organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,3-Dichloro-1-ethyl-1*H*-2,1-benzothiazin-4(3*H*)-one 2,2-dioxide

Muhammad Shafiq,^a M. Nawaz Tahir,^b* Islam Ullah Khan,^a Saeed Ahmad^c and Muhammad Nadeem Arshad^a

^aGovernment College University, Department of Chemistry, Lahore, Pakistan, ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and ^cDepartment of Chemistry, University of Science and Technology Bannu, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 19 January 2009; accepted 24 January 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.042; *wR* factor = 0.110; data-to-parameter ratio = 20.0.

In the title compound, $C_{10}H_9Cl_2NO_3S$, the S atom, which is a component atom of a heterocyclic ring, shows tetrahedral coordination. The heterocyclic ring is not planar.

Related literature

For related compounds, see: Arshad *et al.* (2008); Shafiq, Khan *et al.* (2008); Shafiq, Tahir *et al.* (2008); Tahir *et al.* (2008).

Experimental

Crystal data

C10H9Cl2NO3S
$M_r = 294.14$
Monoclinic, $P2_1/c$

a = 7.7416 (2) Å
<i>b</i> = 11.9185 (3) Å
c = 12.9614 (3) Å

```
\beta = 95.995 (2)^{\circ}

V = 1189.39 (5) Å^{3}

Z = 4

Mo K\alpha radiation
```

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.838, T_{\rm max} = 0.881$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.110$ S = 1.013082 reflections $\mu = 0.72 \text{ mm}^{-1}$ T = 296 (2) K $0.24 \times 0.20 \times 0.18 \text{ mm}$

12499 measured reflections 3082 independent reflections 1872 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.041$

154 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.41$ e Å⁻³ $\Delta \rho_{min} = -0.28$ e Å⁻³

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

MS greatfully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN 042-120567-PS2-276).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2539).

References

- Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, 0558.
- Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, 0557.

supporting information

Acta Cryst. (2009). E65, o430 [doi:10.1107/S1600536809003079]

3,3-Dichloro-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide

Muhammad Shafiq, M. Nawaz Tahir, Islam Ullah Khan, Saeed Ahmad and Muhammad Nadeem Arshad

S1. Comment

In continuation to the formation of different 2,1-Benzothiazine (Shafiq, Khan *et al.*, 2008), (Tahir *et al.*, 2008), (Arshad *et al.*, 2008), the title compound (I), (Fig 1), has been prepared.

We compare the bond distances and bond angles realised in (I) with the corresponding values observed in 3,3-Dibromo-1-ethyl-1*H*-2,1-benzothiazin- 4(3*H*)-one 2,2-dioxide (II) (Shafiq, Tahir *et al.*, 2008), which is structural isomer of (I). The bond distances S1—C8 [1.817 (2) Å] and S1—N1 [1.625 (2) Å] are larger as compared to 1.792 (8) and 1.617 (6) Å, respectively. This change in the thiazine ring is observed due to the reduction of C–C1 [1.744 (2), 1.766 (2) Å] bonds as compared with C—Br [1.898 (7), 1.947 (8) Å] bonds. The dihedral angle of benzene ring with *N*-ethyl moiety and the SO₂ group is 78.08 (25)° and 77.99 (11)°, respectively. There exist intermolecular H-bonds (Table 1), due to which the molecules are connected in helical way along the *c* axis.

S2. Experimental

The title copound was prepared following the same method as in Shafiq, Tahir *et al.* (2008). A mixture of 1-Ethyl-1*H*-2,1 benzothiazin-4(3*H*)-one 2,2 dioxide (Shafiq, Khan *et al.*, 2008)(34 mg, 0.151 mmol), *N*-Chloro Succinamide (40.2 mg, 0.302 mmol) and Benzoylperoxide (2.11 mg, 0.009 mmol) in Carbon Tetra Chloride (10 ml), was heated under reflux for two hours. CCl_4 was evaporated under reduced pressure and the residue was recrystallized in ethanol for X-ray diffraction studies.

