

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Butyl 2-(5-bromo-3-methylsulfinyl-1benzofuran-2-yl)acetate

# Hong Dae Choi,<sup>a</sup> Pil Ja Seo,<sup>a</sup> Byeng Wha Son<sup>b</sup> and Uk Lee<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and <sup>b</sup>Department of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Received 18 December 2008; accepted 25 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.033; wR factor = 0.089; data-to-parameter ratio = 13.9

In the title compound,  $C_{15}H_{17}BrO_4S$ , the methylsulfinyl O atom and the methyl substituents lie on opposite sides of the plane through the benzofuran fragment. The crystal structure is stabilized by  $\pi - \pi$  interactions between the benzene rings of neighbouring molecules [centroid-centroid distance = 3.698 (4) Å], and by C-H··· $\pi$  interactions between a methylene H atom of the butyl group and the benzene ring of the benzofuran system. Additionally, the crystal structure exhibits weak intermolecular  $C-H \cdots O$  contacts. The butyl group is disordered over two positions, with site-occupancy factors, from refinement, of 0.720 (8) and 0.280 (8).

#### **Related literature**

For the crystal structures of similar alkyl 2-(5-bromo-3methylsulfinyl-1-benzofuran-2-yl)acetate derivatives. see: Choi et al. (2008a,b).



# **Experimental**

#### Crystal data

| C <sub>15</sub> H <sub>17</sub> BrO <sub>4</sub> S | $\gamma = 108.678 \ (2)^{\circ}$ |
|----------------------------------------------------|----------------------------------|
| $M_r = 373.26$                                     | V = 814.55 (15) Å <sup>3</sup>   |
| Triclinic, P1                                      | Z = 2                            |
| a = 8.420 (1)  Å                                   | Mo $K\alpha$ radiation           |
| b = 10.255 (1) Å                                   | $\mu = 2.66 \text{ mm}^{-1}$     |
| c = 10.306 (1)  Å                                  | T = 298 (2) K                    |
| $\alpha = 97.503 \ (2)^{\circ}$                    | $0.40 \times 0.40 \times 0.30$   |
| $\beta = 99.711 \ (2)^{\circ}$                     |                                  |

#### Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1999)  $T_{\min} = 0.353, T_{\max} = 0.451$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$  $wR(F^2) = 0.089$ S = 1.143179 reflections 229 parameters

x radiation  $66 \text{ mm}^{-1}$ 8 (2) K  $0.40 \times 0.30 \text{ mm}$ 

6560 measured reflections 3179 independent reflections 2645 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.017$ 

| 64 restraints                                              |
|------------------------------------------------------------|
| H-atom parameters constrained                              |
| $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$            | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------------|-------------------------|--------------|--------------------------------------|
| $C12A - H12A \cdots Cg^{i}$ | 0.97           | 2.78                    | 3.698 (5)    | 158                                  |
| C5−H5···O3 <sup>ii</sup>    | 0.93           | 2.55                    | 3.405 (3)    | 153                                  |
| $C9-H9B\cdots O4^{iii}$     | 0.97           | 2.30                    | 3.248 (3)    | 167                                  |

Symmetry codes: (i) x + 1, y + 1, z; (ii) -x, -y + 1, -z; (iii) -x + 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2347).

#### References

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, 02250. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2009). E65, o265 [doi:10.1107/S1600536808043985]

# Butyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate

# Hong Dae Choi, Pil Ja Seo, Byeng Wha Son and Uk Lee

## S1. Comment

This work is related to our previous communications on the synthesis and structure of alkyl 2-(5-bromo-3-methyl-sulfinyl-1-benzofuran-2-yl)acetate analogues, *viz*. isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi *et al.*, 2008*a*) and methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi *et al.*, 2008*b*). Herein, we describe the crystal structure of the title compound, (I).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 (2) Å from the least-squares plane defined by the nine constituent atoms. The butyl group is disordered over two positions with site-occupancy factors of 0.720 (8) (for atoms labelled B) and 0.280 (8) (B) in Fig. 1. The molecular packing is stabilized by intermolecular  $\pi - \pi$  interactions: the  $Cg \cdots Cg^{ii}$  distance is 3.698 (4) Å, where Cg is the centroid of the C2–C7 ring, symmetry code as in Fig. 2. The molecular packing is further stabilized by C—H··· $\pi$  interactions between the methylene-H and the benzene ring of the benzofuran system, with a C12A—H12A··· $Cg^{i}$  separation of 2.78 Å, Table 1; Cg is the centroid of the C2–C7 benzene ring. In addition, weak intermolecular C—H···O contacts are observed, Table 1. One C-H···O contact occurs between a benzene-H and the O3-oxygen, and a second between a methylene-H and the O4-oxygen atom.

