metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{(+)-(1*R*,2*R*)-1,2-Diphenyl-2,2'-[ethane-1.2-divlbis(nitrilomethylidyne)]diphenolato}dipyridinecobalt(III) perchlorate sesquihydrate

Lian-Wen Zhou

Department of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China

Correspondence e-mail: zhoulw2006@126.com

Received 2 January 2009; accepted 18 January 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.050; wR factor = 0.127; data-toparameter ratio = 15.2.

In title complex, $[Co(C_{28}H_{22}N_2O_2)(C_5H_5N)_2]ClO_4 \cdot 1.5H_2O$, the Co^{III} ion is in a slightly distorted octahedral coordination environment with the pyridine ligands in a trans arrangement. In addition to the cation and anion, the asymmetric unit also contains three half-occupancy solvent water molecules and all components are connected via intermolecular O-H···O hydrogen bonds.

Related literature

For background information, see: Amirnasr et al. (2001); Cmi et al. (1998); Polson et al. (1997); Yamada (1999); Henson et al. (1999). For the synthethis of the parent Schiff base ligand, see: Zhang et al. (1990). For a related structure, see: Shi et al. (1995).

Experimental

Crystal data

[Co(C28H22N2O2)(C5H5N)2]ClO4--1.5H₂O $M_r = 762.08$

Orthorhombic, P212121 a = 10.9214 (6) Å b = 18.3856 (10) Å

c = 18.6714 (11) ÅV = 3749.2 (4) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.887, T_{\max} = 0.928$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.127$ S = 0.997290 reflections 480 parameters H-atom parameters constrained $\mu = 0.58 \text{ mm}^{-1}$ T = 293 (2) K $0.21 \times 0.16 \times 0.13 \text{ mm}$

20101 measured reflections 7290 independent reflections 4733 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.059$

 $\Delta \rho_{\text{max}} = 0.51 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$ Absolute structure: Flack (1983), with 3227 Friedel pairs Flack parameter: 0.02 (2)

Table 1

Selected bond lengths (Å).

Co1-O2	1.881 (3)	Co1-N1	1.904 (3)
Co1-O1	1.889 (3)	Co1-N4	1.973 (4)
Co1-N2	1.897 (3)	Co1-N3	1.978 (4)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$07 - H7C \cdots 08$ $07 - H7D \cdots 01^{i}$ $08 - H8C \cdots 09$ $08 - H8D \cdots 04^{ii}$ $09 - H9C \cdots 03^{ii}$	0.85 0.85 0.85 0.85 0.85	1.85 2.04 1.73 1.99 2.36	2.701 (12) 2.888 (8) 2.575 (14) 2.835 (10) 3.175 (11)	176 176 177 176 161

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2754).

References

- Amirnasr, M., Schenk, K. J., Gorji, A. & Vafazadef, R. (2001). Polyhedron, 20, 695-702
- Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cmi, R., Moore, S. J. & Marzilli, L. G. (1998). Inorg. Chem. 37, 6890-6897.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Henson, N. J., Hay, P. J. & Redondo, A. (1999). Inorg. Chem. 38, 1618-1626. Polson, S. M., Cini, R., Pifferi, C. & Marzilli, L. G. (1997). Inorg. Chem. 36,
- 314-322
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206-207.
- Yamada, S. (1999). Coord. Chem. Rev. 191-192, 537-555.
- Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.

supporting information

Acta Cryst. (2009). E65, m226 [doi:10.1107/S1600536809002293]

{(+)-(1*R*,2*R*)-1,2-Diphenyl-2,2'-[ethane-1,2-diylbis(nitrilomethyl-idyne)]diphenolato}dipyridinecobalt(III) perchlorate sesquihydrate

Lian-Wen Zhou

S1. Comment

Cobalt complexes with tetradentate Schiff base ligands have been extensively used to mimic cobalamin (B_{12}) coenzymes (Amirnasr *et al.*, 2001; Cmi *et al.*, 1998; Polson *et al.*, 1997) and dioxygen carriers and oxygen activators (Yamada, 1999; Henson *et al.*, 1999). Here, we report the crystal structure of a Co^{III} complex containing the chiral tetradentate Schiff base ligand (+)-(1R,2R)-N,N'-Bis(salicylidene)-1,2-diphenyl-1,2-ethanediamine.

