

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,3'-(p-Phenylenedimethylene)diimidazol-1-ium bis(3-carboxy-4-hydroxybenzenesulfonate) dihydrate

Yong-Li Peng and Li-Hui Jia*

School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China Correspondence e-mail: yongli_peng@126.com

Received 12 January 2009; accepted 15 January 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.050; w*R* factor = 0.142; data-to-parameter ratio = 13.7.

In the title compound, $C_{14}H_{16}N_4^{2+}\cdot 2C_7H_5O_6S^-\cdot 2H_2O$, the 3,3'-(*p*-phenylenedimethylene)diimidazol-1-ium dication lies on a crystallographic inversion center. In the crystal structure, dications, anions and solvent water molecules are linked *via* $O-H\cdots O$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, and $C-H\cdots \pi$ interactions, forming a three-dimensional network containing $R_2^2(4)$, $R_2^4(12)$, $R_4^4(22)$, $R_8^{10}(32)$ and $R_{12}^{14}(66)$ ring motifs.

Related literature

For information on hydrogen-bond graph-set motifs, see: Bernstein *et al.* (1995). For the synthesis and crystal structure of 1,4-bis(imidazol-1-ylmethyl)benzene, see: Hoskins *et al.* (1997). For related crystal structures, see: Meng *et al.* (2007, 2008); Muthiah *et al.* (2003); Smith *et al.* (2004, 2005*a*,*b*,*c*).

Experimental

Crystal data

 $C_{14}H_{16}N_4^{2+} \cdot 2C_7H_5O_6S^{-} \cdot 2H_2O$ $M_r = 710.68$ Triclinic, $P\overline{1}$ a = 7.9975 (6) Å b = 8.8060 (7) Å c = 11.2419 (8) Å $\alpha = 90.784$ (1)° $\beta = 96.656$ (1)°

 $\gamma = 97.342 (1)^{\circ}$ $V = 779.61 (10) \text{ Å}^3$ Z = 1Mo K α radiation $\mu = 0.25 \text{ mm}^{-1}$ T = 292 (2) K $0.20 \times 0.10 \times 0.10 \text{ mm}$ 8434 measured reflections

 $R_{\rm int} = 0.024$

3168 independent reflections

2524 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997) $T_{min} = 0.942, T_{max} = 0.976$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.142$	independent and constrained
S = 1.12	refinement
3168 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
232 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O7^{i}$	0.93 (4)	1.68 (4)	2.593 (3)	168 (3)
$O3-H3A\cdots O2$	0.87 (2)	2.038 (19)	2.591 (3)	121 (3)
$O3-H3A\cdots O3^{ii}$	0.87 (2)	2.46 (2)	2.883 (4)	111 (2)
$O7 - H7B \cdots O4^{iii}$	0.81 (4)	1.93 (4)	2.741 (3)	173 (4)
$O7 - H7A \cdots O5$	0.88 (4)	1.93 (4)	2.799 (3)	172 (4)
$N1-H1A\cdots O6$	0.79 (3)	1.95 (3)	2.707 (3)	160 (3)
C4−H4···O6 ^{iv}	0.93	2.51	3.411 (4)	164
$C12-H12\cdots O2^{v}$	0.93	2.22	3.035 (3)	146
$C14 - H14 \cdots O6^{vi}$	0.93	2.52	3.219 (4)	132
$C3-H3\cdots Cg1^{vii}$	0.93	2.97 (1)	3.889 (3)	170

Symmetry codes: (i) x, y, z - 1; (ii) -x + 2, -y, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y, -z; (vi) -x, -y, -z + 1; (vii) x + 1, y, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2757).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952–2953.
- Meng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, 053–057.
- Meng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, 0667–0670.
- Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). *Acta Cryst.* E**59**, o2015–o2017.
- Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G., Wermuth, U. D. & Healy, P. C. (2005*a*). *Acta Cryst.* C61, 0555–0558. Smith, G., Wermuth, U. D. & White, J. M. (2004). *Acta Cryst.* C60, 0575–0581. Smith, G., Wermuth, U. D. & White, J. M. (2005*b*). *Acta Cryst.* C61, 0105–0109. Smith, G., Wermuth, U. D. & White, J. M. (2005*c*). *Acta Cryst.* E61, 0313–0316. Spek, A. L. (2003). *J. Appl. Cryst.* 36, 7–13.

