organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(25R)-5a-Spirostane-3,12-dione

Tie-Ying Zi,^a Zhi-He Zang,^b Ming-Yong Yuan^a and Ling-Li Zheng^a*

^aThe First Affiliated Hospital, Chengdu Medical College, Xindu 610500, People's Republic of China, and ^bDepartment of Pharmacy, Chengdu Medical College, Chengdu 610081, People's Republic of China Correspondence e-mail: dr.gaof@gmail.com

Received 20 November 2008; accepted 23 December 2008

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.011 Å; R factor = 0.078; wR factor = 0.202; data-to-parameter ratio = 8.5.

The title compound, $C_{27}H_{40}O_4$, was obtained from the oxidation of (25R)-3b-hydroxy-5a-spirostan-12-one (Hecogenin) by Jone's reagent. The molecule contains six alicyclic and heterocyclic rings, all trans-fused, among which four sixmembered rings adopt similar chair conformations while two five-membered rings assume an envelope conformation.

Related literature

For general background, see: Chakravarti et al. (1953); Djerassi et al. (1962); Huang et al. (2002).

Experimental

Crystal data C27H40O4

 $M_r = 428.59$

Monoclinic, C2	Z = 4
a = 12.000 (3) A b = 6.443 (3) Å	Mo K α radiation $\mu = 0.08 \text{ mm}^{-1}$
b = 0.445 (3) A c = 30.167 (3) Å	$\mu = 0.08 \text{ mm}$ T = 202 (2) K
$\mathcal{E} = 50.107 (3) \text{ A}$ $\mathcal{B} = 08.02 (3)^{\circ}$	I = 232 (2) K 0.44 × 0.40 × 0.30 mm
$V = 2436.8 (14) \text{ Å}^3$	0.44 × 0.40 × 0.50 mm
Data collection	
Enraf–Nonius CAD-4	919 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.136$
Absorption correction: none	3 standard reflections
2837 measured reflections	every 150 reflections
2407 independent reflections	intensity decay: 2.6%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.078$	2 restraints
$wR(F^2) = 0.202$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

This project was supported by the Scientific Research Fund of Chengdu Medical College, China (No. CYZ07-010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2465).

References

2407 reflections

284 parameters

Chakravarti, C., Lemin, A. J., Martines, G. & Sondheimer, F. (1953). J. Am. Chem. Soc. 75, 4885-4887.

- Djerassi, C., Chakravarti, R. N. & Mitra, M. N. (1962). Nature (London), 193, 1071-1072.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S (1989). J. Appl. Cryst. 22, 384-387.

Gabe, E. J. & White, P. S. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.

Huang, J. W., Jiang, S. H., Tan, C. H. & Zhu, D. Y. (2002). Chin. J. Org. Chem. 22 917-921

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o232 [doi:10.1107/S1600536808043687]

(25R)-5a-Spirostane-3,12-dione

Tie-Ying Zi, Zhi-He Zang, Ming-Yong Yuan and Ling-Li Zheng

S1. Comment

Steroid sapogenins are a class of important compounds, which present many significant bioactivities in platelet aggregation, arteriosclerosis and so on (Huang *et al.*, 2002). The hecogenin (25*R*-5a-Spirostane-3b-ol-12-one) is an important steroid (Djerassi *et al.*, 1962; Chakravarti *et al.*, 1953), which has been isolated from Chinese traditional medicine Tribulus terrestris. The title compound was recently obtained by Jone's oxidation of hecogenin in our laboratory, and its crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The molecule contains six alicylic and heterocyclic rings with *trans*-fused. Cyclohexane rings A (C1/C2/C3/C4/C5/C10), B (C5/C6/C7/C8/C9/C10), C (C8/C9/C11/C12/C13/C14) and six-membered heterocyclic ring F (C22/C23/C24/C25/C26/O4) adopt chair conformation. Cyclopetane ring D (C13/C14/C15/C16/C17) and five-membered heterocyclic ring E (C16/C17/C20/C22/O3) have envelope conformation.

