## metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## [*u*-10,22-Dichloro-3,6-bis(2-furylmethyl)-3,6,14,18-tetraazatricyclo-[18.3.1.1<sup>8,12</sup>]pentacosa-1(23),8,10,-12(25),13,18,20(24),21-octaene-24,25diolato- $\kappa^8 N^3$ , $N^6$ , $O^{24}$ , $O^{25}$ : $N^{14}$ , $N^{18}$ , -O<sup>24</sup>:O<sup>25</sup>]bis[chloridocopper(II)] acetonitrile solvate

### Chen Chen, Yu Cheng, Pan Liu, Hong Zhou and Zhi-Quan Pan\*

Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China Correspondence e-mail: zhigpan@163.com

Received 30 December 2008; accepted 4 January 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.054; wR factor = 0.111; data-to-parameter ratio = 15.4.

The title compound,  $[Cu_2(C_{31}H_{30}Cl_2N_4O_4)Cl_2]$ ·CH<sub>3</sub>CN, was synthesized by cyclocondensation between N,N'-bis(2-furyl)-N, N'-bis(3-formyl-5-chlorosalicylaldehyde)ethylenediamine and 1,3-diaminopropane in the presence of  $Cu^{II}$  ions. It is an unsymmetrical dinuclear Cu<sup>II</sup> complex. The coordination geometry for each Cu<sup>II</sup> atom can be discribed as distorted square-pyramidal. The two Cu atoms are bridged by two phenolate O atoms with a Cu $\cdot \cdot \cdot$ Cu distance of 3.0274 (9) Å.

### **Related literature**

For general background, see: Hori et al. (2001); Karunakaran & Kandaswamy (1994); McCollum et al. (1994); Okawa et al. (1998); Sun et al. (2001). For the synthesis of N,N'-bis(2-furyl)-1,2-diaminoethane, see: Rameau (1938).



### **Experimental**

### Crystal data

 $[Cu_2(C_{31}H_{30}Cl_2N_4O_4)Cl_2] \cdot C_2H_3N$  $\gamma = 98.259 \ (3)^{\circ}$  $M_r = 832.52$ V = 1736.2 (7) Å<sup>3</sup> Triclinic,  $P\overline{1}$ Z = 2a = 10.4439 (19) ÅMo  $K\alpha$  radiation b = 13.083 (4) Å  $\mu = 1.58 \text{ mm}^{-1}$ c = 14.319 (3) Å T = 291 (2) K  $\alpha = 112.039 (3)^{\circ}$  $0.30 \times 0.26 \times 0.24$  mm  $\beta = 100.290 \ (4)^{\circ}$ 

#### Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001)  $T_{\min} = 0.63, \ T_{\max} = 0.69$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.054$ | 434 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.111$               | H-atom parameters constrained                              |
| S = 1.01                        | $\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$  |
| 6662 reflections                | $\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Table 1 Selected bond lengths (Å).

| Cu1-Cl1 | 2.5022 (13) | Cu2-Cl2 | 2.3104 (13) |
|---------|-------------|---------|-------------|
| Cu1-O1  | 1.974 (3)   | Cu2-O1  | 1.940 (3)   |
| Cu1-O2  | 1.987 (3)   | Cu2-O2  | 2.010 (2)   |
| Cu1-N3  | 1.971 (4)   | Cu2-N1  | 2.104 (3)   |
| Cu1-N4  | 1.984 (4)   | Cu2-N2  | 2.047 (3)   |
| eur itt | 1001(1)     | 042 112 | 2.01        |

9923 measured reflections

 $R_{\rm int} = 0.036$ 

6662 independent reflections

4514 reflections with  $I > 2\sigma(I)$ 

Data collection: SMART (Bruker, 2007): cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful for financial support from the Foundation of the Excellent Middle-Young Innovation Group of the Education Department of Hubei Province, China (grant No. T200802) and the Key Foundation of the Education Department of Hubei Province, China (grant No. D20081503).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2178).

### References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hori, A., Yonemura, M., Ohba, M. & Okawa, H. (2001). Bull. Chem. Soc. Jpn, 74 495-503
- Karunakaran, S. & Kandaswamy, M. (1994). J. Chem. Soc. Dalton Trans. pp. 1595-1598
- McCollum, D. G., Fraser, C., Ostrander, R., Rheingold, A. L. & Bosnich, B. (1994). Inorg. Chem. 33, 2383-2392.
- Okawa, H., Furutachi, H. & Fenton, D. E. (1998). Coord. Chem. Rev. 174, 51-75.
- Rameau, J. Th. L. B. (1938). Rev. Trav. Chim. 57, 192-214.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, G.-C., He, Z.-H., Li, Z.-J., Yuan, X.-D., Yang, Z.-J., Wang, G.-X., Wang, L.-F. & Liu, C.-R. (2001). Molecules, 6, 1001-1005.

## supporting information

Acta Cryst. (2009). E65, m162 [doi:10.1107/S1600536809000166]

[ $\mu$ -10,22-Dichloro-3,6-bis(2-furylmethyl)-3,6,14,18-tetraazatricyclo-[18.3.1.1<sup>8,12</sup>]pentacosa-1(23),8,10,12(25),13,18,20(24),21-octaene-24,25diolato- $\kappa^8 N^3$ , $N^6$ , $O^{24}$ , $O^{25}$ : $N^{14}$ , $N^{18}$ , $O^{24}$ : $O^{25}$ ]bis[chloridocopper(II)] acetonitrile solvate

## Chen Chen, Yu Cheng, Pan Liu, Hong Zhou and Zhi-Quan Pan

## S1. Comment

The design and synthesis of phenol-based macrocyclic ligands with  $N(amino)_2O_2$  and  $N(imino)_2O_2$  metal-binding sites sharing two phenolate O atoms have drawn increasing attention for their potential unique properties (Hori *et al.*, 2001; Karunakaran & Kandaswamy, 1994; McCollum *et al.*, 1994; Okawa *et al.*, 1998; Sun *et al.*, 2001). In this paper, we report a new unsymmetrical homodinuclear complex of  $N(amino)_2N(imino)_2O_2$ -type macrocycle.

The structure of the title compound is shown in Fig. 1. The Cu1 atom is five-coordinated by two imino N atoms and two phenolate O atoms from the macrocyclic ligand and one Cl atom. The Cu2 atom is also five-coordinated by two amino N atoms and two phenolate O atoms from the macrocyclic ligand and one Cl atom. The coordination geometry for each Cu<sup>II</sup> atom can be described as distorted square-pyramidal. The basal plane of Cu1 is composed of N3, N4, O1, O2 with a mean plane deviation of 0.0096 Å. The distances between Cu1 and the coordinated atoms in the basal plane are in a range of 1.971 (4)–1.987 (3) Å (Table 1). The mean plane deviation of the basal plane of Cu2 composed of N1, N2, O1, O2 is 0.0185 Å, with the distances between Cu2 and coordinated atoms in the basal plane in a range of 1.940 (3)–2.104 (3) Å. The difference in the distances of Cu1–coordinated atoms and Cu2–coordinated atoms is attributed to the dissimilar size of imino and amino groups. The two Cu atoms are bridged by two phenolate O atoms from the macrocyclic ligand. Two Cl atoms occupy the axial positions, respectively.