supporting information

Acta Cryst. (2009). E65, o365 [doi:10.1107/S1600536809002086]

3,3'-(*p*-Phenylenedimethylene)diimidazol-1-ium bis(3-carboxy-4-hydroxybenzenesulfonate) dihydrate

Yong-Li Peng and Li-Hui Jia

S1. Comment

5-Sulfosaliyclic acid (5-H₂SSA), a strong organic acid (p K_{a1} =2.6), can easily release its sulfonic hydrogen atom to a nitrogen-containing Lewis bases (Muthiah *et al.*, 2003; Smith *et al.*, 2004, 2005*a*, 2005*b*, 2005*c*; Meng *et al.*, 2007; Meng *et al.*, 2008), forming organic salts in most cases. In this paper, we report the crystal structure of the title compound, C₁₄H₁₆N₄.2(C₇H₅O₆S).2(H₂O) (I), which was obtained by crystallization of the 95% methanol solution of 5-H₂SSA and 1,4-Bis(imidazol-1-ylmethyl)benzene) (bix) (molar ratio 2:1) at room temperature.

In (I), the asymmetric unit consists of one half bix²⁺ dication, one complete 5-HSSA⁻ anion and one water molecule (see Fig. 1 for symmetry complete formula unit). Similar to some analogs (Meng *et al.*, 2007, 2008), the hydrogen atom was transferred from the sulfonic group to the imidazole nitrogen atom, forming an 1:2 organic salt (cation to anion). The hydroxyl O3 atom forms an intramolecular *S*(6) and an intermolecular $R_2^2(4)$ ring, resulting in a 5-HSSA⁻ dimer (Bernstein, *et al.*, 1995). The carboxyl O1 atom is only hydrogen-bonded to a water molecule at (*x*, *y*, *z* - 1). The plane defined by sulfonic O4/O5/O6 atoms makes a dihedral angle of 88.7 (1)° with the C1—C6 plane, with the distances of each oxygen atom away from the benzene-plane being 0.211 (1), 1.126 (1) and 1.237 (1) Å, respectively, which is slightly different from those recently reported by Meng, *et al.*, 2007, 2008. In the bix²⁺ dication, there is an crystallogrphic inversion centre at the centre of gravity of the benzene ring.

In the crystal structure of (I), the ionic components are linked by a cooperative action of N—H···O, O—H···O and C— H···O hydrogen bonds into a continuous three-dimensional network which is further consolidated by a C—H··· π interaction (Table 1). In more detail, the supramolecular structure in (I) can be analyzed in terms of three substructures. First, by utilizing three intermolecular O1—H1···O7ⁱ [symmetry code: (i) *x*, *y*, *z* - 1], O7—H7A···O5 and O7—H7B···O4ⁱⁱ [symmetry code: (ii) 1 - *x*, 1 - *y*, 1 - *z*] hydrogen bonds, the 5-HSSA⁻ anions and water molecules are linked into a onedimensional tape structure running parallel to the [001] direction (Fig.2) in which alternating $R_2^4(12)$ and $R_4^4(20)$ (Bernstein, *et al.*, 1995) hydrogen-bonded rings are formed. Secondly, these adjacent one-dimensional tapes are further joined together by the hydroxylic $R_2^2(4)$ hydrogen-bonded ring, resulting in a two-dimensional wrinkled sheet running parallel to the (110) plane. In addition to, the intramolecular S(6) and intermolecular $R_2^2(4)$ hydrogen-bonded rings, another $R_8^{10}(32)$ hydrogen-bond motif is formed in the sheet (Fig.2). These sheets are joined by means of the N1— H1A···O6 hydrogen bond, forming a three-dimensional network (Fig.3) in which larger $R_{12}^{14}(66)$ hydrogen-bonded rings are observed. Further analysis (using the program PLATON [Spek, 2003]) shows that these three-dimensional networks are strengthened by C—H···O hydrogen bonds and weak C—H···*π* interactions (Table 1).

