Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N-Bis(2-pyridylmethyl)-*tert*-butyl-amine

Allen Mambanda, Deogratius Jaganyi and Kirsty Stewart*

School of Chemical and Physical Sciences, University of KwaZulu–Natal, Scottsville 3209, South Africa

Correspondence e-mail: stewart@ukzn.ac.za

Received 29 October 2008; accepted 12 January 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.119; data-to-parameter ratio = 13.7.

In the title compound, $C_{16}H_{21}N_3$, the dihedral angle between the two pyridine rings is 88.11 (9)°. In the crystal, molecules are linked through intermolecular $C-H\cdots\pi$ interactions, forming a layer expanding parallel to the (101) plane.

Related literature

For related compounds, see: Mambanda *et al.* (2007); Foxon *et al.* (2007); Fujihara *et al.* (2004); Munro & Camp (2003). For metal complexes with the title compound as a ligand, see: Fujii *et al.* (2003); Lee & Lippard (2002); Mok *et al.* (1997). For the metal complex with *N*,*N*-bis(2-pyridylmethyl)ethylamine as a ligand, see: Pal *et al.* (1992).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{21}N_3 \\ M_r = 255.36 \\ \text{Monoclinic, } Cc \\ a = 6.1808 \ (3) \ \text{\AA} \\ b = 17.9502 \ (8) \ \text{\AA} \\ c = 13.7079 \ (6) \ \text{\AA} \\ \beta = 100.239 \ (4)^\circ \end{array}$

 $V = 1496.62 (12) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 293 (2) K $0.50 \times 0.50 \times 0.30 \text{ mm}$

7475 measured reflections

 $R_{\rm int} = 0.012$

2 restraints

 $\Delta \rho_{\text{max}} = 0.21 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

2392 independent reflections

2024 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection

- Oxford Diffraction Xcalibur2 CCD diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2008)
 - $T_{\min} = 0.967, \ T_{\max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.119$ S = 1.022392 reflections 175 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N2/C3–C7and N3/C9–C13 rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H1\cdots Cg2^{i}$	0.93	2.97	3.819 (2)	153
$C15-H16\cdots Cg1^{n}$	0.96	2.94	3.836 (2)	156

Symmetry codes: (i) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (ii) $x, -y, z - \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors gratefully acknowledge financial support from the University of Kwazulu-Natal and the South African National Research Foundation. We thank Mr C. Grimmer for the NMR analysis of the samples. We also thank Professor O. Q Munro and Professor J. Field for their guidance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2355).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Foxon, S., Xu, J., Turba, S., Leibold, M., Hampel, F., Walter, O., Wurtele, C., Holthausen, M. & Schindler, S. (2007). *Eur. J. Inorg. Chem.* pp. 423–443.
- Fujihara, T., Saito, M. & Nagasawa, A. (2004). Acta Cryst. E60, o262-o263.
- Fujii, T., Naito, A., Yamaguchi, S., Wada, A., Funahashi, Y., Jitsukawa, K., Nagatomo, S., Kitagawa, T. & Masuda, H. (2003). *Chem. Commun.* pp. 2700– 2701.
- Lee, D. & Lippard, S. J. (2002). Inorg. Chim. Acta, 341, 1-11.
- Mambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, 0676–0680.
- Mok, H. J., Davis, J. A., Pal, S., Mandal, S. K. & Armstrong, W. H. (1997). Inorg. Chim. Acta, 263, 385–394.
- Munro, O. Q. & Camp, G. L. (2003). Acta Cryst. C59, 0672-0675
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Pal, S., Chan, M. K. & Armstrong, W. H. (1992). J. Am. Chem. Soc. 114, 6398–6404.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o402 [doi:10.1107/S1600536809001366]

N,N-Bis(2-pyridylmethyl)-tert-butylamine

Allen Mambanda, Deogratius Jaganyi and Kirsty Stewart

S1. Comment

The title compound is a versatile tridentate N-donor ligand, and it (Fujii *et al.*, 2003; Lee & Lippard, 2002; Mok *et al.*, 1997) and its analogue, *N*, *N*-bis(2-pyridylmethyl)ethylamine (Pal *et al.*, 1992) have been used extensively in metal coordination. The related crystal structures of symmetrical bis(tridentate) ligands have been reportd (Mambanda *et al.*, 2007; Foxon *et al.*, 2007; Fujihara *et al.*, 2004).