## S2. Experimental

N,N'-bis(2-furyl)-1,2-diaminoethane was prepared using a variant of the method suggested by Rameau (1938). The precursor ligand N,N'-bis(2-furyl)-N,N'-bis(3-formyl-5-chlorosalicylaldehyde)ethylenediamine (H<sub>2</sub>L) was prepared through the Mannich reaction between 5-chlorosalicyladehyde (0.2 mol), polyformaldehyde (0.2 mol) and N,N'-bis(2-furyl)-1,2-diaminoethane (0.1 mol). The title compound was synthesized by stepwise template method through the reaction of the methanol solution of H<sub>2</sub>L (0.5 mmol) with the methanol solution of 1,3-diaminopropane (0.5 mmol), Cu(CH<sub>3</sub>CO<sub>2</sub>)<sub>2</sub>.H<sub>2</sub>O (0.5 mmol), and NiCl<sub>2</sub>.6H<sub>2</sub>O (0.5 mmol). The blue crystals of the title compound suitable for X-ray diffraction were obtained by the evaporation of the mother solution in about a month.

## **S3. Refinement**

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH), 0.97 (CH<sub>2</sub>) and 0.96 (CH<sub>3</sub>) Å and with  $U_{iso}(H) = 1.2$  (or 1.5 for methyl) $U_{eq}(C)$ .



## Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

### [µ-10,22-Dichloro-3,6-bis(2-furylmethyl)-3,6,14,18-

# tetraazatricyclo[18.3.1.1<sup>8,12</sup>]pentacosa-1(23),8,10,12 (25),13,18,20 (24),21- octaene-24,25-diolato- $\kappa^8 N^3$ , N<sup>6</sup>, O<sup>24</sup>, O<sup>25</sup>: N<sup>14</sup>, N<sup>18</sup>, O<sup>24</sup>: O<sup>25</sup>]bis[chloridocopper(II)] acetonitrile solvate

| Crystal data                                       |                                                       |
|----------------------------------------------------|-------------------------------------------------------|
| $[Cu_2(C_{31}H_{30}Cl_2N_4O_4)Cl_2] \cdot C_2H_3N$ | Z = 2                                                 |
| $M_r = 832.52$                                     | F(000) = 848                                          |
| Triclinic, P1                                      | $D_{\rm x} = 1.593 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Hall symbol: -P 1                                  | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 10.4439 (19)  Å                                | Cell parameters from 2324 reflections                 |
| b = 13.083 (4)  Å                                  | $\theta = 2.2 - 25.3^{\circ}$                         |
| c = 14.319(3) Å                                    | $\mu = 1.58 \text{ mm}^{-1}$                          |
| $\alpha = 112.039 \ (3)^{\circ}$                   | T = 291  K                                            |
| $\beta = 100.290 \ (4)^{\circ}$                    | Block, blue                                           |
| $\gamma = 98.259 \ (3)^{\circ}$                    | $0.30 \times 0.26 \times 0.24 \text{ mm}$             |
| V = 1736.2 (7) Å <sup>3</sup>                      |                                                       |
|                                                    |                                                       |

Data collection

| Bruker APEX CCD<br>diffractometer<br>Radiation source: sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2001)<br>$T_{min} = 0.63, T_{max} = 0.69$<br><i>Refinement</i> | 9923 measured reflections<br>6662 independent reflections<br>4514 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.036$<br>$\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$<br>$h = -12 \rightarrow 12$<br>$k = -13 \rightarrow 16$<br>$l = -17 \rightarrow 15$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$                                                                                                                                                                                                                                           | Secondary atom site location: difference Fourier                                                                                                                                                                                                                            |
| Least-squares matrix: full                                                                                                                                                                                                                                    | map                                                                                                                                                                                                                                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.054$                                                                                                                                                                                                                               | Hydrogen site location: inferred from                                                                                                                                                                                                                                       |
| $wR(F^2) = 0.111$                                                                                                                                                                                                                                             | neighbouring sites                                                                                                                                                                                                                                                          |
| S = 1.01                                                                                                                                                                                                                                                      | H-atom parameters constrained                                                                                                                                                                                                                                               |
| 6662 reflections                                                                                                                                                                                                                                              | $w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 0.55P]$                                                                                                                                                                                                                               |
| 434 parameters                                                                                                                                                                                                                                                | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                              |
| 0 restraints                                                                                                                                                                                                                                                  | $(\Delta/\sigma)_{max} < 0.001$                                                                                                                                                                                                                                             |
| Primary atom site location: structure-invariant                                                                                                                                                                                                               | $\Delta\rho_{max} = 0.51$ e Å <sup>-3</sup>                                                                                                                                                                                                                                 |
| direct methods                                                                                                                                                                                                                                                | $\Delta\rho_{min} = -0.45$ e Å <sup>-3</sup>                                                                                                                                                                                                                                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x           | у          | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|-------------|------------|------------|-----------------------------|
| C1   | -0.0844 (4) | 0.8642 (3) | 0.2679 (3) | 0.0342 (9)                  |
| C2   | -0.1625 (5) | 0.9063 (3) | 0.3379 (3) | 0.0383 (9)                  |
| C3   | -0.2650 (5) | 0.8331 (4) | 0.3466 (4) | 0.0542 (12)                 |
| Н3   | -0.3152     | 0.8609     | 0.3940     | 0.065*                      |
| C4   | -0.2920 (5) | 0.7183 (4) | 0.2841 (4) | 0.0524 (12)                 |
| C5   | -0.2168 (5) | 0.6747 (4) | 0.2146 (4) | 0.0495 (11)                 |
| Н5   | -0.2359     | 0.5972     | 0.1737     | 0.059*                      |
| C6   | -0.1104 (5) | 0.7485 (4) | 0.2057 (3) | 0.0398 (10)                 |
| C7   | -0.0367 (4) | 0.6997 (3) | 0.1234 (3) | 0.0357 (9)                  |
| H7A  | -0.0698     | 0.6181     | 0.0896     | 0.043*                      |
| H7B  | -0.0558     | 0.7293     | 0.0709     | 0.043*                      |
| C8   | 0.1739 (5)  | 0.6779 (3) | 0.0826 (3) | 0.0379 (9)                  |
| H8A  | 0.1092      | 0.6142     | 0.0261     | 0.045*                      |
| H8B  | 0.2481      | 0.6497     | 0.1069     | 0.045*                      |
| C9   | 0.2251 (4)  | 0.7658 (3) | 0.0416 (3) | 0.0335 (9)                  |
| H9A  | 0.2765      | 0.7339     | -0.0078    | 0.040*                      |
| H9B  | 0.1495      | 0.7838     | 0.0057     | 0.040*                      |
| C10  | 0.3374 (4)  | 0.9594 (3) | 0.0903 (3) | 0.0325 (9)                  |
| H10A | 0.2566      | 0.9561     | 0.0427     | 0.039*                      |
| H10B | 0.4039      | 0.9427     | 0.0508     | 0.039*                      |
| C11  | 0.3021 (4)  | 1.1280 (3) | 0.2317 (3) | 0.0338 (8)                  |
| C12  | 0.3870 (4)  | 1.0792 (3) | 0.1723 (3) | 0.0362 (9)                  |
| C13  | 0.5049 (5)  | 1.1461 (4) | 0.1761 (4) | 0.0490 (12)                 |
| H13  | 0.5616      | 1.1132     | 0.1366     | 0.059*                      |
| C14  | 0.5390 (5)  | 1.2602 (4) | 0.2373 (4) | 0.0504 (11)                 |