S2. Experimental

1,4-Bis(imidazol-1-ylmethyl)benzene) (bix) was prepared according to a literature method (Hoskins *et al.*, 1997). 1:2 molar amounts of bix (47.6 mg, 0.2 mmol) and 5-sulfosalicylic acid dihydrate (101.6 mg, 0.4 mmol) were dissolved in 95% methanol (20 ml). The mixture was stirred for 30 min at ambient temperature and then filtered. The resulting colourless solution was kept in air for one week. Block colourless crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown at the bottom of the vessel by slow evaporation of the solution (yield 86.4 mg, 60.8%, based on a 1:2 salt).

S3. Refinement

H atoms bonded to C atoms were positioned geometrically with C-H = 0.93Å (aromatic) and 0.97Å (methylene) and refined in a riding-model approximation $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bonded to O and N atoms were found in difference Fourier maps and the N—H and O—H distances were refined freely [the refined distances are given in Table 1; $U_{iso}(H) = 1.2U_{eq}(N)$ and $1.5U_{eq}(O)$].

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms marked with 'a' are at position -x, -1 - y, -z. The H-bonds are shown as dashed lines.

Figure 2

Part of the crystal structure of (I), showing the formation of the two-dimensional sheet running parallel to (110) plane. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity. The outlined area shows the one-dimensional tape running parallel to the [001] direction.

Figure 3

Part of the crystal structure of (I), showing the formation of the three-dimensional network. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity. The outlined area shows the two-dimensional wrinkled sheet parallel to the (110) plane.

3,3'-(p-Phenylenedimethylene)diimidazol-1-ium bis(3-carboxy-4-hydroxybenzenesulfonate) dihydrate

Crystal data	
$C_{14}H_{16}N_4{}^{2+}\cdot 2C_7H_5O_6S^-\cdot 2H_2O$	Z = 1
$M_r = 710.68$	F(000) = 370
Triclinic, P1	$D_{\rm x} = 1.514 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 7.9975 (6) Å	Cell parameters from 2637 reflections
b = 8.8060 (7) Å	$\theta = 2.3 - 28.0^{\circ}$
c = 11.2419 (8) Å	$\mu=0.25~\mathrm{mm^{-1}}$
$\alpha = 90.784 \ (1)^{\circ}$	T = 292 K
$\beta = 96.656 \ (1)^{\circ}$	Block, colorless
$\gamma = 97.342 \ (1)^{\circ}$	$0.20 \times 0.10 \times 0.10 \text{ mm}$
$V = 779.61 (10) \text{ Å}^3$	
Data collection	
Bruker SMART APEX CCD area-detector	Absorption correction: multi-scan
diffractometer	(SADABS; Sheldrick, 1997)
Radiation source: fine focus sealed Siemens Mo	$T_{\min} = 0.942, \ T_{\max} = 0.976$
tube	8434 measured reflections
Graphite monochromator	3168 independent reflections
0.3° wide ω exposures scans	2524 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.024$