Figure 1

ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines show the intramolecular H-bonds.

Figure 2

The partial packing figure (*PLATON*: Spek, 2003) which shows that molecules are connected through intermolecular H-bonds along the c axis in helical way.

3,3-Dichloro-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide

Crystal data
$C_{10}H_9Cl_2NO_3S$
$M_r = 294.14$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 7.7416 (2) Å
b = 11.9185 (3) Å
c = 12.9614 (3) Å
$\beta = 95.995 (2)^{\circ}$
V = 1189.39 (5) Å ³
Z=4
Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube F(000) = 600 $D_x = 1.643 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3082 reflections $\theta = 2.3-28.7^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 296 KPrismatic, colorless $0.24 \times 0.20 \times 0.18 \text{ mm}$

Graphite monochromator Detector resolution: 7.40 pixels mm⁻¹ ω scans

Absorption correction: multi-scan	$R_{\rm int} = 0.041$
(SADABS; Bruker, 2005)	$\theta_{\rm max} = 28.7^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
$T_{\min} = 0.838, \ T_{\max} = 0.881$	$h = -10 \rightarrow 10$
12499 measured reflections	$k = -16 \rightarrow 16$
3082 independent reflections	$l = -17 \rightarrow 15$
1872 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	Secondary atom site location
Logat aquanas matrix, full	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.110$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
3082 reflections	$w = 1/[\sigma^2(F_o^2) + (0.046P)^2 + 0.3265P]$
154 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.45866 (9)	0.41954 (6)	0.18953 (6)	0.0592 (3)	
Cl2	0.21735 (10)	0.55261 (7)	0.05418 (5)	0.0649 (3)	
S 1	0.08395 (8)	0.40174 (5)	0.20115 (5)	0.0421 (2)	
01	0.2953 (3)	0.68290 (16)	0.23915 (16)	0.0637 (8)	
O2	-0.0624 (2)	0.47361 (15)	0.19971 (13)	0.0498 (6)	
O3	0.0781 (3)	0.30825 (16)	0.13333 (15)	0.0635 (7)	
N1	0.1508 (3)	0.36020 (16)	0.31795 (15)	0.0420 (7)	
C1	0.1973 (3)	0.4423 (2)	0.39506 (17)	0.0359 (7)	
C2	0.1918 (3)	0.4159 (2)	0.49864 (19)	0.0472 (9)	