| C15  | 0.4540 (5)           | 1.3103 (3)   | 0.2983 (3)   | 0.0414 (10)  |
|------|----------------------|--------------|--------------|--------------|
| H15  | 0.4763               | 1.3876       | 0.3404       | 0.050*       |
| C16  | 0.3379 (5)           | 1.2431 (3)   | 0.2945 (3)   | 0.0404 (10)  |
| C17  | 0.2583 (5)           | 1.3048 (3)   | 0.3594 (3)   | 0.0432 (11)  |
| H17  | 0.2912               | 1.3828       | 0.3947       | 0.052*       |
| C18  | 0.0773 (6)           | 1.3532 (4)   | 0.4257 (5)   | 0.0617 (14)  |
| H18A | 0.0496               | 1.3860       | 0.3771       | 0.074*       |
| H18B | 0.1442               | 1.4123       | 0.4846       | 0.074*       |
| C19  | -0.0426(6)           | 1.3263 (4)   | 0.4654 (5)   | 0.0640 (14)  |
| H19A | -0.0424              | 1.3921       | 0.5265       | 0.077*       |
| H19B | -0.1235              | 1 3116       | 0.4124       | 0.077*       |
| C20  | -0.0452(6)           | 1 2255 (4)   | 0 4931 (4)   | 0.0636 (14)  |
| H20A | -0.1168              | 1.2233 (1)   | 0.5273       | 0.076*       |
| H20R | 0.0381               | 1 2398       | 0.5435       | 0.076*       |
| C21  | -0.1399(5)           | 1.0223 (3)   | 0.4035 (3)   | 0.070        |
| H21  | -0.1872              | 1.0225 (5)   | 0.4035 (3)   | 0.053*       |
| C22  | 0.1872<br>0.1405 (4) | 0.6856 (3)   | 0.4544       | 0.033        |
|      | 0.1493(4)<br>0.2457  | 0.0830 (3)   | 0.2301 (3)   | 0.0371(9)    |
| П22А | 0.2437               | 0.7103       | 0.2782       | 0.044*       |
| П22Б | 0.1092               | 0.7220       | 0.3001       | 0.044        |
| C23  | 0.1124(4)            | 0.5656 (3)   | 0.2207(3)    | 0.0390(9)    |
| C24  | -0.0014 (5)          | 0.5072 (4)   | 0.2283 (4)   | 0.0487 (11)  |
| H24  | -0.0/18              | 0.53/1       | 0.2501       | 0.058*       |
| C25  | 0.0068 (5)           | 0.39/5 (4)   | 0.1981 (4)   | 0.0561 (12)  |
| H25  | -0.0560              | 0.3401       | 0.1992       | 0.067*       |
| C26  | 0.1152 (6)           | 0.3844 (4)   | 0.1672 (4)   | 0.0525 (12)  |
| H26  | 0.1430               | 0.3171       | 0.1413       | 0.063*       |
| C27  | 0.4391 (4)           | 0.8521 (4)   | 0.1754 (3)   | 0.0388 (9)   |
| H27A | 0.4943               | 0.9261       | 0.2236       | 0.047*       |
| H27B | 0.4217               | 0.8090       | 0.2159       | 0.047*       |
| C28  | 0.5147 (4)           | 0.7964 (4)   | 0.1059 (3)   | 0.0398 (9)   |
| C29  | 0.6172 (5)           | 0.8350 (5)   | 0.0721 (4)   | 0.0562 (12)  |
| H29  | 0.6626               | 0.9103       | 0.0965       | 0.067*       |
| C30  | 0.6425 (5)           | 0.7448 (5)   | -0.0037 (4)  | 0.0631 (15)  |
| H30  | 0.7032               | 0.7477       | -0.0434      | 0.076*       |
| C31  | 0.5636 (6)           | 0.6517 (4)   | -0.0096 (4)  | 0.0615 (14)  |
| H31  | 0.5643               | 0.5773       | -0.0503      | 0.074*       |
| C32  | 0.5514 (6)           | 0.1983 (4)   | 0.4781 (4)   | 0.0675 (16)  |
| H32A | 0.5889               | 0.1653       | 0.5229       | 0.101*       |
| H32B | 0.5626               | 0.1591       | 0.4095       | 0.101*       |
| H32C | 0.4578               | 0.1922       | 0.4748       | 0.101*       |
| C33  | 0.6194 (6)           | 0.3177 (5)   | 0.5190 (5)   | 0.0705 (16)  |
| C11  | -0.11526 (12)        | 1.10354 (8)  | 0.15969 (8)  | 0.0413 (2)   |
| C12  | 0.30948 (13)         | 0.95565 (9)  | 0.38563 (8)  | 0.0497 (3)   |
| Cl3  | -0.42396 (18)        | 0.62659 (12) | 0.29107 (15) | 0.0837 (5)   |
| Cl4  | 0.68796 (15)         | 1.34258 (11) | 0.24439 (13) | 0.0706(4)    |
| Cu1  | 0.05232 (6)          | 1.10190 (4)  | 0.30743 (4)  | 0.03763 (14) |
| Cu2  | 0.17812(5)           | 0.90346 (4)  | 0.21979 (4)  | 0.03578 (14) |
| N1   | 0.1122(4)            | 0 7269 (3)   | 0 1669 (2)   | 0.0364(8)    |
| 111  | 0.1122 (7)           | 0.7207 (3)   | 0.1007 (2)   | 0.050+(0)    |