S2. Experimental

A solution of hecogenin (200 mg) in acetone (10 ml) was added by Jone's reagent drops by drops. The reaction solution was stirred for 20 min and quenched by water (10 ml). The mixture was extracted with CH_2Cl_2 (5 ml×3) and the organic phase was concentrated to give the title compound. The crystals suitable for X-ray analysis were obtained by slow evaporation from acetone solution at room temperature. The absolute configuration was deduced not by the present experiment but by the synthetic path from Hecognin, whose absolute configuration is known.

S3. Refinement

H atoms were located geometrically with C—H = 0.93–0.98 Å and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$. Friedel pairs were merged and the absolute configuration was not determined.

Figure 1

The molecular structure of the title compound.

(25R)-5a-Spirostane-3,12-dione

Crystal data

 $C_{27}H_{40}O_4$ $M_r = 428.59$ Monoclinic, C2 Hall symbol: C 2y a = 12.660 (3) Å b = 6.443 (3) Å c = 30.167 (3) Å $\beta = 98.02$ (3)° V = 2436.8 (14) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4	$R_{\rm int} = 0.136$
diffractometer	$\theta_{\rm max} = 25.5^\circ, \theta_{\rm min} = 1.4^\circ$
Radiation source: fine-focus sealed tube	$h = -15 \rightarrow 15$
Graphite monochromator	$k = -7 \rightarrow 7$
$\omega/2\theta$ scans	$l = -35 \rightarrow 36$
2837 measured reflections	3 standard reflections every 150 reflections
2407 independent reflections	intensity decay: 2.6%
919 reflections with $I > 2\sigma(I)$	

F(000) = 936

 $\theta = 4.3 - 5.6^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 292 K

Block. colourless

 $0.44 \times 0.40 \times 0.30 \text{ mm}$

 $D_{\rm x} = 1.168 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 12 reflections

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0752P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.7481 (5)	0.2933 (11)	0.4779 (2)	0.0958 (19)	
0.6375 (4)	0.7105 (13)	0.7368 (2)	0.117 (3)	
1.0031 (4)	0.7234 (9)	0.83970 (17)	0.0791 (17)	
0.9410 (5)	1.0093 (10)	0.8752 (2)	0.096 (2)	
	x 0.7481 (5) 0.6375 (4) 1.0031 (4) 0.9410 (5)	x y 0.7481 (5) 0.2933 (11) 0.6375 (4) 0.7105 (13) 1.0031 (4) 0.7234 (9) 0.9410 (5) 1.0093 (10)	x y z 0.7481 (5) 0.2933 (11) 0.4779 (2) 0.6375 (4) 0.7105 (13) 0.7368 (2) 1.0031 (4) 0.7234 (9) 0.83970 (17) 0.9410 (5) 1.0093 (10) 0.8752 (2)	xyz $U_{iso}*/U_{eq}$ 0.7481 (5)0.2933 (11)0.4779 (2)0.0958 (19)0.6375 (4)0.7105 (13)0.7368 (2)0.117 (3)1.0031 (4)0.7234 (9)0.83970 (17)0.0791 (17)0.9410 (5)1.0093 (10)0.8752 (2)0.096 (2)