C3	0.2348 (4)	0.4945 (3)	0.5745 (2)	0.0579 (10)	
C4	0.2803 (4)	0.6011 (3)	0.5502 (2)	0.0592 (10)	
C5	0.2877 (3)	0.6290 (2)	0.4482 (2)	0.0510 (9)	
C6	0.2506 (3)	0.5507 (2)	0.36908 (18)	0.0369 (7)	
C7	0.2704 (3)	0.5872 (2)	0.26343 (19)	0.0418 (8)	
C8	0.2613 (3)	0.4951 (2)	0.17788 (17)	0.0419 (8)	
C9	0.1481 (4)	0.2393 (2)	0.3441 (2)	0.0549 (10)	
C10	0.3251 (4)	0.1952 (3)	0.3774 (3)	0.0811 (14)	
H2	0.15879	0.34423	0.51707	0.0567*	
Н3	0.23274	0.47473	0.64379	0.0693*	
H4	0.30605	0.65411	0.60215	0.0711*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H5	0.31804	0.70172	0.43143	0.0612*	
H9A	0.09821	0.19756	0.28397	0.0658*	
H9B	0.07472	0.22786	0.39944	0.0658*	
H10A	0.31778	0.11692	0.39385	0.1217*	
H10B	0.37431	0.23552	0.43749	0.1217*	
H10C	0.39743	0.20468	0.32215	0.1217*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0513 (4)	0.0709 (5)	0.0564 (4)	0.0130 (3)	0.0109 (3)	0.0003 (4)
Cl2	0.0770 (5)	0.0835 (6)	0.0339 (3)	0.0038 (4)	0.0045 (3)	0.0121 (3)
S1	0.0482 (3)	0.0423 (4)	0.0347 (3)	-0.0006 (3)	-0.0011 (3)	-0.0072 (3)
01	0.0897 (15)	0.0416 (12)	0.0612 (13)	-0.0127 (10)	0.0142 (11)	0.0090 (10)
O2	0.0442 (10)	0.0585 (12)	0.0450 (10)	0.0060 (8)	-0.0028 (8)	-0.0015 (9)
O3	0.0797 (14)	0.0552 (12)	0.0542 (12)	-0.0042 (10)	-0.0001 (10)	-0.0249 (10)
N1	0.0558 (13)	0.0286 (11)	0.0403 (12)	-0.0035 (9)	-0.0005 (9)	0.0020 (9)
C1	0.0369 (12)	0.0374 (13)	0.0327 (12)	0.0025 (10)	0.0006 (9)	-0.0007 (10)
C2	0.0503 (14)	0.0531 (17)	0.0383 (14)	0.0035 (12)	0.0047 (11)	0.0094 (12)
C3	0.0592 (18)	0.082 (2)	0.0317 (14)	0.0094 (16)	0.0013 (12)	-0.0010 (14)
C4	0.0635 (18)	0.073 (2)	0.0393 (16)	0.0020 (16)	-0.0035 (13)	-0.0213 (15)
C5	0.0576 (17)	0.0452 (16)	0.0488 (16)	-0.0049 (12)	-0.0008 (12)	-0.0114 (13)
C6	0.0403 (13)	0.0362 (13)	0.0336 (12)	0.0004 (10)	0.0004 (10)	-0.0020 (10)
C7	0.0415 (13)	0.0429 (15)	0.0408 (14)	-0.0032 (11)	0.0032 (10)	0.0014 (12)
C8	0.0464 (14)	0.0494 (15)	0.0299 (13)	0.0041 (11)	0.0034 (10)	0.0034 (11)
C9	0.0631 (18)	0.0348 (15)	0.0662 (19)	-0.0044 (13)	0.0045 (14)	0.0063 (13)
C10	0.075 (2)	0.0483 (19)	0.121 (3)	0.0103 (16)	0.015 (2)	0.0158 (19)

