

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2-Chloro-5-(2-iodobenzenesulfonamido)benzoic acid

## Muhammad Nadeem Arshad,<sup>a</sup> M. Nawaz Tahir,<sup>b</sup>\* Islam Ullah Khan,<sup>a</sup> Waseeq Ahmad Siddiqui<sup>c</sup> and Muhammad Shafiq<sup>a</sup>

<sup>a</sup>Government College University, Department of Chemistry, Lahore, Pakistan, <sup>b</sup>University of Sargodha, Department of Physics, Sagrodha, Pakistan, and <sup>c</sup>University of Sargodha, Department of Chemistry, Sagrodha, Pakistan Correspondence e-mail: dmntahir\_uos@yahoo.com

Received 23 December 2008; accepted 24 December 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.026; wR factor = 0.069; data-to-parameter ratio = 18.4.

In the molecule of the title compound,  $C_{13}H_9CIINO_4S$ , the coordination around the S atom is distorted tetrahedral. The aromatic rings are oriented at a dihedral angle of 74.46 (9)°. Intramolecular C-H···O hydrogen bonds result in the formation of two five- and one six-membered rings, which adopt planar, envelope and twisted conformations, respectively. In the crystal structure, intermolecular N-H···O and O-H···O hydrogen bonds link the molecules to form  $R_2^2(8)$  ring motifs, which are further linked by C-H···O hydrogen bonds.  $\pi$ - $\pi$  contacts between the benzene rings [centroid-centroid distances = 3.709 (3) and 3.772 (3) Å] may further stabilize the structure. The I atom is disordered over two positions, refined with occupancies of *ca* 0.75 and 0.25.

#### **Related literature**

For related structures, see: Arshad, Tahir, Khan, Ahmad & Shafiq (2008); Arshad, Tahir, Khan, Shafiq & Siddiqui (2008); Arshad *et al.* (2009); Deng & Mani (2006). For ring motifs, see: Bernstein *et al.* (1995).



#### **Experimental**

Crystal data  $C_{13}H_9CIINO_4S$  $M_r = 437.62$ 

Monoclinic, C2/ca = 26.6375 (9) Å b = 8.5532 (2) Å c = 14.2696 (5) Å  $\beta = 111.923 (2)^{\circ}$   $V = 3016.03 (17) \text{ Å}^{3}$ Z = 8

#### Data collection

| Bruker Kappa APEXII CCD                | 16794 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 3738 independent reflections           |
| Absorption correction: multi-scan      | 2909 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2005)                 | $R_{\rm int} = 0.023$                  |
| $T_{\min} = 0.708, \ T_{\max} = 0.819$ |                                        |
|                                        |                                        |

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.026 & \text{H atoms treated by a mixture of independent and constrained} \\ S &= 1.05 & \text{refinement} \\ 3738 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.54 \text{ e } \text{\AA}^{-3} \\ 203 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.31 \text{ e } \text{\AA}^{-3} \end{split}$$

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------|-------------------------|--------------|--------------------------------------|
| N1-H1···O4 <sup>i</sup>     | 0.86     | 2.07                    | 2.903 (3)    | 164                                  |
| O3−H3O···O2 <sup>ii</sup>   | 0.76 (4) | 1.95 (4)                | 2.714 (3)    | 176 (5)                              |
| C4−H4···O1 <sup>iii</sup>   | 0.93     | 2.48                    | 3.293 (4)    | 146                                  |
| C6-H6···O1                  | 0.93     | 2.36                    | 2.792 (3)    | 108                                  |
| C8−H8···O1                  | 0.93     | 2.57                    | 3.193 (3)    | 125                                  |
| C8−H8···O3                  | 0.93     | 2.28                    | 2.631 (3)    | 102                                  |

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z; (iii)  $x, -y + 2, z + \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

MNA gratefully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN 042-120607-PS2-183).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2607).