C1	0.6736 (5)	0.3818 (15)	0.5873 (2)	0.076 (2)
H1A	0.6156	0.3421	0.6035	0.091*
H1B	0.6664	0.5291	0.5809	0.091*
C2	0.6615 (6)	0.2652 (16)	0.5435 (3)	0.086(2)
H2A	0.5996	0.3182	0.5243	0.104*
H2B	0.6485	0.1200	0.5493	0.104*
C3	0.7588 (7)	0.2814 (15)	0.5186 (4)	0.079(2)
C4	0.8630 (6)	0.2756 (16)	0.5476 (2)	0.080 (2)
H4A	0.9174	0.3246	0.5304	0.096*
H4B	0.8795	0.1325	0.5557	0.096*
C5	0.8694 (5)	0.4009 (12)	0.5893(2)	0.0635 (19)
Н5	0.8585	0.5464	0.5804	0.076*
C6	0.9812(5)	0.3854(15)	0.6177(2)	0.070
H6A	1 0353	0 4246	0.5995	0.097*
H6B	0 9944	0.2429	0.6273	0.097*
C7	0.9890 (5)	0.2429 0.5280 (16)	0.6273	0.077
е, H74	1.0577	0.5200 (10)	0.6773	0.092*
H7B	0.0848	0.5077	0.6773	0.092
117D	0.9848	0.0717 0.4848(13)	0.0494	0.052
	0.9014(5)	0.4646 (13)	0.0870 (2)	0.0383 (19)
	0.9130	0.3434 0.4852(11)	0.0990	0.070°
C9 H0	0.7921 (5)	0.4052 (11)	0.0394 (2)	0.0541 (18)
H9 C10	0.7832	0.0233	0.0408	0.065
C10	0.7822(6)	0.3447(10)	0.0180(3)	0.056(2)
	0.7016(5)	0.4700 (13)	0.68/1 (2)	0.075 (2)
HIIA	0.6966	0.3275	0.6970	0.089*
HIIB	0.6354	0.5032	0.6681	0.089*
C12	0.7124 (7)	0.6099 (15)	0.7276 (3)	0.081 (2)
C13	0.8200 (5)	0.5999 (11)	0.7571 (2)	0.0549 (19)
C14	0.9030 (5)	0.6332 (12)	0.7254 (2)	0.0607 (19)
H14	0.8864	0.7692	0.7116	0.073*
C15	1.0041 (6)	0.6679 (15)	0.7598 (3)	0.088 (3)
H15A	1.0313	0.5373	0.7727	0.105*
H15B	1.0596	0.7357	0.7459	0.105*
C16	0.9656 (6)	0.8067 (14)	0.7951 (2)	0.076 (2)
H16	0.9878	0.9511	0.7922	0.091*
C17	0.8411 (5)	0.7863 (14)	0.7912 (2)	0.065 (2)
H17	0.8073	0.9126	0.7778	0.078*
C18	0.8278 (6)	0.3872 (12)	0.7799 (2)	0.077 (2)
H18A	0.8814	0.3915	0.8058	0.115*
H18B	0.8467	0.2845	0.7594	0.115*
H18C	0.7602	0.3523	0.7889	0.115*
C19	0.7859 (7)	0.1141 (13)	0.6329 (3)	0.076 (2)
H19A	0.7276	0.0855	0.6492	0.114*
H19B	0.8521	0.0863	0.6516	0.114*
H19C	0.7801	0.0275	0.6068	0.114*
C20	0.8194 (6)	0.7661 (15)	0.8389 (2)	0.076 (2)
H20	0.7965	0.6227	0.8428	0.091*
C21	0.7318 (6)	0.9049 (17)	0.8505 (3)	0.098 (3)
	. /		. /	