The molecular structure of the title cation is shown in Fig. 1. The Co^{III} ion is six coordinated. The four equational sites are occupied by two N atoms and two O atoms of the tetradentate Schiff base ligand and the two axial sites are occupied by the N atoms of two pyridine ligands, forming a slightly distorted octahedral coordination environment. The Co—O and Co—N_{Schiff base} bond lengths are consistent with the corresponding bond lengths in the Co^{III} Schiff base complex *trans*-[Co(salen)(py)₂][BPh₄] (Shi *et al.*, 1995) as are the Co—N_{py} distances.

S2. Experimental

The free Schiff base ligand (*L*), it was prepared according to the method reported previously (Zhang *et al.*, 1990). The synthesis of the title complex was carried out by mixing $CoClO_4.6H_2O$, pyridine and *L* with a molar ratio 1:2:1 in methanol. After the mixture was stirred for about 30 min at room temperature in air, it was filtered to remove any undissolved material. The filtrate was allowed to partially evaporate in air for several days to produce crystals suitable for X-ray diffraction with a yield about 40%.

S3. Refinement

H atoms bonded to O atoms were located in a difference Fourier map. They were refined in a riding-model approximation with O—H = 0.85 Å and $U_{iso}(H) = 1.2U_{eq}(O)$. H atoms bonded to C atoms were placed in calculated positions with C—H distances = 0.93 and 0.98 Å, and were refined in a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The cation of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are not shown.

{(+)-(1*R*,2*R*)-1,2-Diphenyl-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}dipyridinecobalt(III) perchlorate sesquihydrate

Crystal data

$[Co(C_{28}H_{22}N_2O_2)(C_5H_5N)_2]ClO_4 \cdot 1.5H_2O$	$D_x = 1.350 \text{ Mg m}^{-3}$
$M_r = 762.08$	$D_m = 1.35 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	D_m measured by not measured
Hall symbol: P 2ac 2ab	Mo K α radiation, $\lambda = 0.71073 \text{ Å}$
a = 10.9214 (6) Å	Cell parameters from 2979 reflections
b = 18.3856 (10) Å	$\theta = 2.4-20.0^{\circ}$
c = 18.6714 (11) Å	$\mu = 0.58 \text{ mm}^{-1}$
$V = 3749.2 (4) Å^{3}$	T = 293 K
Z = 4	Block, red-brown
F(000) = 1580	$0.21 \times 0.16 \times 0.13 \text{ mm}$
Data collection	
Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.887$, $T_{max} = 0.928$ 20101 measured reflections 7290 independent reflections 4733 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.059$	$k = -20 \rightarrow 22$
$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.2^\circ$	$l = -22 \rightarrow 23$
$h = -12 \rightarrow 13$	

Refinement

- <u>j</u>	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_o^2) + (0.0572P)^2]$
S = 0.99	where $P = (F_o^2 + 2F_c^2)/3$
7290 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
480 parameters	$\Delta \rho_{\rm max} = 0.51 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with 3227 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.02 (2)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Col	0.24611 (5)	0.00305 (3)	0.17215 (3)	0.03757 (15)	
C11	0.35527 (13)	0.30536 (8)	0.25408 (9)	0.0736 (4)	
O1	0.1518 (3)	-0.08004 (15)	0.19449 (15)	0.0469 (8)	
O2	0.1443 (3)	0.01550 (15)	0.09181 (14)	0.0437 (7)	
O3	0.3774 (4)	0.24263 (19)	0.2999 (3)	0.0960 (14)	
O4	0.2856 (5)	0.3577 (2)	0.2928 (3)	0.1116 (16)	
05	0.4678 (4)	0.3364 (2)	0.2330 (3)	0.0932 (14)	
O6	0.2887 (4)	0.2832 (3)	0.1939 (3)	0.1289 (19)	
07	0.5661 (8)	0.6832 (4)	0.9108 (4)	0.088 (3)	0.50
H7C	0.4884	0.6827	0.9136	0.106*	0.50
H7D	0.5880	0.6522	0.8796	0.106*	0.50
08	0.3200 (8)	0.6862 (5)	0.9246 (4)	0.103 (3)	0.50
H8C	0.2789	0.7231	0.9380	0.124*	0.50
H8D	0.2910	0.6716	0.8849	0.124*	0.50
09	0.1910 (8)	0.7977 (6)	0.9603 (5)	0.123 (4)	0.50
H9C	0.1551	0.7868	0.9214	0.148*	0.50
H9D	0.1378	0.8014	0.9933	0.148*	0.50
N1	0.3507 (3)	-0.00967 (18)	0.25272 (17)	0.0388 (8)	
N2	0.3455 (3)	0.08553 (18)	0.15341 (17)	0.0367 (8)	
N3	0.3501 (4)	-0.0582 (2)	0.1098 (2)	0.0449 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