Geometric parameters (Å, °)

Cl1—C8	1.766 (2)	C5—C6	1.394 (3)
Cl2—C8	1.744 (2)	C6—C7	1.460 (3)
S1—O2	1.4189 (18)	C7—C8	1.557 (3)
S1—O3	1.417 (2)	C9—C10	1.489 (4)
S1—N1	1.625 (2)	C2—H2	0.9300
S1—C8	1.817 (2)	С3—Н3	0.9300
O1—C7	1.204 (3)	C4—H4	0.9300
N1—C1	1.418 (3)	С5—Н5	0.9300
N1—C9	1.481 (3)	С9—Н9А	0.9700
C1—C2	1.384 (3)	С9—Н9В	0.9700
C1—C6	1.408 (3)	C10—H10A	0.9600
C2—C3	1.374 (4)	C10—H10B	0.9600
C3—C4	1.364 (5)	C10—H10C	0.9600
C4—C5	1.370 (4)		
Cl1…O1	3.469 (2)	C2···C3 ^{iv}	3.506 (4)
Cl1…O3	3.244 (2)	C2···C2 ^{iv}	3.586 (3)
Cl1…N1	3.127 (2)	C3····C2 ^{iv}	3.506 (4)

Cl1…C1	3.520 (2)	C3····O2 ^{iv}	3.363 (3)
Cl2…O3	3.306 (2)	C3····C1 ^{iv}	3.491 (4)
Cl2…O1	2.867 (2)	C6…O2	3.229 (3)
Cl2…O2	3.1604 (18)	C9…O2 ^{viii}	3.273 (3)
Cl2…O2 ⁱ	3.3972 (18)	C10····C2	3.285 (4)
Cl1···H10C	3.1500	C10····O2 ^{viii}	3.418 (4)
Cl2…H10A ⁱⁱ	3.0600	C1…H10B	2.8500
O1…Cl1	3.469 (2)	C2…H10B	2.7400
O1…Cl2	2.867 (2)	С2…Н9В	2.6900
O2…Cl2	3.1604 (18)	С9…Н2	2.5600
O2…C6	3.229 (3)	С10…Н2	2.9300
O2…Cl2 ⁱ	3.3972 (18)	Н2…С9	2.5600
O2…C10 ⁱⁱⁱ	3.418 (4)	H2…C10	2.9300
O2…C3 ^{iv}	3.363 (3)	H2…H9B	2.1100
O2…C9 ⁱⁱⁱ	3.273 (3)	H2…H10B	2.4300
O3…C2 ⁱⁱ	3.359 (3)	H2···O3 ^{vii}	2.4800
03····Cl2	3,306 (2)	H3…O2 ^{iv}	2.6100
03···Cl1	3.244(2)	H4···O1 ^{ix}	2.6400
01	2,4900	H5…O1	2.4900
$01 \cdots H10C^{v}$	2 6000	H9AO3	2 3500
$01 \cdots H4^{vi}$	2.6400	H9A····O ² ^{viii}	2.5500
$02 \cdots H3^{iv}$	2.6100	H9B····C2	2.6900
02···H9A ⁱⁱⁱ	2,6900	H9B····H2	2.1100
02···H10A ⁱⁱⁱ	2 7900	H10A····O2 ^{viii}	2 7900
03···H9A	2,3500	H10A····Cl2 ^{vii}	3 0600
03···H2 ⁱⁱ	2,4800	H10B···C1	2,8500
N1…Cl1	3 127 (2)	H10B···C2	2.7400
C1···Cl1	3 520 (2)	H10B…H2	2,4300
C1···C3 ^{iv}	3.491 (4)	H10C…Cl1	3.1500
$C^2 \cdots O^3^{\text{vii}}$	3 359 (3)	H10C····O1 ^x	2,6000
C2…C10	3.285 (4)		2.0000
02 010			
O2—S1—O3	119.52 (12)	Cl1—C8—C7	108.92 (16)
O2—S1—N1	111.86 (11)	Cl2—C8—S1	108.36 (12)
O2—S1—C8	104.14 (11)	Cl2—C8—C7	111.57 (17)
O3—S1—N1	108.95 (11)	S1—C8—C7	107.00 (15)
O3—S1—C8	110.75 (12)	N1-C9-C10	112.0 (2)
N1—S1—C8	99.71 (11)	C1—C2—H2	120.00
S1—N1—C1	118.62 (16)	C3—C2—H2	120.00
S1—N1—C9	119.93 (16)	С2—С3—Н3	119.00
C1—N1—C9	121.25 (19)	С4—С3—Н3	119.00
N1—C1—C2	119.7 (2)	C3—C4—H4	120.00
N1—C1—C6	121.6 (2)	С5—С4—Н4	120.00
C2—C1—C6	118.7 (2)	C4—C5—H5	119.00
C1—C2—C3	120.6 (2)	С6—С5—Н5	119.00
C2—C3—C4	121.3 (2)	N1—C9—H9A	109.00
C3—C4—C5	119.1 (3)	N1—C9—H9B	109.00
C4—C5—C6	121.4 (2)	С10—С9—Н9А	109.00
	× /		