## **S2. Experimental**

77% 3-Chloroperoxybenzoic acid (148 mg, 0.66 mmol) was added in small portions to a stirred solution of butyl 2-(5bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (214 mg, 0.6 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2  $\nu/\nu$ ) to afford (I) as a colorless solid [yield 80%, m.p. 381–382 K;  $R_f$  = 0.65 (hexane-ethyl acetate, 1;2  $\nu/\nu$ )]. Single crystals were obtained by evaporation of an acetone solution of (I). Spectroscopic analysis: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.92 (t, J = 7.32 Hz, 3H), 1.31–1.41 (m, 2H), 1.59–1.67 (m, 2H), 3.07 (s, 3H), 4.04 (s, 2H), 4.15 (t, J = 6.6 Hz, 2H), 7.39 (d, J = 8.8 Hz, 1H), 7.49 (dd, J = 8.8 Hz and J = 2.2 Hz, 1H), 8.11 (d, J = 1.84 Hz, 1H); EI—MS 374 [*M*+2], 372 [*M*<sup>+</sup>].

## **S3. Refinement**

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for aryl-, 0.97 Å for methylene-, and 0.96 Å for methyl-H atoms, and with Uiso(H) = 1.2Ueq(C) for the aryl- and methylene-H atoms, and 1.5Ueq(C) for methyl-H atoms. The butyl group was found to be disordered over two positions and modelled with site-occupancy factors, from refinement, of 0.720 (8) (C11A–C14A)) and 0.280 (8) (C11B–C14B). The displacement ellipsoids of part B part were restrained using command ISOR (0.01), both sets of C atoms were restrained using the command DELU, and the C—C distances were restrained to 1.480 (2) Å using command DFIX.



# Figure 1

The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. The butyl group is disordered over two positions with the major component having a site occupancy = 0.720 (8).



# Figure 2

Diagram illustrating the  $\pi - \pi$ , C—H··· $\pi$  and C—H···O interactions (dotted lines) in the crystal structure of (I). *Cg* denotes a ring centroid. The disordered component of the butyl group, part B, has been omitted for clarity as have H atoms not involved in intermolecular contacts. Symmetry codes: (i) x + 1, y + 1, z; (ii) -x, 1 - y, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z; (v) x - 1, y - 1, z.

# Butyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate

#### Crystal data

 $C_{15}H_{17}BrO_4S$   $M_r = 373.26$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.420 (1) Å b = 10.255 (1) Å c = 10.306 (1) Å a = 97.503 (2)°  $\beta = 99.711$  (2)°  $\gamma = 108.678$  (2)° V = 814.55 (15) Å<sup>3</sup>

#### Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.0 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1999)  $T_{\min} = 0.353, T_{\max} = 0.451$ 

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.033$                 | Hydrogen site location: difference Fourier map             |
| $wR(F^2) = 0.089$                               | H-atom parameters constrained                              |
| S = 1.14                                        | $w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.2004P]$          |
| 3179 reflections                                | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 229 parameters                                  | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 64 restraints                                   | $\Delta  ho_{ m max} = 0.30 \  m e \  m \AA^{-3}$          |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  |                                                            |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2F(000) = 380

 $D_{\rm x} = 1.522 {\rm Mg} {\rm m}^{-3}$ 

 $\theta = 2.6 - 27.0^{\circ}$ 

 $\mu = 2.66 \text{ mm}^{-1}$ 

Block, colorless

 $0.40 \times 0.40 \times 0.30 \text{ mm}$ 

6560 measured reflections

 $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ 

3179 independent reflections

2645 reflections with  $I > 2\sigma(I)$ 

T = 298 K

 $R_{\rm int} = 0.017$ 

 $h = -10 \rightarrow 10$ 

 $k = -12 \rightarrow 12$ 

 $l = -12 \rightarrow 12$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 3446 reflections