N4	0.1290(3)	0.06249(19)	0.22734(19)	0.0407(9)
C1	0.1290(3) 0.2065(4)	-0.0821(2)	0.22751(17) 0.3196(2)	0.0408(10)
C^2	0.2003(4) 0.1272(4)	-0.0988(2)	0.3190(2) 0.2617(2)	0.0408(10) 0.0428(11)
C2	0.1272(4)	-0.1379(3)	0.2017(2) 0.2778(3)	0.0420(11) 0.0560(13)
С5 H3	-0.03200(3)	-0.1509	0.2778 (3)	0.0500 (15)
115 C4	-0.0077(5)	-0.1571(3)	0.2400	0.007
U4	-0.0801	-0.1823	0.3432 (3)	0.0029 (13)
114 C5	0.0601	0.1623	0.3337	0.070°
0.5	0.0079 (3)	-0.1400 (3)	0.4024 (3)	0.0001 (14)
	0.0400	-0.1338	0.4469	0.072°
	0.1730 (4)	-0.1041(2)	0.3888 (3)	0.0490 (12)
H6	0.2287	-0.0938	0.4264	0.059*
C7	0.3216 (4)	-0.0458 (2)	0.3094 (2)	0.0412 (11)
H7	0.3789	-0.0486	0.3461	0.049*
C8	0.2062 (4)	0.1393 (2)	0.0670 (2)	0.0421 (11)
C9	0.1321 (4)	0.0775 (3)	0.0570 (2)	0.0403 (10)
C10	0.0392 (4)	0.0813 (3)	0.0046 (2)	0.0480 (12)
H10	-0.0084	0.0406	-0.0050	0.058*
C11	0.0183 (4)	0.1454 (3)	-0.0326 (2)	0.0538 (13)
H11	-0.0443	0.1472	-0.0663	0.065*
C12	0.0887 (5)	0.2064 (3)	-0.0203 (3)	0.0511 (13)
H12	0.0726	0.2492	-0.0451	0.061*
C13	0.1821 (4)	0.2038 (3)	0.0282 (2)	0.0472 (12)
H13	0.2303	0.2448	0.0358	0.057*
C14	0.3136 (4)	0.1386 (3)	0.1134 (2)	0.0408 (11)
H14	0.3626	0.1799	0.1139	0.049*
C15	0.4731 (4)	0.0235 (2)	0.2419 (2)	0.0394 (10)
H15	0.5198	-0.0089	0.2104	0.047*
C16	0.4541 (4)	0.0942 (2)	0.2025 (2)	0.0377 (10)
H16	0.4319	0.1309	0.2384	0.045*
C17	0.5483 (4)	0.0344 (2)	0.3105 (2)	0.0432 (11)
C18	0.6548 (4)	-0.0041 (3)	0.3210 (3)	0.0573 (11)
H18	0.6797	-0.0381	0.2871	0.069*
C19	0.7252 (5)	0.0073 (4)	0.3816 (3)	0.0746 (15)
H19	0.7963	-0.0196	0.3886	0.089*
C20	0.6908 (6)	0.0581 (4)	0.4313 (4)	0.0787 (19)
H20	0.7392	0.0662	0.4715	0.094*
C21	0 5833 (6)	0.0977(3)	0.4217(3)	0.0755 (17)
H21	0.5593	0.1321	0.4553	0.091*
C22	0.5575 0.5124 (5)	0.1321 0.0850 (3)	0.3614(3)	0.051
H22	0.5124 (5)	0.1107	0.3550	0.070*
C23	0.1100 0.5701 (4)	0.1107 0.1209(2)	0.3550 0.1656 (2)	0.070
C24	0.5701(4)	0.1207(2)	0.1000(2) 0.1007(3)	0.0417(10)
U24	0.0220 (3)	0.0034 (3)	0.1097 (3)	0.0010(14) 0.073*
C25	0.3070	0.0719 0.1077 (2)	0.0910	0.075
U25	0.7527 (3)	0.10//(3)	0.0797 (3)	0.000/(13)
п23 С26	0.7070	0.0020	0.041/	0.062°
C20	0.7883(3)	0.1082(3)	0.1002(3)	0.0000 (15)
П20 С27	0.0010	0.1840	0.0802	$0.0/3^{*}$
U27	0./3/9(3)	0.2001 (2)	0.1019 (3)	0.0544 (12)

