organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hemi(4,4'-bipyridinium) hexafluoridophosphate bis(4-aminobenzoic acid) 4,4'-bipyridine monohydrate

Yi-Yi Wu,^a Chun-De Huang,^a Jie-Xuan Huang,^a Rong-Hua Zeng^{a,b}* and Yi-Fan Luo^a

^aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and ^bKey Laboratory of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510631, People's Republic of China Correspondence e-mail: zrh321@yahoo.com.cn

Received 11 December 2008; accepted 25 December 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.066; wR factor = 0.205; data-to-parameter ratio = 15.7

In the title compound, $0.5C_{10}H_{10}N_2^{2+}\cdot PF_6^{-}\cdot C_{10}H_8N_2$. $2C_7H_7NO_2 \cdot H_2O$, the cation is located on a center of symmetry. The crystal structure is determined by a complex threedimensional network of intermolecular O-H···O, O-H···N, N-H···N and N-H···F hydrogen bonds. π - π stacking interactions between neighboring pyridyl rings are also present; the centroid-centroid distance is 3.643 (5) Å. The hexafluoridophosphate anion is disordered over two positions with site-occupancy factors of *ca* 0.6 and 0.4.

Related literature

For the use of 4-aminobenzoic acid and 4,4'-bipyridine for the construction of three-dimensional network motifs, see: Hu et al. (2003); Yang et al. (2004).

Experimental

Crystal data

 $0.5C_{10}H_{10}N_2^{2+}\cdot PF_6^{-}\cdot C_{10}H_8N_2$ -- $\beta = 98.063 \ (1)^{\circ}$ 2C7H7NO2·H2O $\gamma = 117.346 \ (1)^{\circ}$ V = 1506.23 (5) Å³ $M_r = 672.54$ Triclinic, $P\overline{1}$ Z = 2a = 10.1032 (2) Å Mo $K\alpha$ radiation b = 10.1142 (2) Å $\mu = 0.18 \text{ mm}^{-1}$ c = 16.8906 (3) Å T = 296 (2) K $\alpha = 92.557 (1)^{\circ}$ $0.18 \times 0.15 \times 0.14 \text{ mm}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: none 22618 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	43 restraints
$wR(F^2) = 0.205$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
7121 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
454 parameters	

7121 independent reflections

 $R_{\rm int} = 0.057$

3129 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O1W−H2W····O4 ⁱ	0.89	1.87	2.751 (3)	169
$O1W-H1W\cdots O2^{ii}$	0.79	2.01	2.799 (3)	174
O3−H3A···N3 ⁱⁱⁱ	0.82	1.87	2.686 (3)	174
$O1 - H1 \cdots O1W^{iv}$	0.82	1.80	2.617 (3)	173
$N1 - H1B \cdot \cdot \cdot F3$	0.86	2.57	3.324 (4)	147
$N5-H27 \cdot \cdot \cdot N4$	0.86	1.84	2.700 (4)	176

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y + 1, -z + 1; (iii) x + 1, y, z - 1; (iv) x, y, z + 1

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008): software used to prepare material for publication: SHELXL97.

The authors acknowledge South China Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2299).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hu, D. H., Huang, W., Gou, S. H., Fang, J. L. & Fun, H. K. (2003). Polyhedron, 22. 2661-2667.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, G. P., Wang, Z. Y. & Chen, J. T. (2004). J. Mol. Struct. 707, 223-229.

supporting information

Acta Cryst. (2009). E65, o278 [doi:10.1107/S1600536808043900]

Hemi(4,4'-bipyridinium) hexafluoridophosphate bis(4-aminobenzoic acid) 4,4'bipyridine monohydrate

Yi-Yi Wu, Chun-De Huang, Jie-Xuan Huang, Rong-Hua Zeng and Yi-Fan Luo

S1. Comment

Hydrogen-bonding interactions between ligands are specific and directional. In this context, 4-aminobenzoic acid and 4,4'-bipyridine are excellent candidates for the construction of three-dimensional network motifs, which form regular hydrogen bonds, functioning as both hydrogen-bond donor and acceptor (Hu *et al.*, 2003; Yang *et al.*, 2004). Recently, we obtained the title compound under hydrothermal conditions and report its crystal structure here.