H21A	0.7527	1.0474	0.8483	0.146*
H21B	0.7190	0.8765	0.8805	0.146*
H21C	0.6678	0.8796	0.8301	0.146*
C22	0.9283 (7)	0.7917 (16)	0.8671 (3)	0.084 (3)
C23	0.9441 (6)	0.6702 (13)	0.9110 (3)	0.078 (2)
H23A	0.9425	0.5224	0.9048	0.093*
H23B	0.8867	0.7017	0.9282	0.093*
C24	1.0524 (8)	0.729 (2)	0.9385 (3)	0.118 (4)
H24A	1.0583	0.6638	0.9678	0.141*
H24B	1.1100	0.6768	0.9235	0.141*
C25	1.0628 (8)	0.956 (2)	0.9439 (4)	0.123 (4)
H25	1.0063	1.0032	0.9607	0.147*
C26	1.0440 (8)	1.0586 (18)	0.8978 (3)	0.109 (3)
H26A	1.0507	1.2080	0.9012	0.130*
H26B	1.0977	1.0116	0.8801	0.130*
C27	1.1729 (7)	1.030 (3)	0.9702 (3)	0.164 (5)
H27A	1.2271	1.0205	0.9510	0.247*
H27B	1.1917	0.9440	0.9960	0.247*
H27C	1.1668	1.1718	0.9795	0.247*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.146 (5)	0.071 (4)	0.068 (4)	-0.012 (4)	0.005 (3)	-0.003 (4)
O2	0.076 (4)	0.156 (7)	0.117 (4)	0.044 (4)	0.003 (3)	-0.043 (5)
03	0.081 (4)	0.082 (4)	0.074 (3)	0.026 (3)	0.009 (3)	-0.004 (3)
O4	0.105 (5)	0.079 (5)	0.101 (4)	0.006 (4)	0.000 (4)	-0.005 (4)
C1	0.064 (5)	0.082 (6)	0.087 (5)	-0.003 (5)	0.029 (4)	-0.009(5)
C2	0.092 (6)	0.066 (6)	0.098 (6)	-0.015 (5)	0.001 (5)	-0.013 (6)
C3	0.098 (7)	0.051 (5)	0.087 (7)	-0.001 (5)	0.011 (6)	-0.002 (6)
C4	0.092 (6)	0.085 (6)	0.068 (5)	-0.020 (6)	0.029 (4)	-0.013 (6)
C5	0.066 (5)	0.054 (5)	0.072 (5)	-0.007 (4)	0.014 (4)	0.003 (4)
C6	0.074 (6)	0.073 (6)	0.102 (6)	-0.015 (4)	0.037 (5)	-0.012 (6)
C7	0.054 (4)	0.097 (7)	0.077 (5)	-0.005 (5)	0.010 (4)	-0.003 (5)
C8	0.049 (4)	0.055 (5)	0.072 (5)	0.000 (4)	0.013 (4)	-0.009 (4)
C9	0.062 (4)	0.043 (4)	0.059 (4)	-0.008 (4)	0.014 (4)	0.015 (4)
C10	0.059 (5)	0.036 (4)	0.075 (5)	0.006 (3)	0.019 (4)	0.004 (4)
C11	0.065 (5)	0.066 (6)	0.091 (6)	-0.001 (4)	0.007 (4)	-0.009(5)
C12	0.068 (6)	0.082 (6)	0.097 (6)	0.007 (5)	0.028 (5)	-0.013 (6)
C13	0.053 (4)	0.046 (4)	0.068 (5)	0.004 (4)	0.018 (4)	0.013 (4)
C14	0.065 (5)	0.047 (4)	0.071 (5)	0.008 (4)	0.015 (4)	0.024 (4)
C15	0.063 (5)	0.113 (8)	0.089 (6)	-0.002 (5)	0.018 (5)	-0.024 (6)
C16	0.101 (7)	0.056 (5)	0.074 (5)	0.021 (5)	0.021 (5)	0.008 (4)
C17	0.071 (5)	0.063 (5)	0.064 (5)	0.005 (5)	0.018 (4)	0.025 (4)
C18	0.110 (6)	0.050 (4)	0.076 (5)	0.004 (5)	0.032 (5)	0.014 (4)
C19	0.107 (6)	0.047 (5)	0.075 (5)	0.001 (5)	0.015 (5)	0.002 (4)
C20	0.086 (6)	0.059 (5)	0.084 (6)	0.007 (5)	0.016 (5)	0.006 (5)
C21	0.104 (7)	0.108 (7)	0.084 (6)	0.019 (6)	0.028 (5)	-0.010 (6)

supporting information

C22	0.102 (7)	0.063 (6)	0.083 (6)	0.023 (6)	0.005 (6)	-0.005 (6)	
C23	0.086 (6)	0.067 (6)	0.081 (5)	0.004 (5)	0.014 (5)	0.013 (5)	
C24	0.127 (9)	0.143 (13)	0.079 (7)	0.019 (8)	-0.002 (6)	0.019 (7)	
C25	0.105 (8)	0.142 (13)	0.114 (8)	0.007 (8)	-0.007 (7)	-0.026 (7)	
C26	0.132 (9)	0.093 (9)	0.102 (6)	0.002 (7)	0.021 (7)	-0.028 (6)	
C27	0.129 (9)	0.221 (16)	0.133 (8)	-0.024 (11)	-0.015 (7)	-0.036 (11)	