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x            | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|----|--------------|--------------|--------------|-------------------------------|-----------|
| Br | -0.42599 (4) | 0.24082 (3)  | 0.12584 (3)  | 0.06775 (14)                  |           |
| S  | 0.32177 (9)  | 0.58854 (7)  | 0.45871 (6)  | 0.04988 (17)                  |           |
| 01 | 0.3033 (2)   | 0.46045 (17) | 0.07725 (15) | 0.0442 (4)                    |           |

| O2            | 0.7594 (3)             | 0.8276 (2)             | 0.2120 (2)              | 0.0686 (6)            |                      |
|---------------|------------------------|------------------------|-------------------------|-----------------------|----------------------|
| O3            | 0.5174 (3)             | 0.8291 (2)             | 0.2711 (2)              | 0.0721 (6)            |                      |
| O4            | 0.2197 (3)             | 0.4784 (2)             | 0.52321 (18)            | 0.0618 (5)            |                      |
| C1            | 0.2665 (3)             | 0.5195 (2)             | 0.2849 (2)              | 0.0413 (5)            |                      |
| C2            | 0.0997 (3)             | 0.4347 (2)             | 0.2012 (2)              | 0.0401 (5)            |                      |
| C3            | -0.0682(3)             | 0.3882 (3)             | 0.2186 (2)              | 0.0447 (5)            |                      |
| H3            | -0.0941                | 0.4108                 | 0.3010                  | 0.054*                |                      |
| C4            | -0.1944(3)             | 0.3070 (3)             | 0.1078 (3)              | 0.0472 (6)            |                      |
| C5            | -0.1604 (4)            | 0.2716 (3)             | -0.0175(3)              | 0.0509 (6)            |                      |
| H5            | -0.2500                | 0.2159                 | -0.0889                 | 0.061*                |                      |
| C6            | 0.0052(3)              | 0.3188 (3)             | -0.0354(2)              | 0.0478 (6)            |                      |
| H6            | 0.0307                 | 0.2966                 | -0.1181                 | 0.057*                |                      |
| C7            | 0.1318(3)              | 0.4008(2)              | 0.0749(2)               | 0.0414(5)             |                      |
| C8            | 0.1310(3)<br>0.3827(3) | 0.5320(2)              | 0.0719(2)<br>0.2067(2)  | 0.0417(5)             |                      |
| C9            | 0.5027(3)              | 0.6320(2)<br>0.6117(3) | 0.2310(3)               | 0.0460(6)             |                      |
| Н9А           | 0.6150                 | 0.5767                 | 0.1586                  | 0.055*                |                      |
| HOR           | 0.6281                 | 0.5959                 | 0.1380                  | 0.055*                |                      |
| C10           | 0.0201                 | 0.5555<br>0.7675 (3)   | 0.3140<br>0.2403(3)     | 0.055                 |                      |
| C11A          | 0.0000(3)<br>0.8140(8) | 0.9810(14)             | 0.2403(3)<br>0.2252(11) | 0.0300(0)<br>0.087(3) | 0 720 (8)            |
|               | 0.8117                 | 1 0245                 | 0.2232 (11)             | 0.007 (5)             | 0.720(0)<br>0.720(8) |
| H11R          | 0.7375                 | 1.0053                 | 0.1590                  | 0.104*                | 0.720(8)             |
| C12A          | 0.9913 (6)             | 1.0000                 | 0.1000                  | 0.104                 | 0.720(0)<br>0.720(8) |
| H12A          | 0.9913 (0)             | 1.0302 (0)             | 0.2033 (0)              | 0.0749 (10)           | 0.720(8)             |
| III2A<br>U12D | 1.0207                 | 0.0664                 | 0.1321                  | 0.090*                | 0.720(8)             |
|               | 1.0030                 | 0.9004                 | 0.1307<br>0.2221 (7)    | $0.090^{\circ}$       | 0.720(8)             |
|               | 1.1021 (0)             | 1.0324 (0)             | 0.3331 (7)              | 0.098 (2)             | 0.720(0)             |
| ПІЗА          | 1.0712                 | 1.0855                 | 0.4030                  | 0.117*                | 0.720(8)             |
| HI3B          | 1.0/00                 | 0.9300                 | 0.3464                  | 0.11/*                | 0.720(8)             |
| CI4A          | 1.2899 (7)             | 1.0964 (9)             | 0.3450 (10)             | 0.134 (3)             | 0.720(8)             |
| HI4A          | 1.3499                 | 1.0967                 | 0.4330                  | 0.202*                | 0.720(8)             |
| HI4B          | 1.31/3                 | 1.1911                 | 0.3309                  | 0.202*                | 0.720 (8)            |
| HI4C          | 1.3243                 | 1.0429                 | 0.2788                  | 0.202*                | 0.720 (8)            |
| CIIB          | 0.806 (2)              | 0.973 (3)              | 0.183 (2)               | 0.070 (5)             | 0.280 (8)            |
| HIIC          | 0.7231                 | 1.0153                 | 0.2025                  | 0.084*                | 0.280 (8)            |
| H11D          | 0.8138                 | 0.9721                 | 0.0903                  | 0.084*                | 0.280 (8)            |
| C12B          | 0.9768 (19)            | 1.049 (2)              | 0.275 (3)               | 0.127 (7)             | 0.280 (8)            |
| H12C          | 0.9614                 | 1.0361                 | 0.3645                  | 0.153*                | 0.280 (8)            |
| H12D          | 1.0003                 | 1.1475                 | 0.2746                  | 0.153*                | 0.280 (8)            |
| C13B          | 1.1377 (19)            | 1.0231 (18)            | 0.2628 (16)             | 0.087 (5)             | 0.280 (8)            |
| H13C          | 1.1320                 | 0.9270                 | 0.2622                  | 0.105*                | 0.280 (8)            |
| H13D          | 1.1884                 | 1.0601                 | 0.1915                  | 0.105*                | 0.280 (8)            |
| C14B          | 1.207 (3)              | 1.117 (2)              | 0.3964 (16)             | 0.124 (6)             | 0.280 (8)            |
| H14D          | 1.3305                 | 1.1547                 | 0.4133                  | 0.186*                | 0.280 (8)            |
| H14E          | 1.1729                 | 1.0655                 | 0.4643                  | 0.186*                | 0.280 (8)            |
| H14F          | 1.1634                 | 1.1931                 | 0.3985                  | 0.186*                | 0.280 (8)            |
| C15           | 0.2192 (5)             | 0.7173 (3)             | 0.4576 (3)              | 0.0679 (8)            |                      |
| H15A          | 0.0971                 | 0.6710                 | 0.4266                  | 0.102*                |                      |
| H15B          | 0.2615                 | 0.7788                 | 0.3987                  | 0.102*                |                      |
| H15C          | 0.2442                 | 0.7710                 | 0.5468                  | 0.102*                |                      |
|               |                        |                        |                         |                       |                      |