| N2 | 0.3080 (3)  | 0.8683 (3)   | 0.1268 (2)   | 0.0345 (7)  |  |
|----|-------------|--------------|--------------|-------------|--|
| N3 | 0.1460 (4)  | 1.2632 (3)   | 0.3737 (3)   | 0.0502 (10) |  |
| N4 | -0.0640 (5) | 1.1100 (3)   | 0.4042 (3)   | 0.0547 (11) |  |
| N5 | 0.6739 (6)  | 0.4137 (4)   | 0.5554 (4)   | 0.0875 (17) |  |
| 01 | 0.0144 (3)  | 0.9354 (2)   | 0.2580 (2)   | 0.0398 (7)  |  |
| O2 | 0.1891 (3)  | 1.06154 (19) | 0.22835 (19) | 0.0350 (6)  |  |
| O3 | 0.1847 (3)  | 0.4960 (3)   | 0.1811 (2)   | 0.0505 (8)  |  |
| O4 | 0.4820 (3)  | 0.6849 (3)   | 0.0544 (3)   | 0.0586 (9)  |  |
|    |             |              |              |             |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-----------------|--------------|-------------|-------------|
| C1  | 0.051 (2)   | 0.040 (2)   | 0.0213 (18)     | 0.0135 (18)  | 0.0152 (17) | 0.0188 (16) |
| C2  | 0.062 (3)   | 0.036 (2)   | 0.033 (2)       | 0.022 (2)    | 0.029 (2)   | 0.0204 (17) |
| C3  | 0.063 (3)   | 0.054 (3)   | 0.061 (3)       | 0.012 (2)    | 0.034 (3)   | 0.032 (2)   |
| C4  | 0.058 (3)   | 0.049 (3)   | 0.068 (3)       | 0.015 (2)    | 0.031 (3)   | 0.036 (2)   |
| C5  | 0.072 (3)   | 0.028 (2)   | 0.050 (3)       | 0.010 (2)    | 0.023 (2)   | 0.0145 (19) |
| C6  | 0.058 (3)   | 0.043 (2)   | 0.026 (2)       | 0.015 (2)    | 0.0180 (19) | 0.0175 (17) |
| C7  | 0.057 (3)   | 0.035 (2)   | 0.0240 (19)     | 0.0244 (19)  | 0.0156 (18) | 0.0140 (15) |
| C8  | 0.066 (3)   | 0.0089 (15) | 0.037 (2)       | 0.0089 (16)  | 0.021 (2)   | 0.0045 (14) |
| C9  | 0.060 (3)   | 0.0257 (18) | 0.0210 (17)     | 0.0159 (17)  | 0.0191 (17) | 0.0096 (14) |
| C10 | 0.052 (2)   | 0.041 (2)   | 0.0163 (16)     | 0.0254 (19)  | 0.0118 (16) | 0.0168 (15) |
| C11 | 0.048 (2)   | 0.0252 (18) | 0.035 (2)       | 0.0149 (17)  | 0.0100 (18) | 0.0170 (16) |
| C12 | 0.056 (3)   | 0.0266 (18) | 0.030 (2)       | 0.0124 (18)  | 0.0135 (18) | 0.0139 (16) |
| C13 | 0.074 (3)   | 0.041 (2)   | 0.052 (3)       | 0.014 (2)    | 0.036 (2)   | 0.031 (2)   |
| C14 | 0.062 (3)   | 0.043 (2)   | 0.059 (3)       | 0.018 (2)    | 0.022 (2)   | 0.030 (2)   |
| C15 | 0.060 (3)   | 0.0237 (19) | 0.047 (2)       | 0.0096 (19)  | 0.020 (2)   | 0.0182 (17) |
| C16 | 0.057 (3)   | 0.029 (2)   | 0.044 (2)       | 0.0118 (19)  | 0.013 (2)   | 0.0239 (18) |
| C17 | 0.080 (3)   | 0.0129 (16) | 0.037 (2)       | 0.0040 (19)  | 0.021 (2)   | 0.0097 (15) |
| C18 | 0.086 (4)   | 0.026 (2)   | 0.076 (4)       | 0.017 (2)    | 0.035 (3)   | 0.018 (2)   |
| C19 | 0.076 (4)   | 0.054 (3)   | 0.073 (4)       | 0.030 (3)    | 0.030 (3)   | 0.026 (3)   |
| C20 | 0.077 (4)   | 0.043 (3)   | 0.074 (4)       | 0.022 (3)    | 0.039 (3)   | 0.017 (3)   |
| C21 | 0.082 (3)   | 0.032 (2)   | 0.035 (2)       | 0.025 (2)    | 0.040 (2)   | 0.0166 (17) |
| C22 | 0.055 (3)   | 0.0221 (17) | 0.030 (2)       | -0.0007 (17) | 0.0118 (18) | 0.0093 (15) |
| C23 | 0.055 (3)   | 0.031 (2)   | 0.039 (2)       | 0.0122 (19)  | 0.013 (2)   | 0.0219 (17) |
| C24 | 0.061 (3)   | 0.039 (2)   | 0.056 (3)       | 0.015 (2)    | 0.027 (2)   | 0.023 (2)   |
| C25 | 0.069 (3)   | 0.033 (2)   | 0.065 (3)       | 0.003 (2)    | 0.022 (3)   | 0.019 (2)   |
| C26 | 0.080 (4)   | 0.042 (2)   | 0.045 (3)       | 0.025 (2)    | 0.023 (2)   | 0.020 (2)   |
| C27 | 0.064 (3)   | 0.042 (2)   | 0.0280 (19)     | 0.023 (2)    | 0.0159 (19) | 0.0272 (17) |
| C28 | 0.049 (3)   | 0.048 (2)   | 0.035 (2)       | 0.021 (2)    | 0.0125 (19) | 0.0257 (19) |
| C29 | 0.047 (3)   | 0.074 (3)   | 0.057 (3)       | 0.018 (3)    | 0.015 (2)   | 0.035 (3)   |
| C30 | 0.045 (3)   | 0.086 (4)   | 0.049 (3)       | 0.006 (3)    | 0.018 (2)   | 0.017 (3)   |
| C31 | 0.069 (3)   | 0.051 (3)   | 0.072 (4)       | 0.030 (3)    | 0.035 (3)   | 0.021 (3)   |
| C32 | 0.081 (4)   | 0.039 (3)   | 0.060 (3)       | -0.014 (2)   | -0.022 (3)  | 0.024 (2)   |
| C33 | 0.078 (4)   | 0.067 (4)   | 0.067 (4)       | 0.024 (3)    | 0.002 (3)   | 0.033 (3)   |
| Cl1 | 0.0676 (7)  | 0.0326 (5)  | 0.0326 (5)      | 0.0175 (5)   | 0.0229 (5)  | 0.0163 (4)  |
| Cl2 | 0.0790 (8)  | 0.0370 (5)  | 0.0312 (5)      | 0.0088 (5)   | 0.0142 (5)  | 0.0134 (4)  |
| C13 | 0.0998 (12) | 0.0533 (8)  | 0.1164 (13)     | 0.0147 (8)   | 0.0643 (11) | 0.0393 (8)  |

## supporting information

| Cl4 | 0.0689 (8)  | 0.0489 (7)  | 0.1056 (12) | 0.0101 (6)  | 0.0410 (8)  | 0.0372 (8)   |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| Cu1 | 0.0614 (3)  | 0.0294 (2)  | 0.0267 (3)  | 0.0145 (2)  | 0.0220 (2)  | 0.01025 (19) |
| Cu2 | 0.0611 (3)  | 0.0225 (2)  | 0.0300 (3)  | 0.0136 (2)  | 0.0219 (2)  | 0.01146 (18) |
| N1  | 0.058 (2)   | 0.0252 (16) | 0.0264 (16) | 0.0156 (15) | 0.0164 (15) | 0.0060 (13)  |
| N2  | 0.0452 (19) | 0.0303 (17) | 0.0317 (17) | 0.0143 (15) | 0.0119 (15) | 0.0137 (14)  |
| N3  | 0.085 (3)   | 0.0265 (17) | 0.045 (2)   | 0.0112 (18) | 0.033 (2)   | 0.0137 (15)  |
| N4  | 0.084 (3)   | 0.038 (2)   | 0.052 (2)   | 0.019 (2)   | 0.039 (2)   | 0.0176 (18)  |
| N5  | 0.109 (4)   | 0.050 (3)   | 0.069 (3)   | -0.013 (3)  | 0.000 (3)   | 0.009 (2)    |
| 01  | 0.0621 (19) | 0.0240 (13) | 0.0334 (15) | 0.0056 (13) | 0.0229 (14) | 0.0085 (11)  |
| O2  | 0.0628 (18) | 0.0175 (12) | 0.0296 (14) | 0.0101 (12) | 0.0228 (13) | 0.0096 (10)  |
| O3  | 0.066 (2)   | 0.0504 (18) | 0.0445 (17) | 0.0207 (16) | 0.0284 (16) | 0.0206 (14)  |
| O4  | 0.062 (2)   | 0.0493 (19) | 0.059 (2)   | 0.0233 (16) | 0.0244 (17) | 0.0084 (16)  |
|     |             |             |             |             |             |              |