In the title compound (Fig. 1), all bond lengths and angles are unexceptional. The 4,4'-bipyridinium cation, which is located on a center of symmetry, is, on both sides, a hydrogen bond donor to unprotonated molecules of 4,4'-bipyridine. These are, in turn, hydrogen bond acceptors for one of the two independent molecules of 4-aminobenzoic acid. Thus the two 4-aminobenzoic acid molecules, the 4,4'-bipyridine and 4,4'-bipyridinium cation are connected by hydrogen bonding interactions to form a linear centrosymmetric chain. Further each of these chains is connected with each of two other chains by O—H…O hydrogen bonds (Table 1), *via* the interstitial solvent water molecules and the other independent 4-aminobenzoic acid molecules, forming, in effect, infinite chains with each repeating unit of five molecules offset against the next unit by the width of the connecting $(C_7NH_7O_2)_2.(H_2O)_2$ unit. π - π stacking interactions (the centroid-centroid distance between neighboring pyridyl rings is 3.643 Å) connect these chains to produce a three-dimensional network motif (Fig. 2).

S2. Experimental

4-Aminobenzoic acid (1 mmol, 0.137 g), 4,4'-bipyridine (1 mmol, 0.156 g) and sodium hexafluoridophosphate (1 mmol, 0.162 g) were dissolved in hot water with stirring. Colorless single crystals were obtained at room temperature by slow evaporation of the solvent over a period of several days.

S3. Refinement

The disordered perchlorate ion was refined over two sites, with refined occupancies of 0.625 (8) and 0.375 (9). The P…F and F…F distances were restrained to be 1.48 (1) and 2.10 (3) Å, respectively. Water H atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.86 Å and H…H = 1.39 Å. The H atom bound to the N5 nitrogen atom in the cation and the carboxylic H atoms were refined with distance restraints of N—H = 0.90 Å and O—H = 0.90 Å, respectively. All other H atoms were placed at calculated positions and treated as riding on the parent atoms, with C—H = 0.93 Å, N—H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figure 1

The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Symmetry code: (i) 2 - x, -y, 1 - z.

Figure 2

A view of the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.

Hemi(4,4'-bipyridinium) hexafluoridophosphate bis(4-aminobenzoic acid) 4,4'-bipyridine monohydrate

Crystal data	
$0.5C_{10}H_{10}N_2{}^{2+}\cdot PF_6{}^-\cdot C_{10}H_8N_2\cdot 2C_7H_7NO_2\cdot H_2O$	$\alpha = 92.557 (1)^{\circ}$
$M_r = 672.54$	$\beta = 98.063 \ (1)^{\circ}$
Triclinic, P1	$\gamma = 117.346 \ (1)^{\circ}$
Hall symbol: -P 1	V = 1506.23 (5) Å ³
a = 10.1032 (2) Å	Z = 2
b = 10.1142 (2) Å	F(000) = 694
c = 16.8906 (3) Å	$D_{\rm x} = 1.483 {\rm ~Mg} {\rm ~m}^{-3}$

Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 2023 reflections
$\theta = 2.4 - 19.5^{\circ}$
$\mu = 0.18 \text{ mm}^{-1}$

Data collection

Duiu conection	
Bruker APEXII area-detector	3129 reflections with $I > 2\sigma(I)$
diffractometer	$R_{ m int} = 0.057$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Graphite monochromator	$h = -13 \rightarrow 13$
φ and ω scans	$k = -13 \rightarrow 13$
22618 measured reflections	$l = -20 \rightarrow 22$
7121 independent reflections	