#### References

- Arshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. & Shafiq, M. (2008). Acta Cryst. E64, o2380.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, m1628.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, 0230.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Mo  $K\alpha$  radiation  $\mu = 2.45 \text{ mm}^{-1}$ 

 $0.25 \times 0.12 \times 0.08 \text{ mm}$ 

T = 296 (2) K

# supporting information

Acta Cryst. (2009). E65, o281 [doi:10.1107/S1600536808043869]

# 2-Chloro-5-(2-iodobenzenesulfonamido)benzoic acid

# Muhammad Nadeem Arshad, M. Nawaz Tahir, Islam Ullah Khan, Waseeq Ahmad Siddiqui and Muhammad Shafiq

# S1. Comment

In continuation to our researches with sulfonamides (Arshad, Tahir, Khan, Ahmad & Shafiq, 2008; Arshad, Tahir, Khan, Shafiq & Siddiqui, 2008; Arshad *et al.*, 2009), the title compound has been synthesized, and we report herein its crystal structure.

The structure of the title compound, (I), (Fig 1), differs from 4-[(2-iodo- phenyl)sulfonyl]aminobenzoic acid hydrate, (II) (Arshad *et al.*, 2009), due to the attachment of Cl atom and the change of the position of carboxylate group. Also in (I), there is no water molecule. The coordination around the S atom is a distorted tetrahedral. Rings A(C1-C6) and B(C7-C12) are oriented at a dihedral angle of 74.46 (9)°, which is nearly the same with the corresponding value [74.18 (17)°] in (II). The intramolecular C-H···O hydrogen bonds (Table 1) result in the formations of two five- and one six-membered rings: C (S1/O1/C1/C6/H6), D (O3/C8/C9/C13/H8) and E (S1/O1/N1/C7/C8/H8). Ring C is planar. Ring D adopts envelope conformation with O3 atom displaced by -0.260 (4) Å from the plane of the other rings atoms, while ring E has twisted conformation. The dihedral angle between rings A and C is 2.18 (3)°.

In the crystal structure, intermolecular N-H···O and O-H···O hydrogen bonds (Table 1) link the molecules to form  $R_2^2(8)$  ring motifs (Bernstein *et al.*, 1995), they are further linked by C-H···O hydrogen bonds (Table 1, Fig. 2), in which they may be effective in the stabilization of the structure. The  $\pi$ - $\pi$  contacts between the phenyl rings and the benzene rings, Cg1—Cg1<sup>i</sup> and Cg2—Cg2<sup>ii</sup> [symmetry codes: (i) 1/2 - x, 3/2 - y, 1 - z; (ii) -x, 2 - y, -z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B(C7-C12), respectively] may further stabilize the structure, with centroid-centroid distances of 3.709 (3) Å and 3.772 (3) Å.

# S2. Experimental

The title compound was synthesized according to a literature method (Deng & Mani, 2006). 5-Amino-2-chlorobenzoic acid (0.28 g, 1.66 mmol) was suspended in distilled water (10 ml) in a round bottom flask. The pH of the solution was adjusted to 8-9 using Na<sub>2</sub>CO<sub>3</sub> (1 M). Then, 2-iodobenzene sulfonyl chloride (0.5 g, 1.66 mmol) was added, and stirred at room temperature. The reaction pH was maintained at 8-9. Completion of reaction was indicated by the dissolvation of the suspended 2-iodobenzene sulfonyl chloride. Then, pH was adjusted to 2-3 using HCl (2 N). The precipitate formed was filtered, washed with distilled water, and then recrystalyzed in methanol.

## **S3. Refinement**

The iodine atom was disordered over two positions. During the refinement process the disordered atoms I1A and I1B were refined with occupancies of 0.75 and 0.25, respectively. H3O (for OH) atom was located in difference syntheses and refined [O-H = 0.76 (4) Å,  $U_{iso}(H) = 1.2U_{eq}(O)$ ]. The remaining H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with  $U_{iso}(H) = 1.2U_{eq}(O)$ 





# Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.



