Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Cycloheptylidene-N'-(2,4-dinitrophenyl)hydrazine

Reza Kia,^a Hoong-Kun Fun^{a*} and Hadi Kargar^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran Correspondence e-mail: hkfun@usm.my

Received 10 January 2009; accepted 21 January 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.039; wR factor = 0.113; data-to-parameter ratio = 30.0.

The title compound, $C_{13}H_{16}N_4O_4$, is a new hydrazone. An intramolecular N-H···O hydrogen bond generates a sixmembered ring, producing an S(6) ring motif. The nitro groups in the ortho and para positions are almost coplanar with the benzene ring to which they are bound, making dihedral angles of 0.60 (11) and 3.18 (11)°, respectively. Pairs of intermolecular C-H···O hydrogen bonds link neighbouring molecules into inversion dimers with $R_2^2(10)$ motifs. The crystal structure is further stabilized by intermolecular $\pi - \pi$ interactions, with a benzene centroid-to-centroid distance of 3.6601 (4) Å.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related literature on the applications of hydrazone, see, for example: Niknam et al., (2005); Guillaumont & Nakamura (2000); Raj & Kurup (2006); Okabe et al. (1993).

Experimental

Crystal data $C_{13}H_{16}N_4O_4$ $M_r = 292.30$ Monoclinic, $P2_1/n$ a = 6.9721 (1) Åb = 23.7359 (5) Å

c = 8.2274 (2) Å

 $\beta = 102.351 \ (1)^{\circ}$

V = 1330.03 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^-$ T = 100.0 (1) K $0.51 \times 0.45 \times 0.08 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.946, T_{\max} = 0.991$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.113$	independent and constrained
S = 1.04	refinement
5824 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
194 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

26146 measured reflections

 $R_{\rm int} = 0.026$

5824 independent reflections

4916 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1N1 \cdots O2 \\ C2 - H2A \cdots O3^{i} \end{array}$	0.888 (14)	1.947 (14)	2.6225 (9)	131.7 (12)
	0.95	2.52	3.3165 (10)	142

Symmetry code: (i) -x, -y, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/ PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/ 811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2114).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Guillaumont, D. & Nakamura, S. (2000). Dyes Pigm. 46, 85-92.
- Niknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun. 35, 2231-2236.
- Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680. Raj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta Part A, 66, 898-903.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2009). E65, o382 [doi:10.1107/S1600536809002657]

N-Cycloheptylidene-N'-(2,4-dinitrophenyl)hydrazine

Reza Kia, Hoong-Kun Fun and Hadi Kargar

S1. Comment

2,4-Dinitrophenylhydrazones play an important role as stabilizers for the detection and protection of the carbonyl group (Niknam *et al.*, 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2006). In addition, some phenylhydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe *et al.*, 1993).

The title compound (Fig. 1) is a new hydrazone. An intramolecular N—H···O hydrogen bond generates a six-membered ring, producing an *S*(*6*) ring motif (Bernstein *et al.*, 1995). The nitro groups in the *ortho* and *para* positions are almost coplanar with the benzene ring to which they are bound, making dihedral angles of 0.60 (11)° and 3.18 (11)°, respectively. The cycloheptanone ring is puckered with a total puckering amplitude, Q = 0.7820 (8) Å. Pairs of intermolecular C—H···O hydrogen bonds link neighbouring molecules into dimers with $R_2^2(10)$ motifs (Table 1, Fig. 2). The crystal structure is further stabilized by intermolecular π - π interactions [Cg1···Cg1(1 - x, -y, 1 - z) = 3.6601 (4) Å, with Cg the centroid of the benzene ring].

S2. Experimental

The title compound was synthesized based on the reported procedure (Okabe *et al.* 1993). Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in DMF.

S3. Refinement

The H atom bound to N1 was located from the difference Fourier map and refined freely, see Table 1. The rest of the H atoms were positioned geometrically and refined in a riding model approximation with C—H = 0.95-0.99 Å and U_{iso} (H) = $1.2U_{eq}$ (C).

Figure 1

View of the molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dash lines.

Figure 2

The crystal packing of the title compound, viewed down the *c*-axis showing dimer formation. Intermolecular hydrogen bonds are shown as dashed lines.