T = 296 KBlock, colourless $0.18 \times 0.15 \times 0.14 \text{ mm}$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.205$	$w = 1/[\sigma^2(F_o^2) + (0.0875P)^2 + 0.1722P]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
7121 reflections	$(\Delta/\sigma)_{\rm max} = 0.006$
454 parameters	$\Delta \rho_{\rm max} = 0.29 \ { m e} \ { m \AA}^{-3}$
43 restraints	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrick,
direct methods	2008)
Secondary atom site location: difference Fourier	Extinction coefficient: 0.009 (2)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.4034 (4)	0.5337 (4)	0.7188 (2)	0.0650 (9)	
C2	0.4778 (4)	0.5250 (4)	0.7922 (2)	0.0656 (9)	
H2	0.5740	0.5331	0.7960	0.079*	
C3	0.4122 (4)	0.5047 (4)	0.8589(2)	0.0602 (9)	
H3	0.4645	0.4991	0.9075	0.072*	
C4	0.2682 (3)	0.4922 (3)	0.8557 (2)	0.0523 (8)	
C5	0.1957 (4)	0.4726 (3)	0.9266 (2)	0.0576 (8)	
C6	0.1930 (4)	0.4994 (3)	0.7822 (2)	0.0590 (8)	
H6	0.0961	0.4896	0.7783	0.071*	
C7	0.2589 (4)	0.5208 (4)	0.7152 (2)	0.0646 (9)	
H7	0.2068	0.5267	0.6666	0.077*	
C8	0.8336 (4)	0.1574 (4)	0.3481 (2)	0.0662 (9)	

H8	0.8482	0.2431	0.3790	0.079*
С9	0.9268 (4)	0.1700 (4)	0.2940 (2)	0.0627 (9)
H9	1.0027	0.2642	0.2880	0.075*
C10	0.9095 (3)	0.0437 (3)	0.24786 (18)	0.0503 (7)
C11	1.0119 (4)	0.0620 (4)	0.19048 (19)	0.0555 (8)
C12	0.7954 (3)	-0.0956 (4)	0.25815 (19)	0.0545 (8)
H12	0.7825	-0.1815	0.2283	0.065*
C13	0.7011 (4)	-0.1079 (4)	0.31200 (19)	0.0579 (8)
H13	0.6254	-0.2022	0.3180	0.070*
C14	0.7174 (4)	0.0183 (4)	0.35751 (19)	0.0578 (8)
N3	0.1693 (3)	-0.0235 (3)	1.04268 (16)	0.0592 (7)
C16	0.2657 (5)	0.1119 (4)	1.0271 (2)	0.0754 (11)
H16	0.2693	0.1953	1.0549	0.090*
C17	0.3601 (4)	0.1349 (4)	0.9723 (2)	0.0682 (10)
H17	0.4246	0.2321	0.9634	0.082*
C18	0.3597(3)	0.0145(3)	0.93018(17)	0.0464(7)
C19	0.2589(3)	-0.1253(4)	0.9462(2)	0.0606 (9)
H19	0.2522	-0.2109	0.9192	0.073*
C20	0.1679 (4)	-0.1388(4)	1,0023(2)	0.0650 (9)
H20	0.1018	-0.2346	1.0122	0.078*
C21	0.4624(3)	0.0328 (3)	0.87181 (17)	0.076 0.0452(7)
C22	0.1621(3) 0.5692(4)	0.1715 (4)	0.8566 (2)	0.0132(7)
H22	0.5793	0.2585	0.8839	0.077*
C23	0.6600 (4)	0.1817 (4)	0.8037 0.8017 (2)	0.0662 (9)
H23	0.7302	0.2765	0.7925	0.079*
N4	0.7502	0.0623 (3)	0.76098 (15)	0.075
C25	0.0522(5)	-0.0625(3)	0.70070(15)	0.0370(7)
U25	0.5432	-0.1540	0.7747 (2)	0.0791 (11)
C26	0.5452 0.4564 (4)	-0.0888(4)	0.7400 0.8201 (2)	0.093
C20 H26	0.4504 (4)	-0.1852	0.8291 (2)	0.0734 (11)
N5	0.3077	0.1052 0.0432(3)	0.6369	0.088
N3 1127	0.8038 (3)	0.0432 (3)	0.04024 (10)	0.0000 (7)
C28	0.7388 0.0248(4)	0.0538	0.0827 0.6303 (2)	0.072°
C28	0.9248 (4)	0.1591 (4)	0.0505 (2)	0.0701 (11)
П28 С20	0.9372	0.2328 0.1461 (4)	0.0380	0.091°
U29	1.0029 (4)	0.1401 (4)	0.5730 (2)	0.0719 (10)
П29 С20	1.0003	0.2300	0.3028	0.080°
C30	0.9387(3)	0.0097(3)	0.55008(17)	0.0481(7)
U21	0.8329 (3)	-0.1090 (4)	0.5490 (5)	0.0920 (14)
ПЭТ С22	0.7977	-0.2044	0.3220	0.110^{-1}
0.52	0.7392 (3)	-0.0883 (3)	0.0004 (3)	0.0932 (13)
1132 E2	0.0730	0.1/00	0.01/2	0.112° 0.1242 (10)
Г ј Е6	0.4390 (3)	0.0410(3)	0.40400(18)	0.1343(10) 0.1465(12)
ГО N1	0.0904 (3)	0.3330(3)	0.3901(2)	0.1403(12)
	0.4/10(4)	0.3007 (4)	0.0520 (2)	0.0900(11)
HIA UID	0.301/	0.5/2/	0.000	0.115*
	0.4230	0.0008 (4)	0.00/0	0.115*
	0.0213 (3)	0.0008 (4)	0.41031 (18)	0.0812 (9)
нzа	0.3499	-0.0/9/	0.4130	0.09/*