H27	0.7770	0.2472	0.1798	0.065*
C28	0.6272 (4)	0.1827 (2)	0.1917 (2)	0.0439 (11)
H28	0.5919	0.2087	0.2290	0.053*
C29	0.3837 (5)	-0.1252 (3)	0.1278 (3)	0.0616 (15)
H29	0.3636	-0.1419	0.1733	0.074*
C30	0.4459 (7)	-0.1706 (3)	0.0833 (4)	0.088 (2)
H30	0.4667	-0.2174	0.0978	0.105*
C31	0.4777 (6)	-0.1458 (4)	0.0160 (4)	0.087 (2)
H31	0.5205	-0.1756	-0.0155	0.104*
C32	0.4457 (6)	-0.0779 (4)	-0.0031 (3)	0.0739 (17)
H32	0.4680	-0.0599	-0.0478	0.089*
C33	0.3795 (5)	-0.0349 (3)	0.0439 (3)	0.0547 (13)
H33	0.3548	0.0112	0.0294	0.066*
C34	0.1608 (4)	0.1158 (2)	0.2719 (2)	0.0487 (12)
H34	0.2436	0.1256	0.2785	0.058*
C35	0.0761 (5)	0.1572 (3)	0.3087 (3)	0.0648 (15)
H35	0.1015	0.1944	0.3391	0.078*
C36	-0.0459 (5)	0.1425 (3)	0.2998 (3)	0.0732 (16)
H36	-0.1049	0.1686	0.3249	0.088*
C37	-0.0793 (5)	0.0884 (3)	0.2533 (3)	0.0661 (15)
H37	-0.1618	0.0782	0.2460	0.079*
C38	0.0086 (4)	0.0492 (3)	0.2173 (3)	0.0496 (12)
H38	-0.0154	0.0129	0.1855	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0380 (3)	0.0441 (3)	0.0307 (2)	-0.0055 (3)	-0.0038 (3)	0.0024 (3)
Cl1	0.0614 (9)	0.0627 (8)	0.0966 (11)	0.0083 (7)	-0.0118 (9)	-0.0187 (8)
O1	0.0477 (18)	0.0533 (18)	0.0398 (19)	-0.0136 (16)	-0.0067 (15)	0.0072 (14)
O2	0.0463 (17)	0.0517 (19)	0.0331 (16)	-0.0078 (15)	-0.0100 (13)	0.0051 (14)
O3	0.101 (3)	0.055 (2)	0.132 (4)	0.005 (2)	-0.002 (3)	-0.001 (2)
O4	0.127 (4)	0.087 (3)	0.121 (4)	0.035 (3)	0.032 (3)	-0.011 (3)
O5	0.057 (2)	0.098 (3)	0.124 (4)	-0.008(2)	-0.002 (3)	0.012 (3)
O6	0.103 (4)	0.153 (4)	0.131 (4)	0.010 (3)	-0.049 (3)	-0.046 (4)
O7	0.098 (6)	0.118 (7)	0.047 (5)	0.066 (5)	-0.001 (4)	-0.044 (5)
08	0.116 (7)	0.148 (8)	0.046 (5)	0.011 (6)	-0.024 (5)	0.004 (5)
O9	0.088 (7)	0.195 (11)	0.087 (7)	-0.027 (7)	-0.009 (5)	-0.009 (7)
N1	0.0372 (18)	0.0435 (19)	0.0358 (19)	-0.0038 (18)	-0.0029 (15)	-0.0018 (18)
N2	0.0333 (19)	0.044 (2)	0.032 (2)	-0.0011 (17)	-0.0010 (16)	-0.0020 (16)
N3	0.049 (2)	0.049 (2)	0.036 (2)	0.000 (2)	-0.0080 (19)	-0.0043 (17)
N4	0.039 (2)	0.049 (2)	0.034 (2)	-0.0047 (18)	0.0004 (17)	0.0069 (17)
C1	0.039 (2)	0.045 (2)	0.038 (3)	0.001 (2)	-0.005 (2)	0.004 (2)
C2	0.043 (3)	0.044 (2)	0.041 (3)	-0.003 (2)	-0.005 (2)	0.008 (2)
C3	0.048 (3)	0.061 (3)	0.058 (3)	-0.014 (3)	-0.009 (3)	0.017 (3)
C4	0.046 (3)	0.079 (4)	0.064 (4)	-0.019 (3)	-0.002 (3)	0.025 (3)
C5	0.047 (3)	0.076 (4)	0.058 (4)	-0.001 (3)	0.006 (3)	0.013 (3)
C6	0.046 (3)	0.056 (3)	0.044 (3)	0.000 (2)	-0.003 (2)	0.009 (2)