$\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$	$k = -11 \rightarrow 11$
$h = -9 \rightarrow 10$	$l = -12 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.142$	neighbouring sites
S = 1.12	H atoms treated by a mixture of independent
3168 reflections	and constrained refinement
232 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0671P)^2 + 0.3146P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.34$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.6276 (3)	0.1488 (3)	0.0830 (2)	0.0345 (5)
C2	0.7379 (3)	0.0442 (3)	0.1231 (2)	0.0411 (6)
C3	0.7390 (4)	-0.0098 (3)	0.2385 (3)	0.0498 (7)
H3	0.8114	-0.0803	0.2645	0.060*
C4	0.6339 (4)	0.0403 (3)	0.3140 (2)	0.0460 (6)
H4	0.6351	0.0032	0.3911	0.055*
C5	0.5250 (3)	0.1465 (3)	0.2763 (2)	0.0341 (5)
C6	0.5211 (3)	0.1995 (3)	0.1617 (2)	0.0333 (5)
H6	0.4474	0.2693	0.1362	0.040*
C7	0.6258 (3)	0.2045 (3)	-0.0404 (2)	0.0367 (6)
C8	-0.0498 (4)	-0.5225 (3)	0.1136 (2)	0.0445 (6)
C9	0.0677 (4)	-0.6056 (3)	0.0730 (2)	0.0501 (7)
Н9	0.1143	-0.6774	0.1221	0.060*
C10	-0.1170 (4)	-0.4163 (3)	0.0397 (3)	0.0517 (7)
H10	-0.1963	-0.3591	0.0661	0.062*
C11	-0.1021 (5)	-0.5466 (4)	0.2371 (3)	0.0625 (9)
H11A	-0.2250	-0.5643	0.2315	0.075*
H11B	-0.0586	-0.6370	0.2699	0.075*
C12	0.0904 (4)	-0.3092 (3)	0.3061 (2)	0.0489 (7)
H12	0.1579	-0.3061	0.2439	0.059*
C13	-0.1055 (4)	-0.3780 (3)	0.4208 (2)	0.0474 (7)
H13	-0.1979	-0.4325	0.4511	0.057*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C14	-0.0133 (4)	-0.2505 (3)	0.4685 (3)	0.0513 (7)	
H14	-0.0291	-0.1992	0.5384	0.062*	
N1	0.1078 (3)	-0.2097 (3)	0.3962 (2)	0.0523 (6)	
H1A	0.175 (4)	-0.135 (4)	0.406 (3)	0.063*	
N2	-0.0387 (3)	-0.4140 (2)	0.31870 (18)	0.0419 (5)	
01	0.5166 (2)	0.3008 (2)	-0.07003 (16)	0.0477 (5)	
H1	0.520 (4)	0.323 (4)	-0.150 (3)	0.072*	
O2	0.7193 (2)	0.1627 (2)	-0.10967 (16)	0.0504 (5)	
03	0.8439 (3)	-0.0099 (3)	0.05360 (19)	0.0635 (6)	
H3A	0.858 (4)	0.013 (4)	-0.0196 (15)	0.095*	
04	0.3120 (3)	0.3311 (2)	0.32481 (17)	0.0513 (5)	
05	0.5091 (3)	0.2577 (3)	0.48529 (18)	0.0677 (6)	
O6	0.2758 (3)	0.0777 (2)	0.4006 (2)	0.0664 (6)	
07	0.5030 (3)	0.3928 (2)	0.71130 (18)	0.0563 (6)	
H7A	0.506 (5)	0.342 (4)	0.644 (4)	0.084*	
H7B	0.565 (5)	0.471 (5)	0.700 (3)	0.084*	
S1	0.39522 (9)	0.20854 (7)	0.37902 (5)	0.0380 (2)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0372 (13)	0.0356 (11)	0.0304 (13)	-0.0014 (10)	0.0101 (10)	0.0005 (9)
C2	0.0420 (15)	0.0447 (13)	0.0394 (14)	0.0077 (11)	0.0145 (12)	0.0024 (11)
C3	0.0516 (17)	0.0541 (15)	0.0497 (17)	0.0238 (13)	0.0114 (13)	0.0118 (13)
C4	0.0571 (17)	0.0473 (14)	0.0346 (14)	0.0080 (12)	0.0068 (12)	0.0105 (11)
C5	0.0408 (14)	0.0367 (12)	0.0239 (11)	-0.0020 (10)	0.0084 (10)	-0.0001 (9)
C6	0.0362 (13)	0.0355 (11)	0.0282 (12)	0.0018 (10)	0.0074 (10)	0.0017 (9)
C7	0.0391 (14)	0.0405 (12)	0.0302 (12)	-0.0023 (11)	0.0115 (11)	0.0009 (10)
C8	0.0486 (16)	0.0490 (14)	0.0329 (14)	-0.0049 (12)	0.0056 (12)	-0.0065 (11)
C9	0.0567 (18)	0.0533 (16)	0.0403 (15)	0.0168 (13)	-0.0047 (13)	0.0036 (12)
C10	0.0493 (17)	0.0607 (17)	0.0476 (17)	0.0155 (14)	0.0082 (13)	-0.0092 (13)
C11	0.083 (2)	0.0612 (18)	0.0376 (16)	-0.0217 (16)	0.0181 (15)	-0.0101 (13)
C12	0.0461 (16)	0.0579 (16)	0.0411 (15)	-0.0069 (13)	0.0142 (13)	-0.0036 (12)
C13	0.0448 (15)	0.0683 (18)	0.0301 (13)	0.0035 (13)	0.0134 (12)	0.0044 (12)
C14	0.0567 (18)	0.0588 (17)	0.0397 (15)	0.0109 (14)	0.0087 (13)	-0.0068 (13)
N1	0.0543 (16)	0.0512 (14)	0.0470 (14)	-0.0095 (11)	0.0055 (12)	-0.0062 (11)
N2	0.0443 (13)	0.0500 (12)	0.0300 (11)	-0.0033 (10)	0.0100 (9)	-0.0018 (9)
01	0.0577 (12)	0.0605 (11)	0.0293 (10)	0.0153 (9)	0.0142 (9)	0.0116 (8)
O2	0.0561 (12)	0.0623 (11)	0.0374 (10)	0.0087 (9)	0.0237 (9)	0.0049 (9)
O3	0.0681 (14)	0.0761 (14)	0.0585 (14)	0.0311 (12)	0.0333 (12)	0.0130 (11)
O4	0.0595 (12)	0.0561 (11)	0.0436 (11)	0.0171 (9)	0.0170 (9)	0.0094 (9)
05	0.0763 (15)	0.0925 (16)	0.0349 (11)	0.0276 (13)	-0.0058 (10)	-0.0228 (11)
O6	0.0833 (15)	0.0500 (11)	0.0726 (15)	-0.0035 (10)	0.0506 (13)	0.0020 (10)
O7	0.0863 (17)	0.0511 (12)	0.0309 (10)	0.0033 (11)	0.0104 (10)	0.0057 (9)
S 1	0.0512 (4)	0.0382 (3)	0.0258 (3)	0.0028 (3)	0.0128 (3)	0.0011 (2)