H2B	0.6331	0.0860	0.4380	0.097*	
01	0.2766 (3)	0.4659 (3)	0.99380 (15)	0.0756 (7)	
H1	0.2309	0.4589	1.0312	0.113*	
O2	0.0709 (3)	0.4645 (3)	0.92571 (15)	0.0767 (7)	
O3	0.9955 (3)	-0.0651 (3)	0.15538 (15)	0.0728 (7)	
H3A	1.0465	-0.0476	0.1197	0.109*	
O4	1.1065 (3)	0.1827 (3)	0.17604 (15)	0.0772 (7)	
Р	0.26740 (12)	0.58756 (12)	0.43141 (7)	0.0774 (4)	
O1W	0.1528 (2)	0.4502 (3)	0.12153 (13)	0.0703 (7)	
H1W	0.0862	0.4708	0.1110	0.105*	
H2W	0.1255	0.3604	0.1373	0.105*	
F1	0.2698 (15)	0.7215 (12)	0.4737 (9)	0.129 (5)	0.375 (11)
F2	0.2105 (13)	0.4994 (17)	0.5008 (6)	0.125 (5)	0.375 (11)
F4	0.2560 (8)	0.4439 (8)	0.3880 (8)	0.090 (4)	0.375 (11)
F5	0.3176 (16)	0.6648 (13)	0.3621 (5)	0.139 (5)	0.375 (11)
F1′	0.3113 (7)	0.7452 (10)	0.4047 (10)	0.192 (6)	0.625 (11)
F4′	0.2424 (12)	0.4441 (8)	0.4616 (10)	0.222 (6)	0.625 (11)
F5′	0.2826 (14)	0.534 (2)	0.3497 (4)	0.239 (7)	0.625 (11)
F2'	0.2667 (13)	0.6511 (18)	0.5141 (5)	0.217 (5)	0.625 (11)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.070 (2)	0.051 (2)	0.073 (2)	0.0229 (18)	0.030 (2)	0.0092 (17)
C2	0.056 (2)	0.062 (2)	0.084 (3)	0.0283 (18)	0.0231 (19)	0.0113 (19)
C3	0.0564 (19)	0.055 (2)	0.070 (2)	0.0254 (16)	0.0149 (17)	0.0129 (17)
C4	0.0520 (18)	0.0403 (18)	0.064 (2)	0.0199 (15)	0.0164 (16)	0.0088 (15)
C5	0.059 (2)	0.0442 (19)	0.069 (2)	0.0215 (16)	0.0211 (18)	0.0112 (16)
C6	0.0518 (18)	0.051 (2)	0.070 (2)	0.0217 (16)	0.0105 (17)	0.0028 (17)
C7	0.068 (2)	0.057 (2)	0.067 (2)	0.0268 (18)	0.0146 (18)	0.0086 (17)
C8	0.071 (2)	0.056 (2)	0.072 (2)	0.0297 (19)	0.0200 (19)	-0.0035 (18)
C9	0.062 (2)	0.049 (2)	0.072 (2)	0.0206 (17)	0.0181 (18)	0.0064 (17)
C10	0.0495 (17)	0.051 (2)	0.0510 (18)	0.0224 (15)	0.0134 (14)	0.0095 (15)
C11	0.0519 (18)	0.061 (2)	0.055 (2)	0.0264 (18)	0.0116 (16)	0.0127 (17)
C12	0.0565 (19)	0.0490 (19)	0.057 (2)	0.0225 (16)	0.0166 (16)	0.0052 (15)
C13	0.0565 (19)	0.049 (2)	0.061 (2)	0.0174 (16)	0.0175 (16)	0.0089 (16)
C14	0.0563 (19)	0.062 (2)	0.056 (2)	0.0272 (18)	0.0155 (16)	0.0050 (17)
N3	0.0575 (16)	0.069 (2)	0.0549 (17)	0.0288 (15)	0.0229 (13)	0.0115 (15)
C16	0.099 (3)	0.066 (3)	0.080 (3)	0.045 (2)	0.045 (2)	0.014 (2)
C17	0.085 (3)	0.048 (2)	0.080 (2)	0.0299 (19)	0.045 (2)	0.0172 (18)
C18	0.0454 (16)	0.0493 (19)	0.0436 (17)	0.0213 (15)	0.0086 (13)	0.0071 (14)
C19	0.0590 (19)	0.046 (2)	0.070 (2)	0.0144 (16)	0.0276 (17)	0.0035 (16)
C20	0.056 (2)	0.061 (2)	0.068 (2)	0.0151 (17)	0.0243 (17)	0.0088 (18)
C21	0.0466 (16)	0.0461 (18)	0.0424 (17)	0.0200 (14)	0.0114 (13)	0.0086 (13)
C22	0.072 (2)	0.047 (2)	0.068 (2)	0.0196 (17)	0.0305 (18)	0.0026 (16)
C23	0.067 (2)	0.053 (2)	0.068 (2)	0.0147 (17)	0.0289 (18)	0.0063 (18)
N4	0.0616 (16)	0.0588 (18)	0.0543 (17)	0.0268 (15)	0.0213 (13)	0.0086 (14)
C25	0.105 (3)	0.052 (2)	0.089 (3)	0.034 (2)	0.053 (2)	0.008 (2)