C7	0.042 (3)	0.048 (3)	0.034 (3)	0.001 (2)	-0.007 (2)	0.004 (2)
C8	0.043 (3)	0.051 (3)	0.032 (3)	0.000 (2)	0.0064 (19)	0.002 (2)
C9	0.040 (3)	0.054 (3)	0.027 (2)	0.001 (2)	0.0042 (19)	-0.002 (2)
C10	0.040 (3)	0.070 (3)	0.034 (3)	0.003 (3)	0.000 (2)	0.002 (2)
C11	0.042 (3)	0.083 (4)	0.037 (3)	0.013 (3)	-0.001 (2)	0.011 (3)
C12	0.050 (3)	0.062 (3)	0.042 (3)	0.011 (3)	0.005 (2)	0.017 (2)
C13	0.051 (3)	0.054 (3)	0.037 (3)	0.004 (2)	0.005 (2)	0.009 (2)
C14	0.041 (3)	0.046 (3)	0.036 (3)	-0.007 (2)	0.002 (2)	0.000(2)
C15	0.032 (2)	0.047 (3)	0.039 (3)	-0.0034 (19)	-0.0050 (19)	-0.001 (2)
C16	0.035 (2)	0.043 (2)	0.035 (2)	-0.005 (2)	-0.0020 (19)	-0.002 (2)
C17	0.038 (2)	0.049 (3)	0.043 (3)	-0.006 (2)	-0.008 (2)	0.007 (2)
C18	0.044 (3)	0.066 (3)	0.062 (3)	-0.006 (3)	-0.007 (2)	0.006 (3)
C19	0.054 (3)	0.094 (4)	0.076 (4)	-0.005 (4)	-0.020 (3)	0.013 (4)
C20	0.069 (4)	0.096 (5)	0.071 (4)	-0.025 (4)	-0.028 (3)	0.023 (4)
C21	0.087 (4)	0.078 (4)	0.061 (4)	-0.008 (3)	-0.021 (4)	-0.003 (3)
C22	0.063 (3)	0.068 (3)	0.045 (3)	0.004 (3)	-0.016 (3)	-0.002 (3)
C23	0.035 (2)	0.050 (3)	0.040 (3)	0.001 (2)	0.001 (2)	0.002 (2)
C24	0.056 (3)	0.070 (3)	0.057 (3)	-0.011 (3)	0.012 (3)	-0.013 (3)
C25	0.052 (3)	0.087 (4)	0.067 (3)	-0.006 (3)	0.022 (3)	-0.012 (3)
C26	0.040 (3)	0.075 (4)	0.066 (4)	-0.006 (3)	0.011 (2)	0.014 (3)
C27	0.048 (3)	0.052 (3)	0.064 (3)	-0.005 (3)	0.005 (3)	0.011 (2)
C28	0.040 (3)	0.044 (2)	0.047 (3)	-0.001 (2)	0.001 (2)	0.004 (2)
C29	0.073 (4)	0.060 (3)	0.051 (3)	0.010 (3)	-0.010 (3)	-0.006 (3)
C30	0.111 (5)	0.077 (4)	0.075 (5)	0.037 (4)	-0.014 (4)	-0.014 (4)
C31	0.093 (5)	0.093 (5)	0.075 (5)	0.033 (4)	-0.002 (4)	-0.028 (4)
C32	0.088 (5)	0.082 (4)	0.051 (3)	0.010 (4)	0.005 (3)	-0.010 (3)
C33	0.061 (3)	0.058 (3)	0.045 (3)	-0.003 (3)	0.002 (3)	-0.012 (2)
C34	0.040 (3)	0.060 (3)	0.047 (3)	-0.002 (2)	0.006 (2)	-0.002 (2)
C35	0.066 (4)	0.069 (3)	0.059 (4)	0.010 (3)	0.009 (3)	-0.013 (3)
C36	0.055 (4)	0.088 (4)	0.076 (4)	0.016 (3)	0.016 (3)	0.003 (4)
C37	0.041 (3)	0.093 (4)	0.064 (4)	0.007 (3)	0.008 (3)	0.013 (3)
C38	0.041 (3)	0.061 (3)	0.047 (3)	-0.003 (2)	-0.002 (2)	0.009 (2)