The crystal structure of the title compound (Fig. 1) shows that the three nitrogen atoms (one sp^3 and two pyridine sp^2) are not suitability orientated for pincer-like coordination to a metal. Rotation about the C2—C3 and C8—C9 bonds are required for that to occur. The relative orientation of the two pyridine rings is reflected in a dihedral angle between their mean planes of 88.11 (9)°, clearly this angle would have to change were the ligand to bind to a metal centre. The steric influence of the bulky *tert*-butyl group is reflected in the C1—N1—C2 and C1—N1—C8 angles [113.90 (13) and 115.34 (13)°, respectively], being larger than the C2—N1—C8 angle of 110.08 (13)°. The methylene groups of the structure all adopt the expected staggered (lowest energy) conformation (Munro & Camp, 2003). The pyridyl ring containing atom N2 is orientated at 18 (1)° relative to the mean plane of the *N-tert*-butyl group (plane through C16—C1—N1), whilst that containing N3 is orientated at 74 (1)°.

There are no short van der Waals contacts less than the sum of the van der Waals radii in this system, reflected in the loose packing, however weak (possibly stabilizing) C—H··· π intermolecular interactions do occur. The metrics of such interactions reflect a T-shaped, edge-to-face geometry. Specifically, let us define *Cg*1 as the centre of gravity of the pyridyl N2/C3–C7 ring and *Cg*2 the centre of gravity of the pyridyl N3/C9–C13 ring. A C—H··· π interaction with a separation of 2.97 (1) Å exists between C7—H1 from the pyridyl ring containing atom N2 and *Cg*2 of neighbouring symmetry related molecule [symmetry code: (i) x - 1/2, y - 1/2, z] (Table 1). A similar C—H··· π interaction with a separation of 2.94 (1) Å exists between C15—H16 from one of the methyl groups of the *tert*-butyl moiety and *Cg*1 on the symmetry related neighbouring molecule with symmetry code: (ii) x, -y, z - 1/2. Figure 2 shows the packing within the unit cell for the title compound.

S2. Experimental

The compound was synthesized following a literature method (Pal *et al.*, 1992). Under a high flow of nitrogen, 6 ml of 20% NaOH solution was added to an aqueous solution of 2-picolyl chloridehydrochloride [(3.937 g (24 mmol) in 0.5 ml ultra pure water] to form a pink emulsion solution. 2-Amino-2-methyl propane (12 mmol) was added and the mixture stirred at 60°C. 40 ml of 20% NaOH solution was then added over a period of 1 h and the mixture left to stir for a further 12 h. The crude product was extracted with CHCl₃ washed with ultra pure water and dried over Na₂SO₄. Excess solvent was removed under reduced pressure and the oil residue purified on a short chromatographic column packed with 0.5 g charcoal and 5 g of neutral alumina using CHCl₃ as an eluent to afford a light yellow solution. Colourless single crystals suitable for X-ray diffraction were obtained from slow evaporation of the solvent from its solution made from a 5%

chloroform in ethanol solution (yield: 1.73 g, 60%).

Spectroscopic data: ¹H NMR (400 MHz, CDCl₃) δ / p.p.m.: 8.40 (d, 2H), 7.60 (t, 2H), 7.45 (d, 2H), 7.05 (t, 2H), 3.95 (s, 4H), 1.18 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ / p.p.m.: 27.0, 57.0, 122.0, 123.0,136.0, 148.0, 160. Anal. Calc. for C₁₆H₂₁N₃: C 75.26, H 8.29, N 16.46; Found: C 74.89, H 7.97, N 17.37.

S3. Refinement

All Hydrogen atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and atomic numbering.

Figure 2

Unit cell packing diagram of the title compound, viewed along the *a* axis.