C26	0.089 (3)	0.042 (2)	0.088 (3)	0.0195 (18)	0.054 (2)	0.0121 (18)
N5	0.0648 (18)	0.070 (2)	0.0529 (16)	0.0334 (16)	0.0259 (14)	0.0092 (15)
C28	0.069 (2)	0.063 (2)	0.087 (3)	0.021 (2)	0.030 (2)	-0.011 (2)
C29	0.060 (2)	0.056 (2)	0.085 (3)	0.0109 (17)	0.0320 (19)	-0.0064 (19)
C30	0.0546 (18)	0.0451 (18)	0.0462 (17)	0.0219 (15)	0.0172 (14)	0.0127 (15)
C31	0.122 (3)	0.048 (2)	0.104 (3)	0.023 (2)	0.078 (3)	0.008 (2)
C32	0.110 (3)	0.060 (3)	0.104 (3)	0.022 (2)	0.069 (3)	0.013 (2)
F3	0.0937 (19)	0.140 (3)	0.145 (3)	0.0434 (17)	-0.0065 (17)	-0.0012 (19)
F6	0.0795 (18)	0.118 (2)	0.226 (4)	0.0400 (16)	0.007 (2)	0.001 (2)
N1	0.104 (3)	0.109 (3)	0.090 (3)	0.052 (2)	0.051 (2)	0.029 (2)
N2	0.079 (2)	0.077 (2)	0.085 (2)	0.0292 (17)	0.0385 (18)	-0.0015 (17)
01	0.0770 (17)	0.0873 (18)	0.0663 (16)	0.0383 (15)	0.0222 (13)	0.0198 (14)
O2	0.0705 (16)	0.0926 (19)	0.0860 (18)	0.0477 (15)	0.0338 (14)	0.0260 (14)
03	0.0778 (17)	0.0681 (17)	0.0758 (17)	0.0300 (13)	0.0393 (13)	0.0101 (13)
O4	0.0750 (16)	0.0637 (17)	0.0926 (19)	0.0245 (14)	0.0391 (14)	0.0237 (14)
Р	0.0796 (7)	0.0646 (7)	0.0843 (8)	0.0286 (6)	0.0226 (6)	0.0093 (6)
O1W	0.0699 (15)	0.0638 (15)	0.0736 (16)	0.0265 (12)	0.0180 (12)	0.0168 (12)
F1	0.171 (7)	0.073 (6)	0.130 (8)	0.054 (5)	0.012 (6)	-0.041 (5)
F2	0.122 (6)	0.140 (9)	0.098 (6)	0.035 (6)	0.057 (4)	0.047 (6)
F4	0.067 (4)	0.062 (5)	0.135 (8)	0.031 (3)	0.009 (5)	-0.014 (4)
F5	0.193 (8)	0.108 (8)	0.080 (6)	0.026 (6)	0.071 (5)	0.038 (5)
F1′	0.100 (4)	0.124 (7)	0.341 (14)	0.033 (4)	0.045 (6)	0.138 (8)
F4′	0.223 (9)	0.082 (5)	0.352 (18)	0.066 (5)	0.023 (10)	0.089 (8)
F5′	0.241 (11)	0.45 (2)	0.085 (5)	0.228 (14)	-0.006 (5)	-0.058 (9)
F2′	0.294 (11)	0.263 (14)	0.141 (7)	0.164 (11)	0.081 (7)	-0.032 (8)