Geometric parameters (Å, °)

<u> </u>	1.399 (4)	С10—Н10	0.9300
C1—C6	1.403 (3)	C11—N2	1.474 (3)
C1—C7	1.476 (3)	C11—H11A	0.9700
C2—O3	1.343 (3)	C11—H11B	0.9700
C2—C3	1.386 (4)	C12—N1	1.313 (4)
C3—C4	1.368 (4)	C12—N2	1.316 (3)
С3—Н3	0.9300	C12—H12	0.9300
C4—C5	1.396 (4)	C13—C14	1.331 (4)
C4—H4	0.9300	C13—N2	1.371 (3)
C5—C6	1.374 (3)	C13—H13	0.9300
C5—S1	1.765 (2)	C14—N1	1.353 (4)
С6—Н6	0.9300	C14—H14	0.9300
C7—O2	1.224 (3)	N1—H1A	0.79 (3)
C7—O1	1.313 (3)	O1—H1	0.93 (4)
C8—C9	1.376 (4)	O3—H3A	0.87 (2)
C8—C10	1.378 (4)	O4—S1	1.4444 (19)
C8—C11	1.505 (4)	O5—S1	1.441 (2)
C9—C10 ⁱ	1.379 (4)	O6—S1	1.442 (2)
С9—Н9	0.9300	O7—H7A	0.88 (4)
C10-C9 ⁱ	1.379 (4)	O7—H7B	0.81 (4)
			× /
C2—C1—C6	119.0 (2)	N2—C11—C8	112.1 (2)
C2—C1—C7	119.7 (2)	N2-C11-H11A	109.2
C6—C1—C7	121.3 (2)	C8—C11—H11A	109.2
O3—C2—C3	117.2 (2)	N2—C11—H11B	109.2
O3—C2—C1	122.7 (2)	C8-C11-H11B	109.2
C3—C2—C1	120.1 (2)	H11A—C11—H11B	107.9
C4—C3—C2	120.3 (2)	N1-C12-N2	108.4 (2)
С4—С3—Н3	119.9	N1-C12-H12	125.8
С2—С3—Н3	119.9	N2-C12-H12	125.8
C3—C4—C5	120.5 (2)	C14—C13—N2	107.2 (2)
С3—С4—Н4	119.8	C14—C13—H13	126.4
С5—С4—Н4	119.8	N2-C13-H13	126.4
C6—C5—C4	119.8 (2)	C13—C14—N1	107.1 (2)
C6—C5—S1	121.96 (19)	C13—C14—H14	126.5
C4—C5—S1	118.19 (18)	N1-C14-H14	126.5
C5—C6—C1	120.3 (2)	C12—N1—C14	109.2 (2)
С5—С6—Н6	119.8	C12—N1—H1A	126 (3)
С1—С6—Н6	119.8	C14—N1—H1A	124 (3)
O2—C7—O1	122.8 (2)	C12—N2—C13	108.1 (2)
O2—C7—C1	122.1 (2)	C12—N2—C11	126.2 (2)
O1—C7—C1	115.1 (2)	C13—N2—C11	125.7 (2)
C9—C8—C10	118.8 (2)	C7—O1—H1	108 (2)
C9—C8—C11	120.3 (3)	C2—O3—H3A	128.1 (11)
C10—C8—C11	120.9 (3)	H7A—O7—H7B	100 (4)
C8-C9-C10 ⁱ	120.7 (3)	O5—S1—O6	111.68 (15)