# Figure 2

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

## 2-Chloro-5-(2-iodobenzenesulfonamido)benzoic acid

Crystal data

C<sub>13</sub>H<sub>9</sub>ClINO<sub>4</sub>S  $M_r = 437.62$ Monoclinic, C2/c Hall symbol: -C 2yc a = 26.6375 (9) Å b = 8.5532 (2) Å c = 14.2696 (5) Å  $\beta = 111.923$  (2)° V = 3016.03 (17) Å<sup>3</sup> Z = 8

#### Data collection

| Bruker Kappa APEXII CCD<br>diffractometer         | 16794 measured reflections<br>3738 independent reflections         |
|---------------------------------------------------|--------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube          | 2909 reflections with $I > 2\sigma(I)$                             |
| Graphite monochromator                            | $R_{\rm int} = 0.023$                                              |
| Detector resolution: 7.40 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 28.3^{\circ},  \theta_{\rm min} = 2.5^{\circ}$ |
| $\omega$ scans                                    | $h = -34 \rightarrow 35$                                           |
| Absorption correction: multi-scan                 | $k = -11 \rightarrow 11$                                           |
| (SADABS; Bruker, 2005)                            | $l = -18 \rightarrow 18$                                           |
| $T_{\min} = 0.708, \ T_{\max} = 0.819$            |                                                                    |
| Refinement                                        |                                                                    |
| Refinement on $F^2$                               | Secondary atom site location: difference Fourier                   |
| Least-squares matrix: full                        | map                                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.026$                   | Hydrogen site location: inferred from                              |

F(000) = 1696

 $\theta = 2.5 - 28.3^{\circ}$ 

 $\mu = 2.45 \text{ mm}^{-1}$ T = 296 K

 $D_{\rm x} = 1.928 \text{ Mg m}^{-3}$ 

Needle, light brown

 $0.25 \times 0.12 \times 0.08 \text{ mm}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 3738 reflections

| figurogen site foeution. inferret foin                     |
|------------------------------------------------------------|
| neighbouring sites                                         |
| H atoms treated by a mixture of independent                |
| and constrained refinement                                 |
| $w = 1/[\sigma^2(F_o^2) + (0.0301P)^2 + 3.5121P]$          |
| where $P = (F_o^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} = 0.002$                        |
| $\Delta  ho_{ m max} = 0.54 \ { m e} \ { m \AA}^{-3}$      |
| $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$ |
|                                                            |

### Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | X            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|-----------------------------|-----------|
| I1A | 0.12215 (4)  | 0.55411 (16) | 0.41289 (12) | 0.0562 (2)                  | 0.750     |
| I1B | 0.12364 (17) | 0.5371 (5)   | 0.4021 (4)   | 0.0789 (10)                 | 0.250     |
| Cl1 | -0.04930 (3) | 1.21242 (9)  | 0.10878 (7)  | 0.0669 (3)                  |           |
| S1  | 0.16694 (2)  | 0.68574 (6)  | 0.21704 (5)  | 0.0391 (2)                  |           |
|     |              |              |              |                             |           |