Geometric parameters (Å, °)

C1—N1	1.364 (4)	C19—C20	1.380 (4)	
C1—C2	1.387 (5)	C19—H19	0.9300	
C1—C7	1.396 (5)	C20—H20	0.9300	
C2—C3	1.361 (5)	C21—C26	1.370 (4)	
С2—Н2	0.9300	C21—C22	1.385 (4)	
C3—C4	1.394 (4)	C22—C23	1.368 (4)	
С3—Н3	0.9300	C22—H22	0.9300	
C4—C6	1.385 (4)	C23—N4	1.327 (4)	
C4—C5	1.465 (4)	C23—H23	0.9300	
C5—O2	1.223 (4)	N4—C25	1.306 (4)	
C5—O1	1.325 (4)	C25—C26	1.376 (5)	
С6—С7	1.368 (4)	C25—H25	0.9300	
С6—Н6	0.9300	C26—H26	0.9300	
С7—Н7	0.9300	N5—C32	1.304 (4)	
С8—С9	1.372 (5)	N5—C28	1.310 (4)	
C8—C14	1.392 (5)	N5—H27	0.8600	
С8—Н8	0.9300	C28—C29	1.369 (5)	
C9—C10	1.391 (4)	C28—H28	0.9300	
С9—Н9	0.9300	C29—C30	1.367 (4)	
C10—C12	1.389 (4)	C29—H29	0.9300	