|      | $U^{11}$     | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|--------------|-------------|-------------|--------------|--------------|--------------|
| Br   | 0.04457 (17) | 0.0686 (2)  | 0.0882 (3)  | 0.01726 (14) | 0.01642 (15) | 0.01369 (16) |
| S    | 0.0507 (4)   | 0.0625 (4)  | 0.0376 (3)  | 0.0229 (3)   | 0.0092 (3)   | 0.0067 (3)   |
| 01   | 0.0471 (9)   | 0.0509 (10) | 0.0400 (9)  | 0.0212 (8)   | 0.0158 (7)   | 0.0093 (7)   |
| O2   | 0.0515 (11)  | 0.0466 (11) | 0.1135 (17) | 0.0178 (9)   | 0.0256 (11)  | 0.0246 (11)  |
| O3   | 0.0637 (13)  | 0.0590 (12) | 0.1004 (16) | 0.0315 (11)  | 0.0233 (12)  | 0.0072 (11)  |
| O4   | 0.0721 (13)  | 0.0801 (14) | 0.0466 (10) | 0.0348 (11)  | 0.0218 (9)   | 0.0265 (9)   |
| C1   | 0.0462 (13)  | 0.0449 (13) | 0.0361 (12) | 0.0191 (10)  | 0.0103 (10)  | 0.0099 (10)  |
| C2   | 0.0474 (13)  | 0.0399 (12) | 0.0393 (12) | 0.0203 (10)  | 0.0129 (10)  | 0.0123 (10)  |
| C3   | 0.0474 (13)  | 0.0471 (13) | 0.0471 (14) | 0.0220 (11)  | 0.0160 (11)  | 0.0146 (11)  |
| C4   | 0.0448 (13)  | 0.0421 (13) | 0.0588 (15) | 0.0192 (11)  | 0.0119 (11)  | 0.0135 (11)  |
| C5   | 0.0537 (15)  | 0.0468 (14) | 0.0504 (14) | 0.0221 (12)  | 0.0019 (12)  | 0.0044 (11)  |
| C6   | 0.0561 (15)  | 0.0515 (14) | 0.0400 (13) | 0.0261 (12)  | 0.0099 (11)  | 0.0061 (11)  |
| C7   | 0.0449 (13)  | 0.0420 (12) | 0.0440 (12) | 0.0211 (10)  | 0.0134 (10)  | 0.0117 (10)  |
| C8   | 0.0462 (13)  | 0.0441 (13) | 0.0399 (12) | 0.0209 (10)  | 0.0111 (10)  | 0.0112 (10)  |
| C9   | 0.0447 (13)  | 0.0512 (14) | 0.0480 (14) | 0.0215 (11)  | 0.0144 (11)  | 0.0132 (11)  |
| C10  | 0.0463 (14)  | 0.0517 (15) | 0.0531 (15) | 0.0191 (12)  | 0.0068 (11)  | 0.0085 (12)  |
| C11A | 0.072 (4)    | 0.059 (4)   | 0.137 (7)   | 0.029 (3)    | 0.019 (4)    | 0.032 (5)    |
| C12A | 0.075 (3)    | 0.044 (2)   | 0.105 (4)   | 0.013 (2)    | 0.022 (3)    | 0.028 (3)    |
| C13A | 0.072 (3)    | 0.080 (4)   | 0.117 (5)   | 0.002 (3)    | 0.004 (3)    | 0.024 (4)    |
| C14A | 0.077 (4)    | 0.120 (5)   | 0.175 (7)   | -0.001 (4)   | 0.024 (4)    | 0.018 (5)    |
| C11B | 0.072 (7)    | 0.040 (8)   | 0.096 (9)   | 0.008 (5)    | 0.016 (6)    | 0.034 (7)    |
| C12B | 0.110 (8)    | 0.109 (10)  | 0.162 (12)  | 0.054 (8)    | -0.005 (7)   | 0.028 (9)    |
| C13B | 0.085 (7)    | 0.086 (8)   | 0.089 (8)   | 0.028 (6)    | 0.022 (6)    | 0.012 (6)    |
| C14B | 0.122 (10)   | 0.135 (10)  | 0.109 (9)   | 0.053 (8)    | 0.012 (7)    | 0.000 (7)    |
| C15  | 0.087 (2)    | 0.0654 (19) | 0.0637 (18) | 0.0394 (17)  | 0.0291 (16)  | 0.0087 (15)  |
|      |              |             |             |              |              |              |