Geometric parameters (Å, °)

| C1-01    | 1.352 (5) | C20—N4   | 1.524 (6) |
|----------|-----------|----------|-----------|
| C1—C6    | 1.394 (6) | C20—H20A | 0.9700    |
| C1—C2    | 1.408 (5) | C20—H20B | 0.9700    |
| C2—C3    | 1.385 (6) | C21—N4   | 1.293 (6) |
| C2—C21   | 1.410 (5) | C21—H21  | 0.9300    |
| C3—C4    | 1.384 (7) | C22—C23  | 1.436 (5) |
| С3—Н3    | 0.9300    | C22—N1   | 1.498 (5) |
| C4—C5    | 1.384 (6) | C22—H22A | 0.9700    |
| C4—Cl3   | 1.736 (5) | C22—H22B | 0.9700    |
| C5—C6    | 1.419 (6) | C23—O3   | 1.298 (5) |
| С5—Н5    | 0.9300    | C23—C24  | 1.362 (6) |
| С6—С7    | 1.514 (5) | C24—C25  | 1.355 (6) |
| C7—N1    | 1.504 (5) | C24—H24  | 0.9300    |
| C7—H7A   | 0.9700    | C25—C26  | 1.298 (7) |
| С7—Н7В   | 0.9700    | C25—H25  | 0.9300    |
| C8—N1    | 1.449 (5) | C26—O3   | 1.457 (6) |
| С8—С9    | 1.548 (5) | C26—H26  | 0.9300    |
| C8—H8A   | 0.9700    | C27—C28  | 1.431 (6) |
| C8—H8B   | 0.9700    | C27—N2   | 1.503 (5) |
| C9—N2    | 1.448 (5) | C27—H27A | 0.9700    |
| С9—Н9А   | 0.9700    | C27—H27B | 0.9700    |
| С9—Н9В   | 0.9700    | C28—O4   | 1.322 (5) |
| C10—N2   | 1.486 (5) | C28—C29  | 1.359 (6) |
| C10-C12  | 1.507 (5) | C29—C30  | 1.369 (7) |
| C10—H10A | 0.9700    | C29—H29  | 0.9300    |
| C10—H10B | 0.9700    | C30—C31  | 1.334 (7) |
| C11—O2   | 1.343 (5) | С30—Н30  | 0.9300    |
| C11—C16  | 1.385 (5) | C31—O4   | 1.357 (6) |
| C11—C12  | 1.394 (5) | C31—H31  | 0.9300    |
| C12—C13  | 1.384 (6) | C32—C33  | 1.460 (8) |
| C13—C14  | 1.370 (6) | C32—H32A | 0.9600    |
| С13—Н13  | 0.9300    | C32—H32B | 0.9600    |
| C14—C15  | 1.414 (6) | C32—H32C | 0.9600    |
|          |           |          |           |

| C14—Cl4                         | 1.724 (5)            | C33—N5                     | 1.171 (7)            |
|---------------------------------|----------------------|----------------------------|----------------------|
| C15—C16                         | 1.371 (6)            | Cu1—Cl1                    | 2.5022 (13)          |
| С15—Н15                         | 0.9300               | Cu1—O1                     | 1.974 (3)            |
| C16—C17                         | 1.453 (6)            | Cu1—02                     | 1.987 (3)            |
| C17—N3                          | 1 304 (6)            | Cu1-N3                     | 1.971 (4)            |
| C17 H17                         | 0.0300               |                            | 1.971(4)<br>1.084(4) |
| C12 N2                          | 1 404 (6)            | $C_{11}$ $C_{12}$ $C_{12}$ | 1.964(4)             |
| $C_{10}$ $C_{10}$ $C_{10}$      | 1.494(0)<br>1 512(7) | $Cu^2 = Cl^2$              | 2.3104(13)           |
| $C_{10}$ $U_{10}$               | 1.313(7)             | Cu2-01                     | 1.940(3)             |
|                                 | 0.9700               | Cu2-02                     | 2.010(2)             |
| C18—H18B                        | 0.9700               | Cu2—NI                     | 2.104 (3)            |
| C19—C20                         | 1.511 (/)            | Cu2—N2                     | 2.047(3)             |
| С19—Н19А                        | 0.9700               | Cu1—Cu2                    | 3.0274 (9)           |
| С19—Н19В                        | 0.9700               |                            |                      |
| 01 61 66                        | 110 1 (2)            | C24 C22 C22                | 12(5(4))             |
| 01 - 01 - 02                    | 119.1(3)             | $C_{24} = C_{23} = C_{22}$ | 120.3 (4)            |
| 01 - 01 - 02                    | 120.7 (4)            | $C_{25} = C_{24} = C_{23}$ | 107.5 (4)            |
| C6-C1-C2                        | 120.2 (4)            | C25—C24—H24                | 126.3                |
| C3—C2—C1                        | 120.4 (4)            | С23—С24—Н24                | 126.3                |
| C3—C2—C21                       | 116.9 (4)            | C26—C25—C24                | 109.8 (5)            |
| C1—C2—C21                       | 122.7 (4)            | С26—С25—Н25                | 125.1                |
| C4—C3—C2                        | 119.5 (4)            | C24—C25—H25                | 125.1                |
| С4—С3—Н3                        | 120.3                | C25—C26—O3                 | 106.5 (4)            |
| С2—С3—Н3                        | 120.3                | С25—С26—Н26                | 126.8                |
| C5—C4—C3                        | 121.3 (4)            | O3—C26—H26                 | 126.8                |
| C5—C4—Cl3                       | 118.9 (4)            | C28—C27—N2                 | 116.7 (3)            |
| C3—C4—Cl3                       | 119.8 (4)            | С28—С27—Н27А               | 108.1                |
| C4—C5—C6                        | 119.9 (4)            | N2—C27—H27A                | 108.1                |
| С4—С5—Н5                        | 120.1                | C28—C27—H27B               | 108.1                |
| C6—C5—H5                        | 120.1                | N2—C27—H27B                | 108.1                |
| C1 - C6 - C5                    | 1187(4)              | H27A—C27—H27B              | 107.3                |
| C1 - C6 - C7                    | 1224(4)              | $04-C^{28}-C^{29}$         | 106.5 (4)            |
| $C_{5}$                         | 122.4(4)<br>1187(4)  | $04 - C_{28} - C_{27}$     | 100.3(4)             |
| $C_{3}$ $C_{6}$ $C_{7}$ $C_{6}$ | 113.0(3)             | $C_{20} C_{20} C_{27}$     | 120.3(4)<br>133.1(4) |
| N1 = C7 = H7A                   | 100.0                | $C_{29} = C_{28} = C_{27}$ | 109.7(4)             |
| NI - C / - H / A                | 109.0                | $C_{28} = C_{29} = C_{30}$ | 106.7(3)             |
| $C_0 - C_1 - \Pi_1 A$           | 109.0                | $C_{20} = C_{20} = H_{20}$ | 125.7                |
| NI - C / - H / B                | 109.0                | C30—C29—H29                | 125.7                |
|                                 | 109.0                | $C_{31} = C_{30} = C_{29}$ | 106.9 (5)            |
| H/A—C/—H/B                      | 107.8                | С31—С30—Н30                | 126.6                |
| N1—C8—C9                        | 111.5 (3)            | С29—С30—Н30                | 126.6                |
| N1—C8—H8A                       | 109.3                | C30—C31—O4                 | 107.8 (4)            |
| С9—С8—Н8А                       | 109.3                | C30—C31—H31                | 126.1                |
| N1—C8—H8B                       | 109.3                | O4—C31—H31                 | 126.1                |
| С9—С8—Н8В                       | 109.3                | C33—C32—H32A               | 109.5                |
| H8A—C8—H8B                      | 108.0                | С33—С32—Н32В               | 109.5                |
| N2—C9—C8                        | 110.5 (3)            | H32A—C32—H32B              | 109.5                |
| N2—C9—H9A                       | 109.5                | С33—С32—Н32С               | 109.5                |
| С8—С9—Н9А                       | 109.5                | H32A—C32—H32C              | 109.5                |
| N2—C9—H9B                       | 109.5                | H32B—C32—H32C              | 109.5                |