Geometric parameters (Å, °)

O1—C3	1.220 (8)	C13—C18	1.530 (10)
O2—C12	1.211 (9)	C13—C17	1.579 (11)
O3—C22	1.412 (9)	C14—C15	1.547 (9)
O3—C16	1.464 (8)	C14—H14	0.9800
O4—C26	1.421 (9)	C15—C16	1.523 (10)
O4—C22	1.428 (12)	C15—H15A	0.9700
C1—C2	1.509 (10)	C15—H15B	0.9700
C1—C10	1.574 (9)	C16—C17	1.569 (9)
C1—H1A	0.9700	C16—H16	0.9800
C1—H1B	0.9700	C17—C20	1.509 (10)
C2—C3	1.533 (11)	C17—H17	0.9800
C2—H2A	0.9700	C18—H18A	0.9600
C2—H2B	0.9700	C18—H18B	0.9600
C3—C4	1.478 (10)	C18—H18C	0.9600
C4—C5	1.488 (10)	C19—H19A	0.9600
C4—H4A	0.9700	C19—H19B	0.9600
C4—H4B	0.9700	C19—H19C	0.9600
C5—C6	1.552 (9)	C20—C21	1.504 (10)
C5—C10	1.549 (9)	C20—C22	1.524 (10)
С5—Н5	0.9800	С20—Н20	0.9800
C6—C7	1.543 (11)	C21—H21A	0.9600
С6—Н6А	0.9700	C21—H21B	0.9600
C6—H6B	0.9700	C21—H21C	0.9600
C7—C8	1.508 (9)	C22—C23	1.529 (11)
С7—Н7А	0.9700	C23—C24	1.546 (12)
С7—Н7В	0.9700	С23—Н23А	0.9700
C8—C14	1.500 (9)	С23—Н23В	0.9700
C8—C9	1.511 (8)	C24—C25	1.478 (17)
C8—H8	0.9800	C24—H24A	0.9700
C9—C11	1.512 (9)	C24—H24B	0.9700
C9—C10	1.521 (9)	C25—C26	1.529 (14)
С9—Н9	0.9800	C25—C27	1.579 (13)
C10—C19	1.546 (11)	С25—Н25	0.9800
C11—C12	1.510 (10)	C26—H26A	0.9700
C11—H11A	0.9700	C26—H26B	0.9700
C11—H11B	0.9700	С27—Н27А	0.9600
C12—C13	1.521 (10)	С27—Н27В	0.9600
C13—C14	1.533 (9)	С27—Н27С	0.9600