Atomic displacement parameters  $(Å^2)$ 

Geometric parameters (Å, °)

| Br—C4   | 1.899 (3)  | C11A—H11A | 0.9700    |
|---------|------------|-----------|-----------|
| S—O4    | 1.491 (2)  | C11A—H11B | 0.9700    |
| S—C1    | 1.762 (2)  | C12A—C13A | 1.489 (2) |
| S—C15   | 1.794 (3)  | C12A—H12A | 0.9700    |
| O1—C7   | 1.370 (3)  | C12A—H12B | 0.9700    |
| O1—C8   | 1.376 (3)  | C13A—C14A | 1.482 (2) |
| O2—C10  | 1.319 (3)  | C13A—H13A | 0.9700    |
| O2-C11A | 1.471 (14) | C13A—H13B | 0.9700    |
| O2—C11B | 1.50 (3)   | C14A—H14A | 0.9600    |
| O3—C10  | 1.199 (3)  | C14A—H14B | 0.9600    |
| C1—C8   | 1.355 (3)  | C14A—H14C | 0.9600    |
| C1—C2   | 1.444 (3)  | C11B—C12B | 1.481 (2) |
| C2—C3   | 1.391 (3)  | C11B—H11C | 0.9700    |
| C2—C7   | 1.396 (3)  | C11B—H11D | 0.9700    |
| C3—C4   | 1.380 (4)  | C12B—C13B | 1.483 (2) |
| С3—Н3   | 0.9300     | C12B—H12C | 0.9700    |
| C4—C5   | 1.396 (4)  | C12B—H12D | 0.9700    |
|         |            |           |           |