| 01  | 0.18866 (8)   | 0.7712 (2)   | 0.15530 (16) | 0.0565 (7)  |
|-----|---------------|--------------|--------------|-------------|
| O2  | 0.18272 (7)   | 0.52454 (19) | 0.23828 (15) | 0.0482 (6)  |
| O3  | 0.13053 (10)  | 1.2455 (2)   | 0.1957 (2)   | 0.0776 (9)  |
| 04  | 0.05294 (9)   | 1.3743 (2)   | 0.13943 (18) | 0.0690 (8)  |
| N1  | 0.10171 (8)   | 0.6828 (2)   | 0.16552 (17) | 0.0441 (7)  |
| C1  | 0.18390 (9)   | 0.7924 (3)   | 0.33142 (18) | 0.0361 (7)  |
| C2  | 0.16797 (10)  | 0.7500 (3)   | 0.4100 (2)   | 0.0418 (8)  |
| C3  | 0.18262 (12)  | 0.8446 (4)   | 0.4949 (2)   | 0.0556 (10) |
| C4  | 0.21208 (13)  | 0.9786 (4)   | 0.5010 (3)   | 0.0624 (11) |
| C5  | 0.22800 (12)  | 1.0202 (3)   | 0.4236 (3)   | 0.0578 (10) |
| C6  | 0.21433 (10)  | 0.9275 (3)   | 0.3391 (2)   | 0.0453 (8)  |
| C7  | 0.06742 (10)  | 0.8137 (2)   | 0.15009 (18) | 0.0371 (7)  |
| C8  | 0.08656 (10)  | 0.9658 (2)   | 0.15617 (19) | 0.0402 (7)  |
| C9  | 0.05220 (10)  | 1.0940 (3)   | 0.14506 (18) | 0.0394 (7)  |
| C10 | -0.00221 (11) | 1.0655 (3)   | 0.12406 (19) | 0.0436 (8)  |
| C11 | -0.02139 (11) | 0.9137 (3)   | 0.1157 (2)   | 0.0490 (8)  |
| C12 | 0.01314 (10)  | 0.7883 (3)   | 0.1292 (2)   | 0.0451 (8)  |
| C13 | 0.07726 (12)  | 1.2528 (3)   | 0.1587 (2)   | 0.0456 (8)  |
| H1  | 0.08656       | 0.59352      | 0.14579      | 0.0529*     |
| H3  | 0.17239       | 0.81700      | 0.54829      | 0.0667*     |
| H3O | 0.1464 (16)   | 1.322 (5)    | 0.207 (3)    | 0.0931*     |
| H4  | 0.22130       | 1.04151      | 0.55811      | 0.0749*     |
| H5  | 0.24800       | 1.11102      | 0.42821      | 0.0695*     |
| H6  | 0.22545       | 0.95503      | 0.28681      | 0.0544*     |
| H8  | 0.12289       | 0.98281      | 0.16784      | 0.0482*     |
| H11 | -0.05802      | 0.89606      | 0.10069      | 0.0588*     |