C22—O3—C16	105.3 (6)	C15—C14—H14	105.3
C26—O4—C22	112.1 (7)	C16—C15—C14	103.9 (6)
C2-C1-C10	115.0 (6)	C16—C15—H15A	111.0
C2—C1—H1A	108.5	C14—C15—H15A	111.0
C10—C1—H1A	108.5	C16—C15—H15B	111.0
C2—C1—H1B	108.5	C14—C15—H15B	111.0
C10—C1—H1B	108.5	H15A—C15—H15B	109.0
H1A—C1—H1B	107.5	O3—C16—C15	109.5 (7)
C1—C2—C3	113.9 (7)	O3—C16—C17	103.5 (6)
C1—C2—H2A	108.8	C15—C16—C17	108.3 (6)
C3—C2—H2A	108.8	O3—C16—H16	111.7
C1—C2—H2B	108.8	C15—C16—H16	111.7
C3—C2—H2B	108.8	C17—C16—H16	111.8
H_2A — C_2 — H_2B	107.7	C_{20} C_{17} C_{16}	104.5 (5)
01 - C3 - C4	124 2 (8)	C_{20} $-C_{17}$ $-C_{13}$	1212(7)
01 - C3 - C2	1209(8)	$C_{16} - C_{17} - C_{13}$	100.9 (6)
C4-C3-C2	114 9 (8)	C_{20} C_{17} H_{17}	100.9 (0)
C_{3} C_{4} C_{5}	1152(7)	C_{16} C_{17} H_{17}	109.8
$C_3 - C_4 - H_4 A$	108 5	C_{13} C_{17} H_{17}	109.8
C5-C4-H4A	108.5	C_{13} C_{18} H_{18A}	109.5
$C_3 - C_4 - H_4B$	108.5	C_{13} C_{18} H_{18B}	109.5
$C_5 - C_4 - H_4B$	108.5	H18A - C18 - H18B	109.5
$H_{4} = C_{4} = H_{4}B$	107.5	C_{13} C_{18} $H_{18}C$	109.5
C4-C5-C6	111.7 (6)	H18A - C18 - H18C	109.5
C4-C5-C10	113.4 (6)	H18B-C18-H18C	109.5
C6-C5-C10	109.7 (6)	C10-C19-H19A	109.5
C4-C5-H5	107.3	C10-C19-H19B	109.5
С4 С5 Н5	107.3	H194 - C19 - H19B	109.5
C10-C5-H5	107.3	C10-C19-H19C	109.5
C_{5} C_{6} C_{7}	111 1 (6)	H19A - C19 - H19C	109.5
C5-C6-H6A	109.4	H19B-C19-H19C	109.5
C7—C6—H6A	109.4	C_{21} C_{20} C_{17}	109.3 114 2 (7)
C5-C6-H6B	109.4	$C_{21} = C_{20} = C_{22}$	114.2(7) 1164(8)
C7—C6—H6B	109.4	C_{17} C_{20} C_{22} C_{17} C_{20} C_{22}	104.6 (6)
H_{6A} C6 H6B	108.0	C_{21} C_{20} C_{22} C_{22} C_{21} C_{20} H_{20}	107.1
C8 - C7 - C6	111 8 (7)	C_{17} C_{20} H_{20}	107.1
C8 - C7 - H7A	109.3	C_{22} C_{20} H_{20}	107.1
C6-C7-H7A	109.3	$C_{22} = C_{23} = H_{23}$	107.1
C8_C7_H7B	109.3	C_{20} C_{21} H_{21R}	109.5
C6-C7-H7B	109.3	$H_{21}A - C_{21} - H_{21}B$	109.5
H7A - C7 - H7B	107.9	C_{20} C_{21} H_{21C}	109.5
$C_{14} - C_{8} - C_{7}$	117.4 (6)	$H_{21}A = C_{21} = H_{21}C$	109.5
C14 - C8 - C9	109.6 (6)	H_{21B} C_{21} H_{21C}	109.5
C7 - C8 - C9	112 5 (6)	03-022-04	109.5
$C_{14} = C_{8} = H_{8}$	107.4	$03-C^{22}-C^{20}$	105.7(0) 105.6(7)
C7-C8-H8	107.4	$04 - C^{22} - C^{20}$	105.0(7) 105.8(7)
C9—C8—H8	107.4	03-C22-C23	109.3 (7)
C8-C9-C11	113.8 (5)	04-C22-C23	110.9 (8)
		J. JE 025	