Geometric parameters (Å, °)

Co1—O2	1.881 (3)	C13—H13	0.9300	
Co101	1.889 (3)	C14—H14	0.9300	
Co1—N2	1.897 (3)	C15—C16	1.509 (6)	
Co1—N1	1.904 (3)	C15—C17	1.534 (6)	
Co1—N4	1.973 (4)	C15—H15	0.9800	
Co1—N3	1.978 (4)	C16—C23	1.524 (6)	
Cl1-06	1.400 (5)	C16—H16	0.9800	
Cl1-05	1.412 (4)	C17—C18	1.376 (6)	
Cl1-04	1.424 (4)	C17—C22	1.387 (6)	
Cl1—O3	1.456 (4)	C18—C19	1.383 (7)	
O1—C2	1.329 (5)	C18—H18	0.9300	
O2—C9	1.318 (5)	C19—C20	1.369 (8)	
O7—H7C	0.8501	C19—H19	0.9300	

O7—H7D	0.8499	C20—C21	1.393 (8)
O8—H8C	0.8500	С20—Н20	0.9300
O8—H8D	0.8500	C21—C22	1.386 (7)
O9—H9C	0.8500	C21—H21	0.9300
O9—H9D	0.8500	С22—Н22	0.9300
N1—C7	1.290 (5)	C23—C24	1.374 (6)
N1—C15	1.482 (5)	C23—C28	1.385 (6)
N2—C14	1.277 (5)	C24—C25	1.400 (7)
N2—C16	1.508 (5)	C24—H24	0.9300
N3—C29	1.328 (6)	C25—C26	1.359 (7)
N3—C33	1.342 (6)	C25—H25	0.9300
N4—C34	1.332(5)	C26—C27	1 366 (7)
N4—C38	1.352(5)	C26—H26	0.9300
C1-C6	1 395 (6)	C_{27} C_{28}	1 398 (6)
C1 - C2	1 418 (6)	C27_H27	0.9300
C1 - C7	1.436 (6)	C28_H28	0.9300
$C_1 = C_7$	1.401 (6)	$C_{20} = C_{20}$	1 361 (8)
$C_2 = C_3$	1.401(0) 1.343(7)	$C_{29} = C_{30}$	0.0300
$C_3 = C_4$	0.0200	$C_{29} = 1129$	1 280 (0)
C_{3}	0.9300 1 282 (7)	C_{30} H_{30}	1.380 (9)
C4 - C3	1.365 (7)	C_{21} C_{22}	1.345(0)
	0.9300	$C_{21} = U_{21}$	1.343 (9)
C5_U5	1.378(7)		0.9300
CS—HS	0.9300	C32—C33	1.385 (7)
	0.9300	C32—H32	0.9300
C/—H/	0.9300	С33—Н33	0.9300
C8—C9	1.408 (6)	C34—C35	1.381 (6)
C8—C13	1.414 (6)	C34—H34	0.9300
C8—C14	1.459 (6)	C35—C36	1.370 (8)
C9—C10	1.412 (6)	C35—H35	0.9300
C10—C11	1.386 (7)	C36—C37	1.369 (8)
C10—H10	0.9300	С36—Н36	0.9300
C11—C12	1.379 (7)	C37—C38	1.376 (7)
C11—H11	0.9300	С37—Н37	0.9300
C12—C13	1.365 (7)	C38—H38	0.9300
C12—H12	0.9300		
02—Co1—O1	87.26 (12)	C8—C14—H14	117.5
O2—Co1—N2	95.39 (13)	N1—C15—C16	107.3 (3)
$01 - C_0 - N^2$	177.35 (14)	N1—C15—C17	115.0 (3)
O2-Co1-N1	179.34 (15)	C16—C15—C17	111.6 (3)
01-Co1-N1	93.06 (13)	N1—C15—H15	107.6
N2-Co1-N1	84 29 (15)	C16—C15—H15	107.6
O2—Co1—N4	88.04 (14)	C17—C15—H15	107.6
01-Co1-N4	88 81 (14)	N2-C16-C15	108 3 (3)
N2-Co1-N4	91 41 (14)	N_{2} C16 C13	1144(3)
N1—Co1—N4	92 55 (14)	C_{15} C_{16} C_{23}	1176(4)
Ω^2 —Co1—N3	86 52 (14)	N2-C16-H16	107.1
O1 - Co1 = N3	88.97 (15)	C15_C16_H16	107.1
01-001-105	00.97 (13)		10/.1