| C5—C6        | 1.376 (4)   | C13B—C14B      | 1.481 (2) |
|--------------|-------------|----------------|-----------|
| С5—Н5        | 0.9300      | C13B—H13C      | 0.9700    |
| C6—C7        | 1.380 (3)   | C13B—H13D      | 0.9700    |
| С6—Н6        | 0.9300      | C14B—H14D      | 0.9600    |
| C8—C9        | 1.486 (3)   | C14B—H14E      | 0.9600    |
| C9—C10       | 1.511 (4)   | C14B—H14F      | 0.9600    |
| С9—Н9А       | 0.9700      | С15—Н15А       | 0.9600    |
| С9—Н9В       | 0.9700      | C15—H15B       | 0.9600    |
| C11A—C12A    | 1.482 (2)   | C15—H15C       | 0.9600    |
|              |             |                |           |
| O4—S—C1      | 106.92 (12) | C11A—C12A—H12A | 110.8     |
| O4—S—C15     | 105.78 (14) | C13A—C12A—H12A | 110.8     |
| C1—S—C15     | 98.46 (13)  | C11A—C12A—H12B | 110.8     |
| C7—O1—C8     | 106.62 (17) | C13A—C12A—H12B | 110.8     |
| C10—O2—C11A  | 115.2 (3)   | H12A—C12A—H12B | 108.9     |
| C10—O2—C11B  | 120.0 (10)  | C14A—C13A—C12A | 115.7 (6) |
| C11A—O2—C11B | 16.2 (11)   | C14A—C13A—H13A | 108.4     |
| C8—C1—C2     | 107.4 (2)   | C12A—C13A—H13A | 108.4     |
| C8—C1—S      | 123.77 (19) | C14A—C13A—H13B | 108.4     |
| C2—C1—S      | 128.70 (18) | C12A—C13A—H13B | 108.4     |
| C3—C2—C7     | 119.5 (2)   | H13A—C13A—H13B | 107.4     |
| C3—C2—C1     | 135.8 (2)   | C13A—C14A—H14A | 109.5     |
| C7—C2—C1     | 104.6 (2)   | C13A—C14A—H14B | 109.5     |
| C4—C3—C2     | 116.8 (2)   | H14A—C14A—H14B | 109.5     |
| С4—С3—Н3     | 121.6       | C13A—C14A—H14C | 109.5     |
| С2—С3—Н3     | 121.6       | H14A—C14A—H14C | 109.5     |
| C3—C4—C5     | 123.2 (2)   | H14B—C14A—H14C | 109.5     |
| C3—C4—Br     | 118.51 (19) | O2-C11B-C12B   | 104 (2)   |
| C5—C4—Br     | 118.29 (19) | O2—C11B—H11C   | 111.1     |
| C6—C5—C4     | 120.2 (2)   | C12B—C11B—H11C | 111.1     |
| С6—С5—Н5     | 119.9       | O2-C11B-H11D   | 111.1     |
| С4—С5—Н5     | 119.9       | C12B—C11B—H11D | 111.1     |
| C5—C6—C7     | 116.8 (2)   | H11C—C11B—H11D | 109.0     |
| С5—С6—Н6     | 121.6       | C11B—C12B—C13B | 125 (2)   |
| С7—С6—Н6     | 121.6       | C11B—C12B—H12C | 106.1     |
| O1—C7—C6     | 125.9 (2)   | C13B—C12B—H12C | 106.1     |
| O1—C7—C2     | 110.7 (2)   | C11B—C12B—H12D | 106.1     |
| C6—C7—C2     | 123.5 (2)   | C13B—C12B—H12D | 106.1     |
| C1—C8—O1     | 110.7 (2)   | H12C—C12B—H12D | 106.3     |
| C1—C8—C9     | 133.3 (2)   | C14B—C13B—C12B | 83.6 (14) |
| O1—C8—C9     | 115.9 (2)   | C14B—C13B—H13C | 114.7     |
| C8—C9—C10    | 112.3 (2)   | C12B—C13B—H13C | 114.7     |
| С8—С9—Н9А    | 109.1       | C14B—C13B—H13D | 114.7     |
| С10—С9—Н9А   | 109.1       | C12B—C13B—H13D | 114.7     |
| С8—С9—Н9В    | 109.1       | H13C—C13B—H13D | 111.8     |
| С10—С9—Н9В   | 109.1       | C13B—C14B—H14D | 109.5     |
| Н9А—С9—Н9В   | 107.9       | C13B—C14B—H14E | 109.5     |
| O3—C10—O2    | 124.3 (3)   | H14D—C14B—H14E | 109.5     |