C8—C9—C10	114.2 (6)	C20—C22—C23	115.3 (8)
C11—C9—C10	115.2 (6)	C22—C23—C24	109.8 (7)
С8—С9—Н9	103.9	С22—С23—Н23А	109.7
С11—С9—Н9	103.9	C24—C23—H23A	109.7
С10—С9—Н9	103.9	С22—С23—Н23В	109.7
C9—C10—C5	109.8 (5)	C24—C23—H23B	109.7
C9—C10—C19	110.5 (6)	H23A—C23—H23B	108.2
C5-C10-C19	112.9 (6)	C25—C24—C23	111.1 (9)
C9-C10-C1	111.2 (5)	C25—C24—H24A	109.4
C5-C10-C1	104.8 (6)	C23—C24—H24A	109.4
C19—C10—C1	107.6 (6)	C25—C24—H24B	109.4
C9-C11-C12	114.7 (6)	C23—C24—H24B	109.4
C9-C11-H11A	108.6	H24A - C24 + H24B	108.0
C12—C11—H11A	108.6	C_{24} C_{25} C_{26}	100.0 109.1(10)
C9-C11-H11B	108.6	C_{24} C_{25} C_{27}	1145(12)
C_{12} C_{11} H_{11B}	108.6	$C_{24} = C_{25} = C_{27}$	109.9(12)
H11A_C11_H11B	107.6	$C_{20} = C_{23} = C_{27}$	107.7
02-C12-C11	121 2 (8)	$C_{24} = C_{25} = H_{25}$	107.7
02-C12-C13	121.2(0) 1237(8)	$C_{20} = C_{20} = H_{20}$	107.7
C_{11} C_{12} C_{13}	125.7(0) 114.9(7)	$04 C^{26} C^{25}$	110.0 (0)
$C_{12} = C_{13} = C_{14}$	114.9(7) 105.4(5)	$04 - C_{20} - C_{23}$	100.5
$C_{12} = C_{13} = C_{14}$	107.4(5)	C_{25} C_{26} H_{26A}	109.5
$C_{12} = C_{13} = C_{18}$	107.5 (0)	C_{25} C_{26} H_{26} H_{26} H_{26}	109.5
$C_{14} = C_{13} = C_{18}$	113.0(0) 113.0(6)	$C_{20} = C_{20} = H_{20} = H_{20}$	109.5
C_{12} C_{13} C_{17}	113.9(0) 103.4(6)	C_{23} C_{20} C	109.3
C14 - C13 - C17	103.4(0) 112.2(5)	$H_{20}A = C_{20} = H_{20}B$	100.0
$C_{10}^{0} - C_{13}^{10} - C_{17}^{17}$	113.2(3)	$C_{25} = C_{27} = H_{27} R$	109.5
$C_{0} = C_{14} = C_{15}$	117.2(0)	$C_{23} = C_{27} = H_{27} B$	109.5
$C_{12} = C_{14} = C_{15}$	122.1 (0)	HZ/A = CZ/=HZ/B	109.5
$C_{13} - C_{14} - C_{15}$	100.1 (5)	$U_{23} = U_{27} = H_{27} U_{27}$	109.5
C_{8} C_{14} H_{14}	105.5	$H_2/A = C_2/=H_2/C$	109.5
C13—C14—H14	105.3	H2/B - C2/-H2/C	109.5
C10—C1—C2—C3	-47.3(10)	C18—C13—C14—C8	59.6 (8)
C1-C2-C3-O1	-143.0(9)	C17—C13—C14—C8	-177.3(6)
C1-C2-C3-C4	38.6 (12)	C12-C13-C14-C15	168 1 (6)
$01 - C_3 - C_4 - C_5$	138 9 (9)	C18 - C13 - C14 - C15	-747(7)
C_{2} C_{3} C_{4} C_{5}	-42.7(11)	C17 - C13 - C14 - C15	48 4 (7)
C_{3} C_{4} C_{5} C_{6}	179 8 (7)	C8-C14-C15-C16	-1731(7)
C_{3} C_{4} C_{5} C_{10}	55 3 (10)	C_{13} C_{14} C_{15} C_{16}	-418(8)
C4-C5-C6-C7	176.0 (7)	$C^{22} - O^{3} - C^{16} - C^{15}$	-1531(7)
C10-C5-C6-C7	-57.5(8)	$C_{22} = 0.3 - C_{16} - C_{17}$	-379(8)
C_{5} C_{6} C_{7} C_{8}	54 8 (9)	C_{14} C_{15} C_{16} C_{16} C_{17}	1322(7)
$C_{5} = C_{6} = C_{7} = C_{8}$	-175.6(6)	$C_{14} = C_{15} = C_{16} = C_{17}$	132.2(7)
C6-C7-C8-C9	-51 3 (10)	03-C16-C17-C20	196(8)
$C_{14} = C_{8} = C_{9} = C_{11}$	-46.8 (8)	C_{15} C_{16} C_{17} C_{20}	135 7 (8)
C7 C8 C9 C11	-1725(0)	$C_{13} = C_{10} = C_{17} = C_{20}$	-1060(6)
C_{14} C_{8} C_{9} C_{10}	172.3 (7)	C_{15} C_{16} C_{17} C_{13} C_{15} C_{16} C_{17} C_{12}	92(7)
$C_{1} = C_{0} = C_{10} = C_{10}$	52 A (0)	$C_{13} = C_{10} = C_{17} = C_{13}$	9.2(1)
C/C0C1U	52.4 (9)	$U_{12} - U_{13} - U_{17} - U_{20}$	90.2 (8)