С8—С9—Н9	119.6	O5—S1—O4	112.97 (13)
С10 ^і —С9—Н9	119.6	O6—S1—O4	112.13 (13)
C8-C10-C9 ⁱ	120.5 (3)	O5—S1—C5	105.30 (12)
C8—C10—H10	119.8	O6—S1—C5	106.67 (11)
C9 ⁱ —C10—H10	119.8	O4—S1—C5	107.55 (11)
C6—C1—C2—O3	-180.0 (2)	C9—C8—C10—C9 ⁱ	0.2 (5)
C7—C1—C2—O3	-0.3 (4)	C11—C8—C10—C9 ⁱ	179.6 (3)
C6-C1-C2-C3	1.0 (4)	C9—C8—C11—N2	110.3 (3)
C7—C1—C2—C3	-179.3 (2)	C10-C8-C11-N2	-69.2 (4)
O3—C2—C3—C4	-179.8 (3)	N2-C13-C14-N1	0.0 (3)
C1—C2—C3—C4	-0.8 (4)	N2-C12-N1-C14	-0.3 (4)
C2—C3—C4—C5	-0.3 (4)	C13-C14-N1-C12	0.2 (4)
C3—C4—C5—C6	1.1 (4)	N1-C12-N2-C13	0.3 (3)
C3—C4—C5—S1	-179.0 (2)	N1-C12-N2-C11	179.9 (3)
C4—C5—C6—C1	-0.8 (4)	C14—C13—N2—C12	-0.2 (3)
S1—C5—C6—C1	179.28 (17)	C14—C13—N2—C11	-179.8 (3)
C2-C1-C6-C5	-0.2 (4)	C8—C11—N2—C12	-21.6 (5)
C7—C1—C6—C5	-179.8 (2)	C8—C11—N2—C13	157.9 (3)
C2-C1-C7-O2	-0.5 (4)	C6—C5—S1—O5	-128.2 (2)
C6-C1-C7-O2	179.2 (2)	C4—C5—S1—O5	52.0 (2)
C2-C1-C7-O1	179.2 (2)	C6—C5—S1—O6	113.1 (2)
C6-C1-C7-O1	-1.2 (3)	C4—C5—S1—O6	-66.8 (2)
C10-C8-C9-C10 ⁱ	-0.2 (5)	C6—C5—S1—O4	-7.4 (2)
C11C8C10 ⁱ	-179.6 (3)	C4—C5—S1—O4	172.70 (19)

Symmetry code: (i) -x, -y-1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1…O7 ⁱⁱ	0.93 (4)	1.68 (4)	2.593 (3)	168 (3)
O3—H3 <i>A</i> ···O2	0.87 (2)	2.04 (2)	2.591 (3)	121 (3)
O3—H3 <i>A</i> ···O3 ⁱⁱⁱ	0.87 (2)	2.46 (2)	2.883 (4)	111 (2)
O7—H7 <i>B</i> ···O4 ^{iv}	0.81 (4)	1.93 (4)	2.741 (3)	173 (4)
O7—H7 <i>A</i> ···O5	0.88 (4)	1.93 (4)	2.799 (3)	172 (4)
N1—H1A…O6	0.79 (3)	1.95 (3)	2.707 (3)	160 (3)
C4—H4…O6 ^v	0.93	2.51	3.411 (4)	164
C12—H12···O2 ^{vi}	0.93	2.22	3.035 (3)	146
C14—H14…O6 ^{vii}	0.93	2.52	3.219 (4)	132
C3—H3··· <i>Cg</i> 1 ^{viii}	0.93	2.97 (1)	3.889 (3)	170

Symmetry codes: (ii) x, y, z-1; (iii) -x+2, -y, -z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1; (vi) -x+1, -y, -z; (vii) -x, -y, -z+1; (viii) x+1, y, z.