a1 ac az	110.0 (2)		100.00
CI = C6 = C5	118.8 (2)	С10—С9—Н9В	109.00
C1—C6—C7	124.1 (2)	H9A—C9—H9B	108.00
C5—C6—C7	117.2 (2)	C9—C10—H10A	109.00
O1—C7—C6	124.2 (2)	C9—C10—H10B	110.00
O1—C7—C8	118.6 (2)	C9—C10—H10C	109.00
C6—C7—C8	117.2 (2)	H10A—C10—H10B	110.00
Cl1—C8—Cl2	111.28 (13)	H10A-C10-H10C	109.00
Cl1—C8—S1	109.60 (13)	H10B—C10—H10C	109.00
O2—S1—N1—C1	-57.1 (2)	N1—C1—C2—C3	-179.4 (2)
O2—S1—N1—C9	117.7 (2)	C6—C1—C2—C3	1.0 (4)
O3—S1—N1—C1	168.51 (19)	N1—C1—C6—C5	177.4 (2)
O3—S1—N1—C9	-16.6 (2)	N1—C1—C6—C7	-2.8 (4)
C8—S1—N1—C1	52.5 (2)	C2-C1-C6-C5	-3.1 (3)
C8—S1—N1—C9	-132.7 (2)	C2-C1-C6-C7	176.8 (2)
O2—S1—C8—Cl1	174.51 (11)	C1—C2—C3—C4	1.5 (4)
O2—S1—C8—Cl2	-63.88 (14)	C2—C3—C4—C5	-1.8 (5)
O2—S1—C8—C7	56.55 (17)	C3—C4—C5—C6	-0.3 (4)
O3—S1—C8—Cl1	-55.78 (15)	C4—C5—C6—C1	2.8 (4)
O3—S1—C8—Cl2	65.83 (16)	C4—C5—C6—C7	-177.1 (2)
O3—S1—C8—C7	-173.73 (16)	C1—C6—C7—O1	170.6 (3)
N1—S1—C8—C11	58.88 (14)	C1—C6—C7—C8	-10.4 (3)
N1—S1—C8—Cl2	-179.52 (12)	C5—C6—C7—O1	-9.6 (4)
N1—S1—C8—C7	-59.08 (17)	C5—C6—C7—C8	169.4 (2)
S1—N1—C1—C2	156.00 (19)	O1—C7—C8—Cl1	103.2 (2)
S1—N1—C1—C6	-24.5 (3)	O1—C7—C8—Cl2	-20.0 (3)
C9—N1—C1—C2	-18.8 (4)	O1—C7—C8—S1	-138.4 (2)
C9—N1—C1—C6	160.7 (2)	C6—C7—C8—Cl1	-75.9 (2)
S1—N1—C9—C10	118.6 (2)	C6—C7—C8—Cl2	160.91 (17)
C1—N1—C9—C10	-66.7 (3)	C6—C7—C8—S1	42.5 (2)

Symmetry codes: (i) -x, -y+1, -z; (ii) x, -y+1/2, z-1/2; (iii) -x, y+1/2, -z+1/2; (iv) -x, -y+1, -z+1; (v) -x+1, y+1/2, -z+1/2; (vi) x, -y+3/2, z-1/2; (vii) x, -y+1/2, z+1/2; (viii) -x, y-1/2, -z+1/2; (iv) x, -y+3/2, z-1/2; (viii) x, -y+1/2, z+1/2; (viii) -x, y-1/2, -z+1/2; (iv) x, -y+3/2, z-1/2; (viii) x, -y+3/2, z-1/2; (viii) x, -y+1/2, -z+1/2; (viii) -x, y-1/2, -z+1/2; (viii) -x, -y+3/2, z-1/2; (viii) x, -y+3/2, z-1/2; (viii) -x, -y+1/2, -z+1/2; (viii) -x, -y+3/2, z-1/2; (viii) -x, -y+3/2, -z+1/2; (viii) -x, -z+1/2; (v

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С2—Н2…О3 ^{vii}	0.9300	2.4800	3.359 (3)	157.00
C10—H10 <i>C</i> ···O1 ^x	0.9600	2.6000	3.445 (4)	147.00

Symmetry codes: (vii) x, -y+1/2, z+1/2; (x) -x+1, y-1/2, -z+1/2.