N,N-Bis(2-pyridylmethyl)-tert-butylamine

Crystal data

C₁₆H₂₁N₃ $M_r = 255.36$ Monoclinic, Cc Hall symbol: C -2yc a = 6.1808 (3) Å b = 17.9502 (8) Å c = 13.7079 (6) Å $\beta = 100.239$ (4)° V = 1496.62 (12) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur2 CCD diffractometer Radiation source: Enhance (Mo)X-Ray Source Graphite monochromator Detector resolution: 8.4190 pixels mm⁻¹ ω -2 θ scans Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2008) $T_{\min} = 0.967, T_{\max} = 0.980$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.119$ S = 1.022392 reflections 175 parameters 2 restraints 0 constraints F(000) = 552 $D_x = 1.133 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4672 reflections $\theta = 3.9-32.0^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KPlate, colourless $0.50 \times 0.50 \times 0.30 \text{ mm}$

7475 measured reflections 2392 independent reflections 2024 reflections with $I > 2\sigma(I)$ $R_{int} = 0.012$ $\theta_{max} = 31.9^{\circ}, \theta_{min} = 4.1^{\circ}$ $h = -8 \rightarrow 7$ $k = -26 \rightarrow 26$ $l = -18 \rightarrow 20$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0873P)^2 + 0.017P]$ where $P = (F_o^2 + 2F_c^2)/3$

$$(\Delta/\sigma)_{\rm max} = 0.001$$

 $\Delta\rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C14	0.2251 (5)	0.16330 (11)	0.59751 (18)	0.0645 (6)	
H20	0.1452	0.1875	0.6425	0.097*	
H21	0.2314	0.1955	0.5421	0.097*	
H19	0.3716	0.1525	0.6311	0.097*	
C15	0.2342 (5)	0.05704 (14)	0.48509 (17)	0.0679 (6)	
H18	0.3767	0.0409	0.5180	0.102*	
H16	0.2508	0.0937	0.4359	0.102*	
H17	0.1537	0.0152	0.4537	0.102*	
C16	-0.1269 (5)	0.10773 (16)	0.5103 (2)	0.0739 (7)	
H15	-0.1940	0.0630	0.4806	0.111*	
H14	-0.1260	0.1449	0.4600	0.111*	
H13	-0.2090	0.1258	0.5586	0.111*	
N3	0.1632 (2)	0.14031 (8)	0.88126 (11)	0.0448 (3)	
C9	0.2329 (2)	0.09809 (8)	0.81277 (11)	0.0365 (3)	
N1	0.1221 (2)	0.03781 (7)	0.64559 (9)	0.0382 (3)	
C3	0.1172 (3)	-0.09657 (8)	0.68278 (12)	0.0384 (3)	
C10	0.4530 (3)	0.08012 (10)	0.81845 (13)	0.0434 (3)	
H8	0.4982	0.0513	0.7694	0.052*	
C1	0.1094 (3)	0.09104 (10)	0.56073 (13)	0.0455 (4)	
C2	0.0134 (3)	-0.03384 (10)	0.61861 (13)	0.0452 (4)	
H11	0.0200	-0.0449	0.5499	0.054*	
H12	-0.1403	-0.0300	0.6245	0.054*	
N2	-0.0196 (2)	-0.14516 (8)	0.71406 (13)	0.0476 (3)	
C8	0.0527 (3)	0.06774 (11)	0.73393 (12)	0.0442 (4)	
H9	-0.0232	0.0287	0.7633	0.053*	
H10	-0.0527	0.1073	0.7137	0.053*	
C12	0.5344 (3)	0.14791 (10)	0.96934 (14)	0.0529 (4)	
H6	0.6329	0.1652	1.0240	0.063*	
C11	0.6047 (3)	0.10564 (11)	0.89812 (15)	0.0501 (4)	
H7	0.7530	0.0941	0.9031	0.060*	
C4	0.3437 (3)	-0.10609 (10)	0.70322 (14)	0.0466 (4)	
H4	0.4352	-0.0713	0.6809	0.056*	
C13	0.3140 (4)	0.16421 (10)	0.95790 (14)	0.0519 (4)	