N2—Co1—N3	91.06 (15)	C23—C16—H16	107.1
N1—Co1—N3	92.90 (15)	C18—C17—C22	119.0 (4)
N4—Co1—N3	174.22 (16)	C18—C17—C15	120.3 (4)
O6—C11—O5	110.2 (3)	C22—C17—C15	120.6 (4)
O6—C11—O4	109.1 (3)	C17—C18—C19	120.6 (5)
O5—C11—O4	109.5 (3)	C17—C18—H18	119.7
O6—C11—O3	109.1 (3)	C19—C18—H18	119.7
O5—C11—O3	109.8 (3)	C20—C19—C18	120.3 (6)
O4—C11—O3	109.0 (3)	С20—С19—Н19	119.8
C2—O1—Co1	121.9 (3)	С18—С19—Н19	119.8
C9—O2—Co1	123.9 (3)	C19—C20—C21	120.0 (6)
H7C-07-H7D	108.5	C19—C20—H20	120.0
H8C-O8-H8D	108.3	C21—C20—H20	120.0
H9C	108.8	C22-C21-C20	119.2 (6)
C7—N1—C15	123.1 (3)	C22—C21—H21	120.4
C7—N1—Co1	124.3 (3)	C20—C21—H21	120.4
C15 - N1 - Co1	112.5(3)	$C_{21} - C_{22} - C_{17}$	120.8(5)
C14 - N2 - C16	119.3 (4)	$C_{21} = C_{22} = H_{22}$	119.6
C14—N2—Co1	124.2 (3)	C17—C22—H22	119.6
$C_{16} = N_{2} = C_{01}$	115.0(2)	C_{24} C_{23} C_{28}	119.3 (4)
$C_{29} = N_3 = C_{33}$	117.5 (4)	C_{24} C_{23} C_{16}	122.0(4)
$C_{29} = N_3 = C_{01}$	122.5 (3)	C_{28} C_{23} C_{16}	118.6 (4)
C_{33} N3—Col	119.7 (3)	C_{23} C_{24} C_{25}	120.1(5)
C_{34} N4 C_{38}	118 3 (4)	C23—C24—H24	119.9
C34—N4—Col	124.4 (3)	C25—C24—H24	119.9
C38—N4—Co1	117.3 (3)	$C_{26} - C_{25} - C_{24}$	119.9 (5)
C6-C1-C2	119.7 (4)	$C_{26} = C_{25} = H_{25}$	120.0
C6-C1-C7	117.9 (4)	C_{24} C_{25} H_{25}	120.0
C2-C1-C7	122.3 (4)	C25-C26-C27	120.9 (5)
01-C2-C3	120.3 (4)	C25—C26—H26	119.5
01	122.7 (4)	C27—C26—H26	119.5
C3—C2—C1	117.0 (4)	C26—C27—C28	119.6 (5)
C4—C3—C2	121.9 (5)	С26—С27—Н27	120.2
C4—C3—H3	119.1	С28—С27—Н27	120.2
С2—С3—Н3	119.1	C23—C28—C27	120.1 (4)