| H12 | -0.00012      | 0.68681      | 0.12427      | 0.0541*     |
|     |               |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| I1A | 0.0535 (3)  | 0.0462 (3)  | 0.0796 (5)  | -0.0084 (2)  | 0.0373 (3)  | 0.0109 (4)   |
| I1B | 0.106 (2)   | 0.0709 (18) | 0.0809 (13) | -0.0395 (13) | 0.0591 (12) | -0.0108 (9)  |
| Cl1 | 0.0705 (5)  | 0.0508 (4)  | 0.0822 (5)  | 0.0268 (3)   | 0.0318 (4)  | 0.0054 (4)   |
| S1  | 0.0453 (3)  | 0.0250 (3)  | 0.0528 (4)  | 0.0010 (2)   | 0.0250 (3)  | -0.0009(2)   |
| O1  | 0.0748 (13) | 0.0452 (10) | 0.0659 (13) | -0.0060 (9)  | 0.0452 (11) | -0.0017 (9)  |
| O2  | 0.0482 (10) | 0.0272 (8)  | 0.0719 (13) | 0.0059 (7)   | 0.0255 (9)  | -0.0022 (8)  |
| O3  | 0.0640 (15) | 0.0245 (9)  | 0.140 (2)   | -0.0043 (9)  | 0.0331 (15) | -0.0062 (11) |
| O4  | 0.0735 (14) | 0.0240 (9)  | 0.0982 (17) | 0.0068 (9)   | 0.0190 (12) | 0.0050 (9)   |
| N1  | 0.0451 (11) | 0.0202 (8)  | 0.0602 (14) | 0.0000 (8)   | 0.0119 (10) | -0.0022 (8)  |
| C1  | 0.0333 (11) | 0.0271 (10) | 0.0489 (14) | 0.0007 (8)   | 0.0166 (10) | 0.0000 (9)   |
| C2  | 0.0379 (13) | 0.0389 (12) | 0.0531 (15) | 0.0018 (10)  | 0.0221 (11) | 0.0042 (11)  |
| C3  | 0.0577 (17) | 0.0623 (18) | 0.0538 (17) | 0.0023 (14)  | 0.0290 (14) | -0.0012 (13) |
| C4  | 0.0660 (19) | 0.0542 (17) | 0.0633 (19) | -0.0021 (14) | 0.0198 (16) | -0.0204 (14) |
| C5  | 0.0598 (18) | 0.0364 (14) | 0.073 (2)   | -0.0110 (12) | 0.0200 (16) | -0.0077 (13) |
| C6  | 0.0444 (14) | 0.0344 (12) | 0.0583 (16) | -0.0061 (10) | 0.0205 (12) | 0.0012 (11)  |
| C7  | 0.0459 (13) | 0.0241 (10) | 0.0378 (12) | 0.0028 (9)   | 0.0115 (10) | 0.0001 (9)   |
| C8  | 0.0458 (13) | 0.0255 (10) | 0.0476 (14) | 0.0015 (9)   | 0.0155 (11) | 0.0015 (9)   |
|     |             |             |             |              |             |              |