supporting information

Н5	0.2664	0.1935	1.0060	0.062*	
C5	0.4322 (3)	-0.16716 (12)	0.75666 (16)	0.0553 (5)	
H3	0.5836	-0.1743	0.7708	0.066*	
C6	0.2920 (4)	-0.21757 (11)	0.78883 (17)	0.0567 (5)	
H2	0.3460	-0.2594	0.8252	0.068*	
C7	0.0701 (3)	-0.20409 (10)	0.76555 (17)	0.0554 (5)	
H1	-0.0242	-0.2383	0.7871	0.066*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C14	0.0927 (17)	0.0403 (9)	0.0584 (12)	-0.0074 (10)	0.0077 (11)	0.0060 (8)
C15	0.0990 (18)	0.0620 (12)	0.0486 (11)	-0.0019 (12)	0.0296 (11)	0.0014 (9)
C16	0.0720 (14)	0.0773 (16)	0.0638 (13)	0.0155 (12)	-0.0114 (11)	0.0176 (11)
N3	0.0476 (8)	0.0460 (7)	0.0408 (7)	0.0030 (6)	0.0075 (6)	-0.0021 (5)
C9	0.0370 (7)	0.0395 (7)	0.0324 (6)	-0.0014 (5)	0.0047 (5)	0.0033 (5)
N1	0.0426 (7)	0.0397 (6)	0.0307 (6)	-0.0034 (5)	0.0021 (5)	0.0008 (4)
C3	0.0404 (8)	0.0389 (7)	0.0347 (7)	-0.0029 (6)	0.0033 (5)	-0.0005 (5)
C10	0.0369 (7)	0.0529 (9)	0.0396 (7)	0.0002 (6)	0.0044 (6)	-0.0019 (6)
C1	0.0559 (10)	0.0416 (8)	0.0371 (7)	0.0006 (6)	0.0034 (7)	0.0054 (6)
C2	0.0446 (8)	0.0451 (8)	0.0409 (8)	-0.0067 (6)	-0.0060 (6)	0.0039 (6)
N2	0.0412 (7)	0.0437 (7)	0.0568 (9)	-0.0058 (6)	0.0056 (6)	0.0045 (6)
C8	0.0342 (7)	0.0603 (10)	0.0369 (7)	-0.0018 (6)	0.0031 (6)	-0.0030 (6)
C12	0.0612 (11)	0.0493 (9)	0.0427 (9)	-0.0136 (8)	-0.0054 (8)	0.0022 (7)
C11	0.0403 (8)	0.0573 (10)	0.0493 (9)	-0.0036 (7)	-0.0013 (7)	0.0072 (7)
C4	0.0371 (8)	0.0526 (9)	0.0514 (9)	-0.0026 (6)	0.0114 (7)	0.0003 (7)
C13	0.0678 (11)	0.0456 (8)	0.0413 (9)	-0.0018 (8)	0.0071 (8)	-0.0066 (7)
C5	0.0433 (9)	0.0576 (10)	0.0637 (12)	0.0114 (8)	0.0061 (8)	-0.0027 (9)
C6	0.0618 (11)	0.0419 (8)	0.0640 (11)	0.0110 (7)	0.0043 (9)	0.0033 (8)
C7	0.0539 (10)	0.0426 (9)	0.0702 (12)	-0.0057 (7)	0.0127 (9)	0.0088 (8)

Geometric parameters (Å, °)

C14—C1	1.523 (3)	C3—C2	1.501 (2)
С14—Н20	0.9600	C10—C11	1.385 (2)
C14—H21	0.9600	C10—H8	0.9300
C14—H19	0.9600	C2—H11	0.9700
C15—C1	1.525 (3)	C2—H12	0.9700
C15—H18	0.9600	N2—C7	1.336 (2)
С15—Н16	0.9600	C8—H9	0.9700
С15—Н17	0.9600	C8—H10	0.9700
C16—C1	1.531 (3)	C12—C11	1.367 (3)
С16—Н15	0.9600	C12—C13	1.375 (3)
C16—H14	0.9600	С12—Н6	0.9300
С16—Н13	0.9600	C11—H7	0.9300
N3—C9	1.336 (2)	C4—C5	1.377 (3)
N3—C13	1.345 (2)	C4—H4	0.9300
C9—C10	1.387 (2)	C13—H5	0.9300