| С8—С9—Н9В     | 109.5     | N5—C33—C32  | 177.6 (7)   |
|---------------|-----------|-------------|-------------|
| H9A—C9—H9B    | 108.1     | N3—Cu1—O1   | 162.13 (16) |
| N2—C10—C12    | 117.2 (3) | N3—Cu1—N4   | 96.87 (15)  |
| N2-C10-H10A   | 108.0     | O1—Cu1—N4   | 90.00 (13)  |
| C12—C10—H10A  | 108.0     | N3—Cu1—O2   | 91.60 (13)  |
| N2—C10—H10B   | 108.0     | O1—Cu1—O2   | 77.66 (10)  |
| C12—C10—H10B  | 108.0     | N4—Cu1—O2   | 162.26 (14) |
| H10A-C10-H10B | 107.2     | N3—Cu1—Cl1  | 99.50 (12)  |
| O2—C11—C16    | 121.8 (4) | O1—Cu1—Cl1  | 95.76 (9)   |
| O2—C11—C12    | 119.0 (3) | N4—Cu1—Cl1  | 98.40 (14)  |
| C16—C11—C12   | 119.2 (4) | O2—Cu1—Cl1  | 95.51 (9)   |
| C13—C12—C11   | 119.9 (4) | N3—Cu1—Cu2  | 125.95 (12) |
| C13—C12—C10   | 120.2 (4) | O1—Cu1—Cu2  | 38.94 (8)   |
| C11—C12—C10   | 119.0 (4) | N4—Cu1—Cu2  | 123.12 (11) |
| C14—C13—C12   | 120.7 (4) | O2—Cu1—Cu2  | 41.06 (7)   |
| C14—C13—H13   | 119.6     | Cl1—Cu1—Cu2 | 107.70 (3)  |
| C12—C13—H13   | 119.6     | O1—Cu2—O2   | 77.90 (11)  |
| C13—C14—C15   | 119.9 (4) | O1—Cu2—N2   | 157.52 (13) |
| C13—C14—Cl4   | 120.6 (4) | O2—Cu2—N2   | 94.21 (11)  |
| C15—C14—Cl4   | 119.5 (4) | O1—Cu2—N1   | 94.20 (12)  |
| C16—C15—C14   | 118.9 (4) | O2—Cu2—N1   | 160.26 (13) |
| C16—C15—H15   | 120.6     | N2—Cu2—N1   | 86.31 (13)  |
| C14—C15—H15   | 120.6     | O1—Cu2—Cl2  | 97.67 (9)   |
| C15—C16—C11   | 121.5 (4) | O2—Cu2—Cl2  | 96.32 (8)   |
| C15—C16—C17   | 113.6 (4) | N2—Cu2—Cl2  | 104.15 (10) |
| C11—C16—C17   | 124.9 (4) | N1—Cu2—Cl2  | 102.70 (10) |
| N3—C17—C16    | 127.4 (3) | O1—Cu2—Cu1  | 39.76 (8)   |
| N3—C17—H17    | 116.3     | O2—Cu2—Cu1  | 40.49 (7)   |
| С16—С17—Н17   | 116.3     | N2—Cu2—Cu1  | 134.50 (9)  |
| N3—C18—C19    | 121.2 (4) | N1—Cu2—Cu1  | 133.94 (10) |
| N3—C18—H18A   | 107.0     | Cl2—Cu2—Cu1 | 88.50 (3)   |
| C19—C18—H18A  | 107.0     | C8—N1—C22   | 110.7 (3)   |
| N3—C18—H18B   | 107.0     | C8—N1—C7    | 109.0 (3)   |
| C19—C18—H18B  | 107.0     | C22—N1—C7   | 112.1 (3)   |
| H18A—C18—H18B | 106.8     | C8—N1—Cu2   | 105.5 (2)   |
| C20—C19—C18   | 113.4 (4) | C22—N1—Cu2  | 113.0 (2)   |
| С20—С19—Н19А  | 108.9     | C7—N1—Cu2   | 106.2 (2)   |
| C18—C19—H19A  | 108.9     | C9—N2—C10   | 110.4 (3)   |
| С20—С19—Н19В  | 108.9     | C9—N2—C27   | 113.1 (3)   |
| C18—C19—H19B  | 108.9     | C10—N2—C27  | 107.8 (3)   |
| H19A—C19—H19B | 107.7     | C9—N2—Cu2   | 99.3 (2)    |
| C19—C20—N4    | 117.2 (4) | C10—N2—Cu2  | 110.3 (2)   |
| С19—С20—Н20А  | 108.0     | C27—N2—Cu2  | 115.6 (2)   |
| N4—C20—H20A   | 108.0     | C17—N3—C18  | 112.3 (4)   |
| C19—C20—H20B  | 108.0     | C17—N3—Cu1  | 125.0 (3)   |
| N4—C20—H20B   | 108.0     | C18—N3—Cu1  | 121.2 (3)   |
| H20A—C20—H20B | 107.2     | C21—N4—C20  | 119.3 (4)   |
| N4—C21—C2     | 130.5 (4) | C21—N4—Cu1  | 123.8 (3)   |
|               |           |             |             |