# supporting information

| C9  | 0.0551 (15) | 0.0246 (10) | 0.0376 (13) | 0.0035 (9)   | 0.0163 (11) | 0.0014 (9)   |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C10 | 0.0545 (15) | 0.0362 (12) | 0.0398 (13) | 0.0129 (10)  | 0.0172 (11) | 0.0012 (10)  |
| C11 | 0.0456 (14) | 0.0440 (14) | 0.0541 (16) | 0.0017 (11)  | 0.0147 (12) | -0.0001 (12) |
| C12 | 0.0465 (14) | 0.0310 (11) | 0.0539 (15) | -0.0024 (10) | 0.0143 (12) | 0.0006 (10)  |
| C13 | 0.0632 (17) | 0.0253 (11) | 0.0490 (15) | 0.0040 (10)  | 0.0218 (13) | 0.0007 (10)  |

Geometric parameters (Å, °)

| I1A—C2                  | 2.082 (3)   | C4—C5                   | 1.370 (5) |
|-------------------------|-------------|-------------------------|-----------|
| I1B—C2                  | 2.150 (5)   | C5—C6                   | 1.374 (4) |
| Cl1—C10                 | 1.731 (3)   | C7—C12                  | 1.380 (4) |
| S1—O1                   | 1.423 (2)   | C7—C8                   | 1.388 (3) |
| S1—O2                   | 1.4403 (17) | C8—C9                   | 1.399 (3) |
| S1—N1                   | 1.614 (2)   | C9—C10                  | 1.388 (4) |
| S1—C1                   | 1.775 (3)   | C9—C13                  | 1.494 (4) |
| O3—C13                  | 1.318 (4)   | C10-C11                 | 1.384 (4) |
| O4—C13                  | 1.201 (3)   | C11—C12                 | 1.379 (4) |
| O3—H3O                  | 0.76 (4)    | С3—Н3                   | 0.9300    |
| N1—C7                   | 1.409 (3)   | C4—H4                   | 0.9300    |
| N1—H1                   | 0.8600      | С5—Н5                   | 0.9300    |
| C1—C6                   | 1.392 (4)   | С6—Н6                   | 0.9300    |
| C1—C2                   | 1.387 (4)   | C8—H8                   | 0.9300    |
| C2—C3                   | 1.386 (4)   | C11—H11                 | 0.9300    |
| C3—C4                   | 1.373 (5)   | C12—H12                 | 0.9300    |
|                         |             |                         |           |
| I1A…O2                  | 3.446 (2)   | C1…C8                   | 3.215 (3) |
| I1A…N1                  | 3.540 (3)   | C2···C4 <sup>ii</sup>   | 3.552 (5) |
| I1A…Cl1 <sup>i</sup>    | 3.4575 (16) | C4…C2 <sup>ii</sup>     | 3.552 (5) |
| I1A····C5 <sup>ii</sup> | 3.851 (4)   | C4…O1 <sup>x</sup>      | 3.293 (4) |
| I1B…O2                  | 3.271 (6)   | C5…I1A <sup>ii</sup>    | 3.851 (4) |
| I1B…N1                  | 3.438 (6)   | C5…I1B <sup>ii</sup>    | 3.835 (6) |
| I1B····C5 <sup>ii</sup> | 3.835 (6)   | C6…C8                   | 3.445 (4) |
| I1B…Cl1 <sup>i</sup>    | 3.381 (5)   | C6…O2 <sup>xi</sup>     | 3.419 (3) |
| I1A…H12 <sup>iii</sup>  | 3.2900      | C7…Cl1 <sup>v</sup>     | 3.549 (3) |
| I1A…H11 <sup>iii</sup>  | 3.3600      | C8…O1                   | 3.193 (3) |
| Cl1···O4                | 2.939 (3)   | C8…C6                   | 3.445 (4) |
| Cl1…I1A <sup>iv</sup>   | 3.4575 (16) | C8…C1                   | 3.215 (3) |
| Cl1…I1B <sup>iv</sup>   | 3.381 (5)   | C9…C11 <sup>v</sup>     | 3.499 (4) |
| Cl1····C7 <sup>v</sup>  | 3.549 (3)   | C10…C10 <sup>iii</sup>  | 3.552 (4) |
| S1····H3O <sup>vi</sup> | 3.15 (4)    | C11…C11 <sup>iii</sup>  | 3.568 (4) |
| S1…H8                   | 2.7800      | C11…C9 <sup>v</sup>     | 3.499 (4) |
| O1…C8                   | 3.193 (3)   | C1…H8                   | 2.8100    |
| O1····C4 <sup>vii</sup> | 3.293 (4)   | C6…H8                   | 2.7700    |
| O2…O3 <sup>vi</sup>     | 2.714 (3)   | C13…H1 <sup>ix</sup>    | 2.9400    |
| O2…I1B                  | 3.271 (6)   | H1····O4 <sup>vi</sup>  | 2.0700    |
| O2…I1A                  | 3.446 (2)   | H1····C13 <sup>vi</sup> | 2.9400    |
| O2…C6 <sup>viii</sup>   | 3.419 (3)   | H1…H12                  | 2.3500    |
| O3····O2 <sup>ix</sup>  | 2.714 (3)   | H3····O3 <sup>x</sup>   | 2.7800    |