C10—C11	1.472 (4)	C30—C31	1.377 (5)
C11—O4	1.218 (4)	C30-C30 ⁱ	1.477 (6)
C11—O3	1.318 (4)	C31—C32	1.366 (5)
C12—C13	1.376 (4)	C31—H31	0.9300
C12—H12	0.9300	С32—Н32	0.9300
C13—C14	1.390 (4)	F3—P	1.570 (3)
С13—Н13	0.9300	F6—P	1.566 (3)
C14—N2	1.377 (4)	N1—H1A	0.8600
N3—C20	1 317 (4)	N1—H1B	0.8600
N3—C16	1 331 (4)	N2—H2A	0.8600
C16-C17	1 373 (5)	N2—H2B	0.8600
C16 H16	0.0300	01 H1	0.8200
C_{10} C_{17} C_{18}	1.381(A)		0.8200
C17 - C18	1.301 (4)		0.8200
C17—H17	0.9300		0.7910
	1.378 (4)	OIW—H2W	0.8864
C18—C21	1.487 (4)		
	101.0 (0)		101 5 (0)
NI—CI—C2	121.3 (3)	C19—C18—C21	121.5 (3)
NI-CI-C/	120.6 (4)	C17—C18—C21	122.6 (3)
C2—C1—C7	118.0 (3)	C18—C19—C20	120.2 (3)
C3—C2—C1	121.1 (3)	C18—C19—H19	119.9
С3—С2—Н2	119.5	С20—С19—Н19	119.9
C1—C2—H2	119.5	N3—C20—C19	123.7 (3)
C2—C3—C4	121.2 (3)	N3—C20—H20	118.1
С2—С3—Н3	119.4	С19—С20—Н20	118.2
С4—С3—Н3	119.4	C26—C21—C22	115.6 (3)
C6—C4—C3	117.9 (3)	C26—C21—C18	121.4 (3)
C6—C4—C5	119.7 (3)	C22—C21—C18	123.0 (3)
C3—C4—C5	122.4 (3)	C23—C22—C21	120.5 (3)
O2—C5—O1	121.4 (3)	С23—С22—Н22	119.7
O2—C5—C4	123.7 (3)	C21—C22—H22	119.7
01	115.0 (3)	N4—C23—C22	122.8 (3)
C7—C6—C4	121.1 (3)	N4—C23—H23	118.6
C7—C6—H6	119 5	C^{22} C^{23} H^{23}	118.6
C4-C6-H6	119.5	$C_{22} = 0.23 = 1123$ $C_{25} = N_4 = C_{23}$	117.1(3)
$C_{1} = C_{1} = C_{1}$	120.8 (3)	N4-C25-C26	123.6(3)
C6 C7 H7	110.6	N4 C25 H25	118.2
C_{0}	119.0	1125	110.2
$C_1 = C_1 = H_1$	119.0	$C_{20} = C_{23} = H_{23}$	110.2
$C_{2} = C_{3} = C_{14}$	120.9 (5)	$C_{21} = C_{20} = C_{23}$	120.4 (3)
C9—C8—H8	119.5	C21—C26—H26	119.8
C14—C8—H8	119.5	С25—С26—Н26	119.8
C8—C9—C10	120.9 (3)	C32—N5—C28	119.5 (3)
С8—С9—Н9	119.5	C32—N5—H27	120.3
С10—С9—Н9	119.5	C28—N5—H27	120.3
C12—C10—C9	118.3 (3)	N5—C28—C29	121.8 (3)
C12—C10—C11	122.5 (3)	N5—C28—H28	119.1
C9—C10—C11	119.2 (3)	C29—C28—H28	119.1
O4—C11—O3	121.3 (3)	C30—C29—C28	120.5 (3)

O4—C11—C10	124.2 (3)	С30—С29—Н29	119.8
O3—C11—C10	114.5 (3)	С28—С29—Н29	119.8
C13—C12—C10	120.8 (3)	C29—C30—C31	115.9 (3)
C13—C12—H12	119.6	C29—C30—C30 ⁱ	122.2 (3)
C10—C12—H12	119.6	C31-C30-C30 ⁱ	121.8 (4)
C12—C13—C14	121.0 (3)	C32—C31—C30	120.7 (4)
C12—C13—H13	119.5	С32—С31—Н31	119.6
C14—C13—H13	119.5	С30—С31—Н31	119.6
N2-C14-C13	121.2 (3)	N5-C32-C31	121.6 (4)
N2-C14-C8	120.7 (3)	N5—C32—H32	119.2
C13—C14—C8	118.1 (3)	С31—С32—Н32	119.2
C20—N3—C16	116.4 (3)	C1—N1—H1A	120.0
N3—C16—C17	123.5 (3)	C1—N1—H1B	120.0
N3—C16—H16	118.3	H1A—N1—H1B	120.0
C17—C16—H16	118.3	C14—N2—H2A	120.0
C16—C17—C18	120.3 (3)	C14—N2—H2B	120.0
C16—C17—H17	119.9	H2A—N2—H2B	120.0
С18—С17—Н17	119.9	F6—P—F3	178.6 (2)
C19—C18—C17	115.9 (3)	H1W—O1W—H2W	115.1

Symmetry code: (i) -x+2, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O1 <i>W</i> —H2 <i>W</i> ···O4 ⁱⁱ	0.89	1.87	2.751 (3)	169	
$O1W$ — $H1W$ ··· $O2^{iii}$	0.79	2.01	2.799 (3)	174	
O3—H3A····N3 ^{iv}	0.82	1.87	2.686 (3)	174	
O1—H1…O1 <i>W</i> ^v	0.82	1.80	2.617 (3)	173	
N1—H1 <i>B</i> …F3	0.86	2.57	3.324 (4)	147	
N5—H27…N4	0.86	1.84	2.700 (4)	176	

Symmetry codes: (ii) *x*-1, *y*, *z*; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*-1; (v) *x*, *y*, *z*+1.