N-Cycloheptylidene-N'-(2,4-dinitrophenyl)hydrazine

Crystal data	
$C_{13}H_{16}N_4O_4$	$V = 1330.03 (5) Å^3$
$M_r = 292.30$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 616
Hall symbol: -P 2yn	$D_{\rm x} = 1.460 {\rm ~Mg} {\rm ~m}^{-3}$
a = 6.9721 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 23.7359(5) Å	Cell parameters from 9967 reflections
c = 8.2274 (2) Å	$\theta = 2.7 - 40.2^{\circ}$
$\beta = 102.351 \ (1)^{\circ}$	$\mu=0.11~\mathrm{mm^{-1}}$

T = 100 KPlate, yellow

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	26146 measured reflections 5824 independent reflections
Radiation source: fine-focus sealed tube	4916 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
φ and ω scans	$\theta_{\rm max} = 35.0^\circ, \theta_{\rm min} = 1.7^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2005)	$k = -38 \rightarrow 38$
$T_{\min} = 0.946, \ T_{\max} = 0.991$	$l = -12 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent

 $0.51 \times 0.45 \times 0.08 \text{ mm}$

S = 1.04H atoms treated by a mixture of indepe5824 reflectionsand constrained refinement194 parameters $w = 1/[\sigma^2(F_o^2) + (0.0637P)^2 + 0.2167P]$ 0 restraintswhere $P = (F_o^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant
direct methods $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{max} = 0.43$ e Å⁻³
 $\Delta \rho_{min} = -0.30$ e Å⁻³

Special details

Experimental. The low-temperature data was collected with the Oxford Cryosystem Cobra low-temperature attachment. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.71910 (9)	-0.13041 (2)	0.17783 (8)	0.02285 (12)	
O2	0.81378 (8)	-0.04726 (2)	0.11828 (8)	0.02030 (12)	
03	0.01157 (8)	-0.08982 (3)	0.49098 (7)	0.02059 (12)	
O4	0.17434 (9)	-0.16037 (2)	0.41905 (8)	0.02340 (13)	
N1	0.62623 (9)	0.04321 (3)	0.18111 (8)	0.01434 (11)	
N2	0.58494 (9)	0.10007 (2)	0.19219 (8)	0.01495 (11)	
N3	0.70085 (9)	-0.07900 (3)	0.17430 (8)	0.01533 (11)	
N4	0.14350 (9)	-0.10960 (3)	0.42854 (8)	0.01614 (12)	
C1	0.34898 (10)	0.02454 (3)	0.30373 (9)	0.01400 (12)	
H1A	0.3228	0.0638	0.3054	0.017*	
C2	0.23044 (10)	-0.01240 (3)	0.36477 (9)	0.01428 (12)	
H2A	0.1231	0.0012	0.4077	0.017*	