| $04N1^{ix}$                                     | 2 903 (3)               | H3O\$1 <sup>ix</sup>            | 315(4)     |
|-------------------------------------------------|-------------------------|---------------------------------|------------|
| 04Cl1                                           | 2.909(3)                | $H_3 O \cdots O^{2ix}$          | 1.95 (4)   |
| 01H8                                            | 2.559 (5)               | H401×                           | 2 4800     |
| $01 \cdots H4^{vii}$                            | 2 4800                  |                                 | 2.7600     |
| 01                                              | 2.4600                  | H6O1                            | 2.7000     |
| $01 \dots H5^{\text{viii}}$                     | 2.3000                  |                                 | 2.5000     |
| $O_{2}$ $H_{6}^{viii}$                          | 2.7000                  | H8\$1                           | 2.0700     |
| $02 \cdot H0$                                   | 2.0700                  | 118 51<br>H901                  | 2.7800     |
| 02H2vii                                         | 2,7800                  | H8                              | 2.3700     |
| 0348                                            | 2.7800                  | H8C1                            | 2.2000     |
|                                                 | 2.2800                  |                                 | 2.8100     |
| N1IIA                                           | 2.0700                  |                                 | 2.7700     |
|                                                 | 3.340 (3)<br>2.428 (C)  |                                 | 3.3000     |
|                                                 | 3.438 (6)               |                                 | 2.3500     |
| N1····04 <sup>**</sup>                          | 2.903 (3)               | H12…11A <sup>m</sup>            | 3.2900     |
| 01—S1—02                                        | 117.89 (12)             | C8—C9—C10                       | 118.2 (2)  |
| O1—S1—N1                                        | 110.08 (12)             | C8—C9—C13                       | 117.2 (2)  |
| 01—S1—C1                                        | 106.41 (12)             | C10—C9—C13                      | 124.6 (2)  |
| 02—S1—N1                                        | 105.12 (11)             | C11—C10—C9                      | 123.3 (2)  |
| 02-81-C1                                        | 110.15 (12)             | Cl1—C10—C11                     | 116.3(2)   |
| N1 - S1 - C1                                    | 106.73 (12)             | C9-C10-C11                      | 120.4(3)   |
| C13—O3—H3O                                      | 118 (3)                 | C10-C11-C12                     | 120.8(3)   |
| S1-N1-C7                                        | 125 69 (16)             | C7-C12-C11                      | 1199(2)    |
| C7—N1—H1                                        | 117.00                  | 03-013-04                       | 122.7(3)   |
| S1—N1—H1                                        | 117.00                  | 03-C13-C9                       | 111.8(2)   |
| \$1-01-06                                       | 116 10 (19)             | 04-C13-C9                       | 1255(3)    |
| \$1-C1-C2                                       | 1240(2)                 | C2-C3-H3                        | 120.00     |
| $C_{2}$ $C_{1}$ $C_{6}$                         | 1199(2)                 | C4-C3-H3                        | 120.00     |
| $IIA - C^2 - CI$                                | 125 8 (2)               | C3-C4-H4                        | 120.00     |
| $IIA - C^2 - C^3$                               | 1154(2)                 | C5-C4-H4                        | 120.00     |
| C1 - C2 - C3                                    | 119.1(2)<br>118.9(3)    | C4—C5—H5                        | 120.00     |
| $11B-C^2-C^1$                                   | 1205(2)                 | С6—С5—Н5                        | 120.00     |
| $IIB - C^2 - C^3$                               | 120.7(3)                | C1-C6-H6                        | 120.00     |
| $C_2 - C_3 - C_4$                               | 120.7(3)                | C5-C6-H6                        | 120.00     |
| $C_{2}^{-}$ $C_{3}^{-}$ $C_{4}^{-}$ $C_{5}^{-}$ | 120.7(3)                | C7-C8-H8                        | 119.00     |
| C4 - C5 - C6                                    | 119 8 (3)               | C9-C8-H8                        | 119.00     |
| C1 - C6 - C5                                    | 1203(3)                 | C10-C11-H11                     | 120.00     |
| $C_{8} - C_{7} - C_{12}$                        | 1195(2)                 | $C_{12}$ $C_{11}$ $H_{11}$      | 120.00     |
| N1 - C7 - C8                                    | 119.5(2)<br>122.2(2)    | $C7_{12}$ $C12_{11}$ $H12_{11}$ | 120.00     |
| N1 - C7 - C12                                   | 122.2(2)<br>118 31 (19) | $C_{11} - C_{12} - H_{12}$      | 120.00     |
| C7 - C8 - C9                                    | 1212(3)                 |                                 | 120.00     |
| 07-08-07                                        | 121.2 (5)               |                                 |            |
| O1—S1—N1—C7                                     | -65.6 (2)               | C3—C4—C5—C6                     | 0.1 (5)    |
| O2—S1—N1—C7                                     | 166.5 (2)               | C4—C5—C6—C1                     | 0.7 (5)    |
| C1—S1—N1—C7                                     | 49.5 (2)                | N1—C7—C8—C9                     | -177.1 (2) |
| O1—S1—C1—C2                                     | 177.4 (2)               | C12—C7—C8—C9                    | 2.3 (4)    |
| O1—S1—C1—C6                                     | -1.6 (2)                | N1-C7-C12-C11                   | 178.7 (2)  |
| O2—S1—C1—C2                                     | -53.8 (3)               | C8—C7—C12—C11                   | -0.7 (4)   |

