13—C8   | -56.4 (3)    | C4—C11—O1—C12   | -173.77 (17) |
| O6—C20—C21—C22  | 141.3 (2)    | C32—C31—O4—C30  | -6.1 (3)     |
| C29—C20—C21—C22 | -40.8 (3)    | C24—C31—O4—C30  | 174.20 (17)  |
| C20—C21—C22—C38 | -62.1 (3)    | C29—C30—O4—C31  | -1.6 (3)     |
| C20-C21-C22-C37 | 176.9 (2)    | C23—C30—O4—C31  | 178.31 (17)  |
|                 |              |                 |              |