C3	0.26847 (10)	-0.07040 (3)	0.36355 (8)	0.01365 (12)
C4	0.42249 (10)	-0.09135 (3)	0.30138 (8)	0.01385 (12)
H4A	0.4470	-0.1307	0.3017	0.017*
C5	0.54189 (9)	-0.05386 (3)	0.23798 (8)	0.01284 (11)
C6	0.51047 (9)	0.00541 (3)	0.23793 (8)	0.01249 (11)
C7	0.71332 (10)	0.13537 (3)	0.16026 (9)	0.01369 (12)
C8	0.90306 (10)	0.11873 (3)	0.11327 (9)	0.01459 (12)
H8A	0.8734	0.1078	-0.0056	0.018*
H8B	0.9549	0.0849	0.1784	0.018*
C9	1.06529 (10)	0.16349 (3)	0.13962 (9)	0.01612 (13)
H9A	1.0778	0.1796	0.2524	0.019*
H9B	1.1911	0.1447	0.1362	0.019*
C10	1.03488 (12)	0.21200 (3)	0.01374 (11)	0.02085 (15)
H10A	1.1629	0.2307	0.0187	0.025*
H10B	0.9920	0.1959	-0.0993	0.025*
C11	0.88606 (11)	0.25661 (3)	0.03869 (10)	0.01808 (13)
H11A	0.9336	0.2747	0.1483	0.022*
H11B	0.8801	0.2860	-0.0475	0.022*
C12	0.67896 (11)	0.23445 (3)	0.03073 (10)	0.01820 (14)
H12A	0.6359	0.2131	-0.0741	0.022*
H12B	0.5890	0.2669	0.0276	0.022*
C13	0.66109 (11)	0.19625 (3)	0.17764 (10)	0.01816 (13)
H13A	0.7471	0.2115	0.2797	0.022*
H13B	0.5242	0.1982	0.1930	0.022*
H1N1	0.727 (2)	0.0296 (6)	0.1432 (17)	0.036 (3)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
01	0.0256 (3)	0.0139 (2)	0.0313 (3)	0.0047 (2)	0.0112 (2)	-0.0015 (2)
O2	0.0173 (2)	0.0201 (2)	0.0264 (3)	-0.00068 (19)	0.0112 (2)	-0.0007 (2)
03	0.0189 (2)	0.0239 (3)	0.0216 (3)	-0.0013 (2)	0.0100 (2)	0.0012 (2)
O4	0.0262 (3)	0.0139 (2)	0.0317 (3)	-0.0030 (2)	0.0096 (2)	0.0025 (2)
N1	0.0135 (2)	0.0119 (2)	0.0186 (3)	-0.00005 (18)	0.00577 (19)	0.00008 (19)
N2	0.0142 (2)	0.0117 (2)	0.0198 (3)	0.00064 (18)	0.0055 (2)	0.0012 (2)
N3	0.0145 (2)	0.0153 (3)	0.0166 (3)	0.00157 (19)	0.00412 (19)	-0.0017 (2)
N4	0.0161 (3)	0.0163 (3)	0.0162 (3)	-0.0022 (2)	0.0037 (2)	0.0015 (2)
C1	0.0132 (3)	0.0127 (3)	0.0166 (3)	0.0010 (2)	0.0045 (2)	0.0005 (2)
C2	0.0133 (3)	0.0144 (3)	0.0158 (3)	0.0007 (2)	0.0045 (2)	0.0008 (2)
C3	0.0139 (3)	0.0132 (3)	0.0141 (3)	-0.0011 (2)	0.0036 (2)	0.0009 (2)
C4	0.0145 (3)	0.0128 (3)	0.0140 (3)	-0.0004 (2)	0.0025 (2)	-0.0003 (2)
C5	0.0122 (3)	0.0128 (3)	0.0138 (3)	0.0008 (2)	0.0036 (2)	-0.0014 (2)
C6	0.0119 (3)	0.0127 (3)	0.0127 (3)	-0.00011 (19)	0.00235 (19)	0.0000 (2)
C7	0.0131 (3)	0.0125 (3)	0.0160 (3)	0.0006 (2)	0.0043 (2)	0.0009 (2)
C8	0.0133 (3)	0.0130 (3)	0.0184 (3)	0.0002 (2)	0.0054 (2)	-0.0004 (2)
C9	0.0125 (3)	0.0149 (3)	0.0210 (3)	-0.0004 (2)	0.0037 (2)	0.0026 (2)
C10	0.0200 (3)	0.0173 (3)	0.0284 (4)	0.0029 (2)	0.0121 (3)	0.0069 (3)
C11	0.0199 (3)	0.0137 (3)	0.0218 (3)	0.0009 (2)	0.0071 (2)	0.0032 (2)

supporting information

C12	0.0170 (3)	0.0142 (3)	0.0233 (3)	0.0029 (2)	0.0040 (2)	0.0029 (2)
C13	0.0191 (3)	0.0128 (3)	0.0256 (3)	0.0016 (2)	0.0115 (3)	0.0003 (2)

Geometric parameters (Å, °)