| O2—S1—C1—C6  | 127.3 (2)  | C7—C8—C9—C10    | -2.3 (4)    |
|--------------|------------|-----------------|-------------|
| N1—S1—C1—C2  | 59.8 (3)   | C7—C8—C9—C13    | 176.6 (2)   |
| N1—S1—C1—C6  | -119.1 (2) | C8—C9—C10—Cl1   | 179.79 (19) |
| S1—N1—C7—C8  | 15.6 (4)   | C8—C9—C10—C11   | 0.8 (4)     |
| S1—N1—C7—C12 | -163.8 (2) | C13—C9—C10—Cl1  | 1.0 (4)     |
| S1—C1—C2—I1A | 0.7 (4)    | C13—C9—C10—C11  | -178.1 (2)  |
| S1—C1—C2—C3  | -178.5 (2) | C8—C9—C13—O3    | -10.3 (3)   |
| C6—C1—C2—I1A | 179.6 (2)  | C8—C9—C13—O4    | 170.0 (3)   |
| C6—C1—C2—C3  | 0.4 (4)    | C10—C9—C13—O3   | 168.5 (3)   |
| S1—C1—C6—C5  | 178.0 (2)  | C10—C9—C13—O4   | -11.2 (4)   |
| C2—C1—C6—C5  | -0.9 (4)   | Cl1—C10—C11—C12 | -178.3 (2)  |
| I1A—C2—C3—C4 | -178.9 (3) | C9—C10—C11—C12  | 0.8 (4)     |
| C1—C2—C3—C4  | 0.4 (5)    | C10-C11-C12-C7  | -0.8 (4)    |
| C2—C3—C4—C5  | -0.7 (5)   |                 |             |
|              |            |                 |             |

Symmetry codes: (i) -*x*, *y*-1, -*z*+1/2; (ii) -*x*+1/2, -*y*+3/2, -*z*+1; (iii) -*x*, *y*, -*z*+1/2; (iv) -*x*, *y*+1, -*z*+1/2; (v) -*x*, -*y*+2, -*z*; (vi) *x*, *y*-1, *z*; (vii) *x*, -*y*+2, *z*-1/2; (viii) -*x*+1/2, *y*-1/2, -*z*+1/2; (ix) *x*, *y*+1, *z*; (x) *x*, -*y*+2, *z*+1/2; (xi) -*x*+1/2, *y*+1/2, -*z*+1/2.

## Hydrogen-bond geometry (Å, °)

| D—H···A                    | D—H      | H···A    | D···A     | D—H··· $A$ |
|----------------------------|----------|----------|-----------|------------|
| N1—H1…O4 <sup>vi</sup>     | 0.86     | 2.07     | 2.903 (3) | 164        |
| O3—H3O····O2 <sup>ix</sup> | 0.76 (4) | 1.95 (4) | 2.714 (3) | 176 (5)    |
| C4—H4···O1 <sup>x</sup>    | 0.93     | 2.48     | 3.293 (4) | 146        |
| С6—Н6…О1                   | 0.93     | 2.36     | 2.792 (3) | 108        |
| C8—H8…O1                   | 0.93     | 2.57     | 3.193 (3) | 125        |
| С8—Н8…О3                   | 0.93     | 2.28     | 2.631 (3) | 102        |
|                            |          |          |           |            |

Symmetry codes: (vi) *x*, *y*-1, *z*; (ix) *x*, *y*+1, *z*; (x) *x*, -*y*+2, *z*+1/2.