| O3—C10—C9      | 124.9 (3)    | C13B—C14B—H14F      | 109.5        |
|----------------|--------------|---------------------|--------------|
| O2—C10—C9      | 110.8 (2)    | H14D-C14B-H14F      | 109.5        |
| O2—C11A—C12A   | 107.2 (8)    | H14E—C14B—H14F      | 109.5        |
| O2—C11A—H11A   | 110.3        | S-C15-H15A          | 109.5        |
| C12A—C11A—H11A | 110.3        | S-C15-H15B          | 109.5        |
| O2—C11A—H11B   | 110.3        | H15A—C15—H15B       | 109.5        |
| C12A—C11A—H11B | 110.3        | S-C15-H15C          | 109.5        |
| H11A—C11A—H11B | 108.5        | H15A—C15—H15C       | 109.5        |
| C11A—C12A—C13A | 104.5 (6)    | H15B—C15—H15C       | 109.5        |
|                |              |                     | /->          |
| O4—S—C1—C8     | -136.3 (2)   | C2C1C8O1            | -0.3 (3)     |
| C15—S—C1—C8    | 114.3 (2)    | S-C1-C8-O1          | 176.29 (16)  |
| O4—S—C1—C2     | 39.5 (2)     | C2—C1—C8—C9         | 175.7 (2)    |
| C15—S—C1—C2    | -69.9 (2)    | S-C1-C8-C9          | -7.8 (4)     |
| C8—C1—C2—C3    | -177.6 (3)   | C7—O1—C8—C1         | -0.3 (2)     |
| S—C1—C2—C3     | 6.1 (4)      | C7—O1—C8—C9         | -177.00 (19) |
| C8—C1—C2—C7    | 0.7 (3)      | C1—C8—C9—C10        | -73.0 (3)    |
| S—C1—C2—C7     | -175.63 (18) | O1—C8—C9—C10        | 102.8 (2)    |
| C7—C2—C3—C4    | 1.4 (3)      | C11A—O2—C10—O3      | 2.1 (6)      |
| C1—C2—C3—C4    | 179.5 (2)    | C11B—O2—C10—O3      | -15.4 (11)   |
| C2—C3—C4—C5    | -0.3 (3)     | C11A—O2—C10—C9      | -176.9 (5)   |
| C2—C3—C4—Br    | -179.94 (16) | C11B—O2—C10—C9      | 165.7 (10)   |
| C3—C4—C5—C6    | -0.5 (4)     | C8—C9—C10—O3        | 24.4 (4)     |
| Br—C4—C5—C6    | 179.14 (18)  | C8—C9—C10—O2        | -156.7 (2)   |
| C4—C5—C6—C7    | 0.1 (4)      | C10—O2—C11A—C12A    | 174.3 (5)    |
| C8—O1—C7—C6    | -179.6 (2)   | C11B-02-C11A-C12A   | -74 (4)      |
| C8—O1—C7—C2    | 0.8 (2)      | O2-C11A-C12A-C13A   | -78.9 (8)    |
| C5—C6—C7—O1    | -178.5 (2)   | C11A—C12A—C13A—C14A | -172.1 (9)   |
| C5—C6—C7—C2    | 1.1 (4)      | C10—O2—C11B—C12B    | 128.1 (15)   |
| C3—C2—C7—O1    | 177.69 (19)  | C11A—O2—C11B—C12B   | 51 (3)       |
| C1—C2—C7—O1    | -0.9 (2)     | O2—C11B—C12B—C13B   | 69 (3)       |
| C3—C2—C7—C6    | -1.9 (3)     | C11B—C12B—C13B—C14B | -171 (3)     |
| C1—C2—C7—C6    | 179.5 (2)    |                     |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                             | D—H  | H···A | D···A     | D—H··· $A$ |
|-------------------------------------|------|-------|-----------|------------|
| C12A—H12A····Cg <sup>i</sup>        | 0.97 | 2.78  | 3.698 (5) | 158        |
| С5—Н5…ОЗ <sup>іі</sup>              | 0.93 | 2.55  | 3.405 (3) | 153        |
| C9—H9 <i>B</i> ···O4 <sup>iii</sup> | 0.97 | 2.30  | 3.248 (3) | 167        |

Symmetry codes: (i) *x*+1, *y*+1, *z*; (ii) –*x*, –*y*+1, –*z*; (iii) –*x*+1, –*y*+1, –*z*+1.