| N4—C21—H21                       | 114.7      | C20—N4—Cu1                               | 116.2 (3)   |
|----------------------------------|------------|------------------------------------------|-------------|
| C2—C21—H21                       | 114.7      | C1—O1—Cu2                                | 127.6 (2)   |
| C23—C22—N1                       | 117.1 (3)  | C1—O1—Cu1                                | 129.8 (2)   |
| C23—C22—H22A                     | 108.0      | Cu2—O1—Cu1                               | 101.30 (12) |
| N1—C22—H22A                      | 108.0      | C11—O2—Cu1                               | 129.2 (2)   |
| C23—C22—H22B                     | 108.0      | C11—O2—Cu2                               | 123.0(2)    |
| N1—C22—H22B                      | 108.0      | Cu1 - O2 - Cu2                           | 98.45 (11)  |
| H22A—C22—H22B                    | 107.3      | $C_{23} - C_{26}$                        | 106.4 (3)   |
| 03-C23-C24                       | 109.7 (4)  | $C_{28} - 04 - C_{31}$                   | 109.9(4)    |
| 03-C23-C22                       | 123 8 (4)  | 020 01 001                               | 10,5,5 (1)  |
| 00 025 022                       | 125.0 (1)  |                                          |             |
| O1—C1—C2—C3                      | 179.0 (4)  | C8—C9—N2—C10                             | -170.1(3)   |
| C6—C1—C2—C3                      | 0.7 (6)    | C8—C9—N2—C27                             | 68.9 (4)    |
| O1—C1—C2—C21                     | -2.5(6)    | C8—C9—N2—Cu2                             | -54.2 (3)   |
| C6-C1-C2-C21                     | 179.3 (4)  | C12—C10—N2—C9                            | 162.6 (3)   |
| C1—C2—C3—C4                      | -1.5 (7)   | C12—C10—N2—C27                           | -73.3 (4)   |
| $C_{21} - C_{2} - C_{3} - C_{4}$ | 179.9 (5)  | C12—C10—N2—Cu2                           | 53.8 (4)    |
| C2-C3-C4-C5                      | 1.4 (8)    | C28—C27—N2—C9                            | 48.9 (5)    |
| $C_2 - C_3 - C_4 - C_{13}$       | -177.7(4)  | $C_{28}$ — $C_{27}$ — $N_{2}$ — $C_{10}$ | -73.5(4)    |
| C3-C4-C5-C6                      | -0.6(8)    | C28—C27—N2—Cu2                           | 162.5 (3)   |
| Cl3—C4—C5—C6                     | 178.5 (4)  | 01—Cu2—N2—C9                             | -57.1 (4)   |
| O1—C1—C6—C5                      | -178.2(4)  | O2—Cu2—N2—C9                             | -125.3(2)   |
| C2-C1-C6-C5                      | 0.0 (6)    | N1—Cu2—N2—C9                             | 34.9 (2)    |
| O1—C1—C6—C7                      | -3.1 (6)   | C12—Cu2—N2—C9                            | 137.1 (2)   |
| C2-C1-C6-C7                      | 175.2 (4)  | Cu1—Cu2—N2—C9                            | -120.8(2)   |
| C4—C5—C6—C1                      | -0.1 (7)   | O1—Cu2—N2—C10                            | 58.9 (4)    |
| C4—C5—C6—C7                      | -175.4 (4) | O2—Cu2—N2—C10                            | -9.3 (3)    |
| C1-C6-C7-N1                      | 58.5 (5)   | N1—Cu2—N2—C10                            | 150.9 (3)   |
| C5—C6—C7—N1                      | -126.4 (4) | Cl2—Cu2—N2—C10                           | -106.9 (2)  |
| N1-C8-C9-N2                      | 51.4 (5)   | Cu1—Cu2—N2—C10                           | -4.8 (3)    |
| O2—C11—C12—C13                   | -179.0 (4) | O1—Cu2—N2—C27                            | -178.5 (3)  |
| C16—C11—C12—C13                  | -0.5 (6)   | O2—Cu2—N2—C27                            | 113.4 (3)   |
| O2-C11-C12-C10                   | 12.2 (5)   | N1—Cu2—N2—C27                            | -86.4 (3)   |
| C16—C11—C12—C10                  | -169.3 (3) | Cl2—Cu2—N2—C27                           | 15.8 (3)    |
| N2-C10-C12-C13                   | 126.0 (4)  | Cu1—Cu2—N2—C27                           | 117.9 (2)   |
| N2-C10-C12-C11                   | -65.1 (5)  | C16—C17—N3—C18                           | -167.2 (4)  |
| C11—C12—C13—C14                  | -0.3 (7)   | C16—C17—N3—Cu1                           | -1.0 (7)    |
| C10-C12-C13-C14                  | 168.4 (4)  | C19—C18—N3—C17                           | -170.1 (5)  |
| C12—C13—C14—C15                  | 0.7 (7)    | C19—C18—N3—Cu1                           | 23.1 (7)    |
| C12—C13—C14—Cl4                  | 178.4 (4)  | O1—Cu1—N3—C17                            | 50.6 (7)    |
| C13—C14—C15—C16                  | -0.2 (7)   | N4—Cu1—N3—C17                            | 162.6 (4)   |
| Cl4—C14—C15—C16                  | -177.9 (3) | O2—Cu1—N3—C17                            | -1.8 (4)    |
| C14—C15—C16—C11                  | -0.6 (6)   | Cl1—Cu1—N3—C17                           | -97.7 (4)   |
| C14—C15—C16—C17                  | -179.1 (4) | Cu2—Cu1—N3—C17                           | 22.5 (5)    |
| O2-C11-C16-C15                   | 179.4 (4)  | O1—Cu1—N3—C18                            | -144.3 (4)  |
| C12-C11-C16-C15                  | 0.9 (6)    | N4—Cu1—N3—C18                            | -32.4 (4)   |
| O2-C11-C16-C17                   | -2.2 (6)   | O2—Cu1—N3—C18                            | 163.2 (4)   |
| C12—C11—C16—C17                  | 179.3 (4)  | Cl1—Cu1—N3—C18                           | 67.4 (4)    |