1	·		
01—N3	1.2265 (8)	C7—C13	1.5044 (10)
O2—N3	1.2471 (8)	C7—C8	1.5080 (10)
O3—N4	1.2380 (9)	C8—C9	1.5330 (10)
O4—N4	1.2296 (8)	C8—H8A	0.9900
N1-C6	1.3551 (9)	C8—H8B	0.9900
N1—N2	1.3871 (8)	C9—C10	1.5328 (10)
N1—H1N1	0.887 (14)	С9—Н9А	0.9900
N2—C7	1.2934 (9)	С9—Н9В	0.9900
N3—C5	1.4517 (9)	C10—C11	1.5269 (11)
N4—C3	1.4525 (9)	C10—H10A	0.9900
C1—C2	1.3717 (10)	C10—H10B	0.9900
C1—C6	1.4241 (10)	C11—C12	1.5249 (11)
C1—H1A	0.9500	C11—H11A	0.9900
C2—C3	1.4026 (10)	C11—H11B	0.9900
C2—H2A	0.9500	C12—C13	1.5373 (11)
C3—C4	1.3772 (10)	C12—H12A	0.9900
C4—C5	1.3938 (10)	C12—H12B	0.9900
C4—H4A	0.9500	C13—H13A	0.9900
C5—C6	1.4237 (9)	C13—H13B	0.9900
C6—N1—N2	118.31 (6)	C7—C8—H8B	108.2
C6—N1—H1N1	117.1 (9)	C9—C8—H8B	108.2
N2—N1—H1N1	124.6 (9)	H8A—C8—H8B	107.4
C7—N2—N1	117.04 (6)	C10—C9—C8	115.71 (6)
O1—N3—O2	122.64 (6)	С10—С9—Н9А	108.4
01—N3—C5	118.93 (6)	С8—С9—Н9А	108.4
O2—N3—C5	118.43 (6)	С10—С9—Н9В	108.4
O4—N4—O3	123.61 (7)	С8—С9—Н9В	108.4
O4—N4—C3	118.53 (6)	H9A—C9—H9B	107.4
O3—N4—C3	117.86 (6)	C11—C10—C9	115.46 (6)
C2-C1-C6	121.51 (6)	C11—C10—H10A	108.4
C2-C1-H1A	119.2	C9—C10—H10A	108.4
C6—C1—H1A	119.2	C11-C10-H10B	108.4
C1—C2—C3	119.69 (6)	C9—C10—H10B	108.4
C1—C2—H2A	120.2	H10A—C10—H10B	107.5
C3—C2—H2A	120.2	C12—C11—C10	114.80 (6)
C4—C3—C2	121.37 (6)	C12—C11—H11A	108.6
C4—C3—N4	118.83 (6)	C10-C11-H11A	108.6
C2-C3-N4	119.79 (6)	C12—C11—H11B	108.6
C3—C4—C5	118.95 (6)	C10—C11—H11B	108.6
C3—C4—H4A	120.5	H11A—C11—H11B	107.5
С5—С4—Н4А	120.5	C11—C12—C13	113.89 (6)
C4—C5—C6	121.79 (6)	C11—C12—H12A	108.8

C4—C5—N3	115.84 (6)	C13—C12—H12A	108.8
C6—C5—N3	122.37 (6)	C11—C12—H12B	108.8
N1—C6—C5	123.46 (6)	C13—C12—H12B	108.8
N1—C6—C1	119.84 (6)	H12A—C12—H12B	107.7
C5—C6—C1	116.69 (6)	C7—C13—C12	115.46 (6)
N2-C7-C13	114.26 (6)	C7—C13—H13A	108.4
N2—C7—C8	124.44 (6)	С12—С13—Н13А	108.4
С13—С7—С8	121.29 (6)	C7—C13—H13B	108.4
С7—С8—С9	116.32 (6)	С12—С13—Н13В	108.4
С7—С8—Н8А	108.2	H13A—C13—H13B	107.5
С9—С8—Н8А	108.2		
C6—N1—N2—C7	170.12 (6)	C4—C5—C6—N1	178.35 (6)
C6—C1—C2—C3	0.28 (10)	N3—C5—C6—N1	-0.87 (10)
C1—C2—C3—C4	-0.32 (10)	C4—C5—C6—C1	-0.89 (9)
C1-C2-C3-N4	179.83 (6)	N3—C5—C6—C1	179.89 (6)
O4—N4—C3—C4	-3.17 (10)	C2-C1-C6-N1	-178.97 (6)
O3—N4—C3—C4	176.68 (6)	C2-C1-C6-C5	0.30 (10)
O4—N4—C3—C2	176.69 (7)	N1—N2—C7—C13	-178.94 (6)
O3—N4—C3—C2	-3.46 (10)	N1—N2—C7—C8	-0.34 (10)
C2—C3—C4—C5	-0.26 (10)	N2—C7—C8—C9	-159.23 (7)
N4—C3—C4—C5	179.60 (6)	C13—C7—C8—C9	19.27 (10)
C3—C4—C5—C6	0.88 (10)	C7—C8—C9—C10	-74.34 (8)
C3—C4—C5—N3	-179.85 (6)	C8—C9—C10—C11	76.57 (9)
O1—N3—C5—C4	0.89 (9)	C9—C10—C11—C12	-59.37 (9)
O2—N3—C5—C4	-179.00 (6)	C10-C11-C12-C13	68.70 (9)
O1—N3—C5—C6	-179.84 (6)	N2-C7-C13-C12	-131.11 (7)
O2—N3—C5—C6	0.26 (10)	C8—C7—C13—C12	50.25 (9)
N2—N1—C6—C5	-177.98 (6)	C11—C12—C13—C7	-84.10 (8)
N2—N1—C6—C1	1.24 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
$N1 - H1N1 \cdots O2$ $C2 - H2A \cdots O3^{i}$	0.888 (14)	1.947 (14)	2.6225 (9)	131.7 (12)
	0.95	2.52	3.3165 (10)	142

Symmetry code: (i) -x, -y, -z+1.