C8—C9—C10—C5	-54.8 (7)	C14—C13—C17—C20	-150.1 (6)
C11—C9—C10—C5	170.8 (6)	C18—C13—C17—C20	-26.7 (9)
C8—C9—C10—C19	70.3 (8)	C12-C13-C17-C16	-149.3 (6)
C11—C9—C10—C19	-64.1 (8)	C14—C13—C17—C16	-35.5 (6)
C8—C9—C10—C1	-170.2 (6)	C18—C13—C17—C16	87.8 (7)
C11—C9—C10—C1	55.4 (8)	C16—C17—C20—C21	132.4 (7)
C4—C5—C10—C9	-177.9 (6)	C13—C17—C20—C21	-114.9 (8)
C6—C5—C10—C9	56.5 (7)	C16—C17—C20—C22	4.1 (9)
C4—C5—C10—C19	58.5 (9)	C13—C17—C20—C22	116.8 (8)
C6—C5—C10—C19	-67.1 (8)	C16—O3—C22—O4	-72.2 (8)
C4—C5—C10—C1	-58.4 (8)	C16—O3—C22—C20	41.5 (9)
C6—C5—C10—C1	176.0 (6)	C16—O3—C22—C23	166.1 (7)
C2-C1-C10-C9	173.9 (7)	C26—O4—C22—O3	-61.1 (9)
C2-C1-C10-C5	55.4 (8)	C26—O4—C22—C20	-174.6 (6)
C2-C1-C10-C19	-64.9 (9)	C26—O4—C22—C23	59.7 (9)
C8—C9—C11—C12	45.3 (9)	C21—C20—C22—O3	-154.6 (8)
C10-C9-C11-C12	179.9 (6)	C17—C20—C22—O3	-27.6 (10)
C9—C11—C12—O2	135.2 (9)	C21—C20—C22—O4	-38.3 (10)
C9—C11—C12—C13	-49.4 (9)	C17—C20—C22—O4	88.7 (9)
O2—C12—C13—C14	-133.0 (9)	C21—C20—C22—C23	84.7 (10)
C11—C12—C13—C14	51.8 (9)	C17—C20—C22—C23	-148.4 (8)
O2—C12—C13—C18	105.7 (10)	O3—C22—C23—C24	67.5 (10)
C11—C12—C13—C18	-69.5 (8)	O4—C22—C23—C24	-53.5 (10)
O2—C12—C13—C17	-20.4 (11)	C20—C22—C23—C24	-173.8 (8)
C11—C12—C13—C17	164.4 (6)	C22—C23—C24—C25	52.5 (12)
C7—C8—C14—C13	-177.9 (6)	C23—C24—C25—C26	-54.3 (12)
C9—C8—C14—C13	56.3 (8)	C23—C24—C25—C27	-178.0 (7)
C7—C8—C14—C15	-54.1 (9)	C22—O4—C26—C25	-62.2 (11)
C9—C8—C14—C15	-180.0 (7)	C24—C25—C26—O4	59.1 (12)
C12-C13-C14-C8	-57.6 (8)	C27—C25—C26—O4	-174.6 (10)