C3—C4—C5	121.9 (5)	C23—C28—H28	119.9
C3—C4—H4	119.1	C27—C28—H28	119.9
C5—C4—H4	119.1	N3—C29—C30	123.5 (6)
C6-C5-C4	118.3 (5)	N3—C29—H29	118.2
С6—С5—Н5	120.9	С30—С29—Н29	118.2
C4—C5—H5	120.9	C29—C30—C31	118.6 (6)
C5—C6—C1	121.2 (4)	С29—С30—Н30	120.7
С5—С6—Н6	119.4	С31—С30—Н30	120.7
С1—С6—Н6	119.4	C32—C31—C30	119.0 (6)
N1—C7—C1	124.4 (4)	C32—C31—H31	120.5
N1—C7—H7	117.8	С30—С31—Н31	120.5
С1—С7—Н7	117.8	C31—C32—C33	119.8 (6)
C9—C8—C13	120.2 (4)	С31—С32—Н32	120.1

C9—C8—C14	122.2 (4)	С33—С32—Н32	120.1
C13—C8—C14	117.5 (4)	N3—C33—C32	121.6 (5)
O2—C9—C8	125.1 (4)	N3—C33—H33	119.2
O2—C9—C10	117.2 (4)	С32—С33—Н33	119.2
C8—C9—C10	117.7 (4)	N4—C34—C35	122.8 (5)
C11—C10—C9	120.6 (5)	N4—C34—H34	118.6
C11—C10—H10	119.7	С35—С34—Н34	118.6
С9—С10—Н10	119.7	C36—C35—C34	118.8 (5)
C12—C11—C10	121.0 (5)	С36—С35—Н35	120.6
C12—C11—H11	119.5	С34—С35—Н35	120.6
C10—C11—H11	119.5	C37—C36—C35	118.7 (5)
C13—C12—C11	119.9 (5)	С37—С36—Н36	120.7
C13—C12—H12	120.0	С35—С36—Н36	120.7
C11—C12—H12	120.0	C36—C37—C38	120.3 (5)
C12—C13—C8	120.5 (5)	С36—С37—Н37	119.9
C12—C13—H13	119.8	С38—С37—Н37	119.9
С8—С13—Н13	119.8	N4—C38—C37	121.1 (5)
N2-C14-C8	125.0 (4)	N4—C38—H38	119.4
N2-C14-H14	117.5	С37—С38—Н38	119.4

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D^{\dots}A$	D—H…A
O7—H7 <i>C</i> ···O8	0.85	1.85	2.701 (12)	176
O7—H7D···O1 ⁱ	0.85	2.04	2.888 (8)	176
О8—H8 <i>C</i> ⋯О9	0.85	1.73	2.575 (14)	177
O8—H8D···O4 ⁱⁱ	0.85	1.99	2.835 (10)	176
O9—H9 <i>C</i> ···O3 ⁱⁱ	0.85	2.36	3.175 (11)	161

Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) -x+1/2, -y+1, z+1/2.