С9—С8	1.509 (2)	C5—C6	1.378 (3)
N1—C8	1.457 (2)	С5—Н3	0.9300
N1—C2	1.468 (2)	C6—C7	1.374 (3)
N1—C1	1.497 (2)	С6—Н2	0.9300
C3—N2	1.338 (2)	C7—H1	0.9300
C3—C4	1.388 (2)		
C1C14H20	109.5	C15—C1—C16	109.18 (19)
C1-C14-H21	109.5	N1—C2—C3	112.38 (12)
H20—C14—H21	109.5	N1—C2—H11	109.1
C1-C14-H19	109.5	C3—C2—H11	109.1
H20—C14—H19	109.5	N1—C2—H12	109.1
H21—C14—H19	109.5	C3—C2—H12	109.1
C1—C15—H18	109.5	H11—C2—H12	107.9
C1-C15-H16	109.5	C7—N2—C3	117.31 (16)
H18—C15—H16	109.5	N1—C8—C9	116.05 (14)
C1—C15—H17	109.5	N1—C8—H9	108.3
H18—C15—H17	109.5	С9—С8—Н9	108.3
H16—C15—H17	109.5	N1-C8-H10	108.3
C1-C16-H15	109.5	C9—C8—H10	108.3
C1—C16—H14	109.5	H9—C8—H10	107.4
H15—C16—H14	109.5	C11—C12—C13	118.10 (17)
C1-C16-H13	109.5	С11—С12—Н6	121.0
Н15—С16—Н13	109.5	С13—С12—Н6	121.0
H14—C16—H13	109.5	C12—C11—C10	119.36 (17)
C9—N3—C13	117.70 (16)	С12—С11—Н7	120.3
N3—C9—C10	121.88 (15)	С10—С11—Н7	120.3
N3—C9—C8	114.75 (14)	C5—C4—C3	119.78 (16)
C10—C9—C8	123.24 (14)	C5—C4—H4	120.1
C8—N1—C2	110.06 (14)	C3—C4—H4	120.1
C8—N1—C1	115.35 (14)	N3—C13—C12	123.79 (17)
C2—N1—C1	113.90 (12)	N3—C13—H5	118.1
N2—C3—C4	121.83 (15)	С12—С13—Н5	118.1
N2—C3—C2	116.63 (15)	C4—C5—C6	118.68 (17)
C4—C3—C2	121.42 (15)	С4—С5—Н3	120.7
C11—C10—C9	119.16 (17)	С6—С5—Н3	120.7
С11—С10—Н8	120.4	C7—C6—C5	117.95 (18)
С9—С10—Н8	120.4	С7—С6—Н2	121.0
N1—C1—C14	109.25 (14)	С5—С6—Н2	121.0
N1—C1—C15	108.06 (15)	N2—C7—C6	124.45 (18)
C14—C1—C15	107.53 (19)	N2—C7—H1	117.8
N1-C1-C16	112.96 (17)	С6—С7—Н1	117.8
C_{14} C_{1} C_{16}	109.70 (18)		11,10
	10)((10)		
C13—N3—C9—C10	-1.1 (2)	C2—C3—N2—C7	175.54 (17)
C13—N3—C9—C8	174.86 (16)	C2—N1—C8—C9	134.62 (15)
N3—C9—C10—C11	1.0 (2)	C1—N1—C8—C9	-94.82 (18)
C8—C9—C10—C11	-174.62 (17)	N3—C9—C8—N1	165.09 (14)

C8—N1—C1—C14	50.8 (2)	C10-C9-C8-N1	-19.0 (2)	
C2—N1—C1—C14	179.45 (17)	C13-C12-C11-C10	-0.8 (3)	
C8—N1—C1—C15	167.47 (17)	C9-C10-C11-C12	0.0 (3)	
C2—N1—C1—C15	-63.8 (2)	N2—C3—C4—C5	0.3 (3)	
C8—N1—C1—C16	-71.6 (2)	C2—C3—C4—C5	-175.51 (17)	
C2—N1—C1—C16	57.1 (2)	C9—N3—C13—C12	0.3 (3)	
C8—N1—C2—C3	-77.86 (18)	C11—C12—C13—N3	0.7 (3)	
C1—N1—C2—C3	150.82 (15)	C3—C4—C5—C6	-0.1 (3)	
N2—C3—C2—N1	137.29 (16)	C4—C5—C6—C7	0.1 (3)	
C4—C3—C2—N1	-46.7 (2)	C3—N2—C7—C6	0.5 (3)	
C4—C3—N2—C7	-0.5 (3)	C5C6C7N2	-0.3 (3)	

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
$\overline{\text{C7}-\text{H1}\cdots\text{Cg2}^{i}}$	0.93	2.97	3.819 (2)	153
C15—H16…Cg1 ⁱⁱ	0.96	2.94	3.836 (2)	156

Symmetry codes: (i) *x*-1/2, *y*-1/2, *z*; (ii) *x*, -*y*, *z*-1/2.