| C15-C16-C17-N3  | -177.8 (4)   | Cu2—Cu1—N3—C18 | -172.5 (3)   |
|-----------------|--------------|----------------|--------------|
| C11—C16—C17—N3  | 3.7 (7)      | C2-C21-N4-C20  | -172.4 (5)   |
| N3—C18—C19—C20  | 26.6 (8)     | C2-C21-N4-Cu1  | -1.7 (8)     |
| C18—C19—C20—N4  | -66.3 (7)    | C19—C20—N4—C21 | -140.0 (5)   |
| C3—C2—C21—N4    | -170.7 (5)   | C19—C20—N4—Cu1 | 48.6 (6)     |
| C1—C2—C21—N4    | 10.6 (8)     | N3—Cu1—N4—C21  | -172.5 (4)   |
| N1—C22—C23—O3   | 86.0 (5)     | O1—Cu1—N4—C21  | -9.0 (4)     |
| N1—C22—C23—C24  | -93.4 (5)    | O2—Cu1—N4—C21  | -54.5 (8)    |
| O3—C23—C24—C25  | 4.2 (6)      | Cl1—Cu1—N4—C21 | 86.8 (4)     |
| C22—C23—C24—C25 | -176.4 (4)   | Cu2—Cu1—N4—C21 | -30.8 (5)    |
| C23—C24—C25—C26 | -3.4 (6)     | N3—Cu1—N4—C20  | -1.5 (4)     |
| C24—C25—C26—O3  | 1.5 (6)      | O1—Cu1—N4—C20  | 161.9 (4)    |
| N2-C27-C28-O4   | -78.7 (5)    | O2-Cu1-N4-C20  | 116.5 (5)    |
| N2—C27—C28—C29  | 96.3 (6)     | Cl1—Cu1—N4—C20 | -102.2 (4)   |
| O4—C28—C29—C30  | 2.2 (5)      | Cu2—Cu1—N4—C20 | 140.2 (3)    |
| C27—C28—C29—C30 | -173.3 (5)   | C6-C1-O1-Cu2   | -31.0 (5)    |
| C28—C29—C30—C31 | -4.9 (6)     | C2-C1-O1-Cu2   | 150.7 (3)    |
| C29—C30—C31—O4  | 5.7 (6)      | C6-C1-O1-Cu1   | 164.7 (3)    |
| N3—Cu1—Cu2—O1   | 166.69 (19)  | C2-C1-O1-Cu1   | -13.6 (5)    |
| N4—Cu1—Cu2—O1   | 36.2 (2)     | O2—Cu2—O1—C1   | 175.7 (3)    |
| O2—Cu1—Cu2—O1   | -154.57 (18) | N2—Cu2—O1—C1   | 104.5 (4)    |
| Cl1—Cu1—Cu2—O1  | -76.86 (13)  | N1—Cu2—O1—C1   | 14.0 (3)     |
| N3—Cu1—Cu2—O2   | -38.75 (18)  | Cl2—Cu2—O1—C1  | -89.5 (3)    |
| O1—Cu1—Cu2—O2   | 154.57 (18)  | Cu1—Cu2—O1—C1  | -167.8 (4)   |
| N4—Cu1—Cu2—O2   | -169.3 (2)   | O2—Cu2—O1—Cu1  | -16.57 (11)  |
| Cl1—Cu1—Cu2—O2  | 77.71 (13)   | N2—Cu2—O1—Cu1  | -87.8 (3)    |
| N3—Cu1—Cu2—N2   | -45.7 (2)    | N1—Cu2—O1—Cu1  | -178.28 (13) |
| O1—Cu1—Cu2—N2   | 147.61 (19)  | Cl2—Cu2—O1—Cu1 | 78.29 (11)   |
| N4—Cu1—Cu2—N2   | -176.2 (2)   | N3—Cu1—O1—C1   | 129.9 (5)    |
| O2—Cu1—Cu2—N2   | -6.96 (18)   | N4—Cu1—O1—C1   | 17.0 (3)     |
| Cl1—Cu1—Cu2—N2  | 70.75 (14)   | O2—Cu1—O1—C1   | -175.9 (3)   |
| N3—Cu1—Cu2—N1   | 169.07 (18)  | Cl1—Cu1—O1—C1  | -81.5 (3)    |
| O1—Cu1—Cu2—N1   | 2.38 (18)    | Cu2—Cu1—O1—C1  | 167.4 (4)    |
| N4—Cu1—Cu2—N1   | 38.6 (2)     | N3—Cu1—O1—Cu2  | -37.4 (5)    |
| O2—Cu1—Cu2—N1   | -152.19 (17) | N4—Cu1—O1—Cu2  | -150.37 (17) |
| Cl1—Cu1—Cu2—N1  | -74.48 (13)  | O2—Cu1—O1—Cu2  | 16.78 (12)   |
| N3—Cu1—Cu2—Cl2  | 62.80 (14)   | Cl1—Cu1—O1—Cu2 | 111.19 (10)  |
| O1—Cu1—Cu2—Cl2  | -103.89 (13) | C16—C11—O2—Cu1 | -1.7 (5)     |
| N4—Cu1—Cu2—Cl2  | -67.72 (16)  | C12-C11-O2-Cu1 | 176.8 (3)    |
| O2—Cu1—Cu2—Cl2  | 101.54 (13)  | C16—C11—O2—Cu2 | -140.9 (3)   |
| Cl1—Cu1—Cu2—Cl2 | 179.25 (4)   | C12-C11-O2-Cu2 | 37.6 (5)     |
| C9—C8—N1—C22    | -139.9 (3)   | N3—Cu1—O2—C11  | 3.2 (3)      |
| C9—C8—N1—C7     | 96.4 (4)     | O1—Cu1—O2—C11  | -162.4 (3)   |
| C9—C8—N1—Cu2    | -17.3 (4)    | N4—Cu1—O2—C11  | -115.5 (5)   |
| C23—C22—N1—C8   | -60.1 (5)    | Cl1—Cu1—O2—C11 | 102.9 (3)    |
| C23—C22—N1—C7   | 61.8 (5)     | Cu2—Cu1—O2—C11 | -146.3 (4)   |
| C23—C22—N1—Cu2  | -178.1 (3)   | N3—Cu1—O2—Cu2  | 149.55 (15)  |
| C6—C7—N1—C8     | -179.5 (3)   | O1—Cu1—O2—Cu2  | -16.04 (12)  |
|                 |              |                |              |

| C6—C7—N1—C22   | 57.6 (4)   | N4—Cu1—O2—Cu2  | 30.8 (5)    |
|----------------|------------|----------------|-------------|
| C6—C7—N1—Cu2   | -66.3 (3)  | Cl1—Cu1—O2—Cu2 | -110.75 (9) |
| O1—Cu2—N1—C8   | 147.6 (3)  | O1—Cu2—O2—C11  | 165.5 (3)   |
| O2—Cu2—N1—C8   | 82.3 (4)   | N2—Cu2—O2—C11  | -35.8 (3)   |
| N2—Cu2—N1—C8   | -9.9 (3)   | N1—Cu2—O2—C11  | -126.5 (4)  |
| Cl2—Cu2—N1—C8  | -113.6 (3) | Cl2—Cu2—O2—C11 | 69.0 (3)    |
| Cu1—Cu2—N1—C8  | 146.1 (2)  | Cu1—Cu2—O2—C11 | 149.2 (3)   |
| O1—Cu2—N1—C22  | -91.3 (3)  | O1—Cu2—O2—Cu1  | 16.31 (12)  |
| O2—Cu2—N1—C22  | -156.6 (3) | N2—Cu2—O2—Cu1  | 175.03 (13) |
| N2—Cu2—N1—C22  | 111.2 (3)  | N1—Cu2—O2—Cu1  | 84.2 (3)    |
| Cl2—Cu2—N1—C22 | 7.5 (3)    | Cl2—Cu2—O2—Cu1 | -80.21 (10) |
| Cu1—Cu2—N1—C22 | -92.9 (3)  | C24—C23—O3—C26 | -3.2 (5)    |
| O1—Cu2—N1—C7   | 32.0 (2)   | C22—C23—O3—C26 | 177.4 (4)   |
| O2—Cu2—N1—C7   | -33.3 (5)  | C25—C26—O3—C23 | 1.1 (5)     |
| N2—Cu2—N1—C7   | -125.4 (2) | C29—C28—O4—C31 | 1.4 (5)     |
| Cl2—Cu2—N1—C7  | 130.9 (2)  | C27—C28—O4—C31 | 177.6 (4)   |
| Cu1—Cu2—N1—C7  | 30.5 (3)   | C30-C31-O4-C28 | -4.5 (6)    |
|                |            |                |             |